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ABSTRACT
This paper discusses the idea of using a single Pareto-compli-
ant surrogate model for multiobjective optimization. While
most surrogate approaches to multi-objective optimization
build a surrogate model for each objective, the recently pro-
posed mono surrogate approach [3] aims at building a global
surrogate model defined on the decision space and tightly
characterizing the current Pareto set and the dominated re-
gion, in order to speed up the evolution progress toward
the true Pareto set. This surrogate model is specified by
combining a One-class Support Vector Machine (SVMs) to
characterize the dominated points, and a Regression SVM
to clamp the Pareto front on a single value. The aims of
this paper are to identify issues of the proposed approach
demanding further study and to raise the question of how
to efficiently incorporate quality indicators, such as the hy-
pervolume into the surrogate model.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence,
Problem Solving, Control Methods, and Search

General Terms
Algorithms

Keywords
Multiobjective Optimization, Surrogate Models, Support Vec-
tor Machine

1. INTRODUCTION
Surrogate methods have received a particular attention in

the realm of Evolutionary Algorithms (EAs), all the more so
as EAs are known to require a high number of objective func-
tion computations (see e.g. [1] for a survey of surrogate evo-
lutionary optimization). Several types of meta-models have
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been used (quadratic models, neural networks, Regression
Support Vector Machines, kriging or Gaussian Processes).
Meta-models can aim at either a global approximation of
the objective function, or a local one, focusing on the neigh-
borhood of the best current individuals. The meta-model
can be used to replace the objective function for a given
number of generations; it can be used to generate new indi-
viduals (the optima of the meta-model) from scratch; and it
can also be used to filter out unpromising offspring.

Unsurprisingly, Evolutionary Multi-Objective (EMO) al-
gorithms facing even more severe computational issues than
single-objective optimization, the use of meta-models has
been intensively investigated in the EMO literature (see [2]
for a comprehensive survey). Most approaches carry over
the single-objective surrogate approach, learning one meta-
model for each objective and embedding the meta-models
within a standard EMO with little modification [6].

Recently proposed approach [3] aims at building a global
mono surrogate model in decision space, characterizing whe-
ther an individual belongs to i/ the current Pareto set; or ii/
the dominated region; or iii/ the rest of the decision space.
This surrogate model, providing an aggregated perspective
on all objective functions simultaneously, is used to guide the
search in the vicinity of the current Pareto set, and speed
up the population move toward the true Pareto set. This
Aggregated Surrogate Model (ASM) is constructed by com-
bining ideas from Regression and One-class SVMs.

Section 2 describes the formulation of the ASM model
and gives an overview of the EMO algorithm using ASM,
referred to as Pareto-SVM. Section 3 discusses the open
issues and Section 4 concludes the paper.

2. PARETO SUPPORT VECTOR MACHINE

2.1 Support Vector Machine
Support vector machines were originally developed for

pattern classification and later extended to One-class SVM
[4] (the case of one-category data set) and regression, called
often Support Vector Regression [5] (Fig. 1 (c-f)).

Given training vectors xi ∈ IRn, i = 1 . . . ℓ, in two classes,
and a vector yi ∈ IRl such that yi ∈ {−1, 1}, Classification
SVM solves the following primal problem:

Minimize
{w, ρ, ξ}

1

2
||w||2 + C

ℓ∑
i=1

ξi

subject to yi(< w,Φ(xi) > +ρ) ≥ 1− ξi , ξi ≥ 0
Its dual form can be solved as quadratic programming
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Figure 1: Classification Support Vector Machines (c) is mapping the original linearly non-separable data set
(a) into a higher-dimensional feature space (b) by some nonlinear map Φ , where mapped data set can become
linearly separable. SVM has been extended to One-class SVM (d) and Support Vector Regression (e,f).
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Figure 2: An idealistic schematic view of the Pareto front, depicting dominated points (white), current Pareto
(grey) and new Pareto (black) respectively in objective and decision space.
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Figure 3: A schematic view of the training data selection in objective space (left) and SVM-informed selection
of children from the pool of pre-children in decision space (right).



problem:

Maximize
α

ℓ∑
i=1

αi −
1

2

ℓ∑
i,j=1

αiαjyiyjK(xi, xj)

subject to 0 ≤ αi < C ,
∑ℓ

i=1 αiyi = 0
where w is the normal to“separating hyperplane”; ||w|| is the
Euclidean norm of w; ξ are the slack variables introduced
for the soft margin case; the constant C > 0 determines the
trade-off between margin maximization and training error
minimization.
The SVM approach, initially aimed at finding linear func-

tions, only computes scalar products of sample points. The
so-called kernel trick supports the extension to non-linear
functional spaces: the search space X (Fig. 1 (a)) is mapped
onto a more expressive space (Fig. 1 (b)) referred to as fea-
ture space Φ(X), where the scalar product< Φ(x),Φ(x′) >=
K(x, x′) can be calculated without computing explicitly Φ(x)
or Φ(x′). One example is the Gaussian Radial Basis kernel
function (RBF):

K(xi, xj) = e−∥xi−xj∥2
/2σ2

(1)

where σ is a bandwidth parameter.
The decision function f(x) = sgn(

∑ℓ
i=1 yiαiK(xi, x) + p)

2.2 Rationale and Assumption
The goal of the present approach is to build a single surro-

gate model in the decision space, usable to drive the popu-
lation toward the true Pareto set. This surrogate model will
be learned from i/ points belonging to the current Pareto
set, and ii/ dominated points.
At a given time during the run of an EMOA, the relative

position of the Pareto set and the dominated points can be
schematically depicted as follows. The situation might be
simple in the objective space (Fig. 2.(a)), with the true
Pareto front and the dominated region located on the two
opposite sides of the current Pareto front. It can be much
more intricate in the decision space; Fig. 2.(b) illustrates the
case where the true Pareto set (respectively the dominated
region) lies within (resp. outside) the interior region of the
current Pareto set. Further, the Pareto set can include many
disjoint regions in the decision space.
Expectedly, the ASM model discriminates the Pareto set

and the dominated region. However, a binary classification
approach is ill-suited, in the sense that it would not give
any precise indication about where the true Pareto set is
located. More generally, the Pareto set (true or current) and
the dominated points cannot be handled in a symmetrical
way: dominated points span over a subspace whereas the
Pareto set should better be viewed as a manifold.
It thus comes to map all Pareto points onto a single value

ρ (up to some tolerance ϵ); meanwhile, the dominated points
would be mapped onto the half space ] −∞, ρ − ϵ[. Such a
mapping might actually provide useful indications: expect-
edly, points mapped onto the half space [ρ + ϵ,+∞[ would
belong to the yet unexplored region, which is bound to con-
tain the true Pareto set, and these points could thus be
considered promising.
The above constraints on the ASM mapping can be ex-

pressed by combining the SVM-regression formulation (map-
ping each point x onto some target value f(x) up to some
tolerance ϵ) and the One-class SVM, mapping a set of points

onto a connected interval and thus characterizing the sup-
port of the underlying sample distribution. The main dif-
ference is that the target value ρ associated to the Pareto
points is free in the ASM problem.

2.3 Lagrangian formulation
Let X ⊂ IRd denote the search (decision) space and let

x1 . . . xm denote points in X, with x1 . . . xℓ being current
Pareto points and xℓ+1, . . . , xm being dominated points. The
sought ASM mapping, noted F (F : X 7→ IR), is finally sub-
ject to m+ ℓ constraints: for each xi, 1 ≤ i ≤ ℓ, F(xi) must
belong to [ρ − ϵ, ρ + ϵ] and for each xi, ℓ < i ≤ m, F(xj)
must be less than ρ− ϵ.

2.3.1 The primal problem
Using the kernel trick, mapping F will be defined as a

linear function w w.r.t. some feature space Φ(X):

F(x) = < w,Φ(x) >

Then, introducing the usual slack variables ξ(∗) (with nota-

tions borrowed from [5], ξ(∗) represents the (m + ℓ)-vector
made of (ξupi )i∈[1,ℓ], (ξlowi )i∈[1,ℓ], and (ξupi )i∈[ℓ+1,m]), and
given positive constants C and ϵ, the primal problem is:

Minimize
{w, ξ(∗), ρ}

1

2
||w||2 +C

ℓ∑
i=1

(ξupi + ξlowi )+C

m∑
i=ℓ+1

ξupi + ρ (2)

subject to

< w,Φ(xi) >≤ ρ+ ϵ+ ξupi (i = 1 . . . ℓ) (3)

< w,Φ(xi) >≥ ρ− ϵ− ξlowi (i = 1 . . . ℓ) (4)

< w,Φ(xi) >≤ ρ− ϵ+ ξupi (i = ℓ+ 1 . . .m) (5)

ξupi ≥ 0 (i = 1 . . . ℓ) (6)

ξlowi ≥ 0 (i = 1 . . . ℓ) (7)

ξupi ≥ 0 (i = ℓ+ 1 . . .m) (8)

For the sake of completeness, but due to space limitations,
the detailed derivation of the solution is available in annex
at http://sites.google.com/site/paretosvm/.

2.4 Pareto-SVM Filter Algorithm
This subsection briefly describes the Pareto-SVM Filter

Algorithm and some conclusions from the experiments [3].
To efficiently apply the Pareto-SVM learning, the maxi-

mum size of training data should be limited, the objective
space can be divided regularly into Narchive boxes, and only
one non-dominated point will be kept in each box (Fig. 3
(left)).

The main difference between general Multiobjective Evo-
lutionary Algorithm (MOEA) and SVM-informed MOEA is
the call to the informed operators that replaces the stan-
dard call to variation operators, with the ASM as additional
argument.

ASM can be used to filter out unpromising offspring. When
a variation operator is called, it generates a given number
of pre-children p for each feature child (Fig. 3 (right)). The
value of the surrogate model for all these pre-children is com-
puted, and the operator returns the best one according to
those surrogate values. The filtering is more conservative
case than direct optimization of ASM model, therefore the
potential speed-up is smaller. Thus, the experiments show
that two SVM-informed MOEAs with 2-10 pre-children are



1.5-3 times faster than original MOEAs (in terms of num-
ber of function evaluations to reach the target hypervolume
value on selected bi-objective problems). ASM does not deal
with the diversity, therefore for large number of pre-children,
the acceleration of optimization can lead to premature con-
vergence.

3. DISCUSSION

3.1 Pareto-SVM formulation
This constrained optimization problem happens to be over-

constrained; in such cases, it results in a poor generalization
error of the ASM (visible e.g. from its errors on the rest
of the Pareto archive). This problem was fixed using an
additional k factor, replacing ρ by kρ in Equation(2). The
best k value w.r.t. the ASM generalization error was deter-
mined in original algorithm from a preliminary trial, leading
to k = 1 for one set of problems and k = −1 for another set.
Probably, a better solution is to reformulate Equation(2):

Minimize
{w, ξ(∗), ρ}

1

2
||w||2 +C

ℓ∑
i=1

(ξupi + ξlowi ) +C

m∑
i=ℓ+1

ξupi +
1

2
Dρ2

Here we want to cluster the Pareto set close to a straight
line, and the non-Pareto away from this line, but on one
side only. So the problem should stay symmetrical, in par-
ticular should be invariant when you change w into -w and
ρ into -ρ. But we cannot tell a priori on which side of the
line should the non-Pareto be, and choosing arbitrarily one
side, as was done in the original formulation, seems to be
too much a constraint. In the new formulation, D is an ad-
ditional problem-dependent parameter, which in some sense
makes the learning problem harder.
On-going work aims at understanding this phenomenon

+/-ρ, and relating it to the structure of the multi-objective
landscape.

3.2 Quality indicator-based Mono surrogate
The original Pareto-SVM approach uses only the infor-

mation about the dominance relations between points, thus
the points from the second and from the 50th non-dominated
fronts are the same, they are dominated points. Let’s imag-
ine some many-objective problem and the distribution of
initial population in the objective space, probably all points
of initial population will be non-dominated. Obviously, the
original Pareto-SVM approach can not be applied at least
for several generations. It seems to be raisonable to use the
quality indicator such as the hypervolume to mesure the fit-
ness of solutions, the question is the hypervolume indicator
provides enough information for the surrogate model?
Figure 4 illustrates ten solutions of bi-objective problem.

The hypervolume contribution can be used as the fitness
function for the Pareto points. But the extreme points will
then have infinity contribution, while for other points such
as point B the contribution is the volume dominated by
B containing no other solution from population. The hy-
pervolume contribution is often used as second-level sorting
criterion to eliminate the most crowded points. For each
point from non-dominated front the rank value can be de-
fined according to the hypervolume contribution value. But
problems arise when we try to estimate the points from the
second front. Thus, the point e has the 6th rank, while
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Figure 4: Quality of dominated points as weighted
sum of that of nearest Pareto points.

point E and point C have the first and the 5th rank respec-
tively. But let us suppose that the hypervolume contribu-
tion based ranking is very expensive for all non-dominated
points. Then, since the hypervolume contribition values
of Pareto is known, the fitness of dominated points could
be calculated as weighted sum of the fitness function val-
ues of the nearest Pareto points in objective space. These
weights could also incorporate additional information, such
as crowding in decision space.

It is not obvious that the hypervolume contribution should
be used as equivalent of fitness function for Pareto points.
Probably more complex criterion should be chosen which
incorporate the estimation of nearest less crowded region,
because even if three Pareto points lie nearly in the same
place, but in less crowded region, there is no reason to set a
low rank to one of them.

4. CONCLUSION
This paper discussed some open issues related to the idea

of using a single Pareto-compliant surrogate model for multi-
objective optimization proposed in this conference [3]. This
aggregated surrogate model, ASM, enables to guide the off-
spring generation and speeds up the population move to-
ward the true Pareto set. However, the formulation of the
optimization problem still requires a user decision. Further-
more, incorporating other quality indicators when building
the surrogate model is appealing, but remains to be done.
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