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Four Reasoning Models for C3 Metamodel 
 
 

Abdelkrim Amirat and Mourad Oussalah 
 
 
Abstract - The architecture is considered to be the driving aspect of the development process; it 
allows specifying which aspects and models in each level needed according to the software 
architecture design. Early Architecture Description Languages (ADLs), nearly exclusive, focus on 
structural abstraction hierarchy ignoring behavioural description hierarchy, conceptual 
hierarchy, and metamodeling hierarchy. In our approach these four hierarchies constitute views 
to appropriately “reason about” the architecture of a system described using our C3 metamodel. 
C3 is defined to be a minimal and complete architecture description language. In this paper we 
provide a set of mechanisms to deal with different levels of each type of hierarchy, also we 
introduce our proper structural definition for connector types used to instantiate any connexion 
elements deployed at the architectures and application levels. 
 
Keywords: Conceptual, Configuration, Connector, Behaviour, Hierarchy, Metamodeling, 
Structure 
 
 

I. Introduction 
One of the key goals of software architecture 

research is to understand and to manipulate a system at 
a higher level of granularity than modules or lines of 
code. Generally, software architectures are composed of 
components, connectors and configurations, constraints 
on the arrangement and behaviour of components and 
connectors. The architecture of a software system is a 
model, or abstraction of that system. Software 
architecture researchers need extensible, flexible 
architecture descriptions languages (ADLs) and equally 
clear and flexible mechanisms to manipulate these core 
elements of the architecture. 

Recently Medvidovic [1] gives the following 
definition for software architecture “A software system’s 
architecture is the set of design decisions about the 
system which, if made incorrectly, may cause your 
project to be cancelled”. However, these design 
decisions encompass every aspect of the system under 
development, including: 
 
• Design decisions related to system structure – for 

example, “there should be exactly three components 
in the system, the data store, the business logic and 
the user interface component;” 

• Design decisions related to behaviour (also referred to 
as functional) – for example, “data processing, 
storage, and visualisation will be handled separately;” 

• Design decisions related to the system’s non 
functional properties – for example, “the system 
dependability will be ensured by replicated 
processing modules;” 

• Also, we can elicit other design decisions related to 
the development process or the business position 
(product-line). 

 
We note that in the description languages 

architectures (ADLs) that currently exist, there is no 
standard about architectural concepts or standards in 
terms of mechanisms for manipulating those concepts 
(i.g. in the ADLs defining explicit connectors, we see 
that each one gives its proper definition for connectors, 
some ADLs define the concept of configuration while 
others do not). 

For the reasoning model, the majority of ADLs 
proposes only sub-typing (inheritance) as a mechanism 
for specialization (e.g. Acme, C2). Otherwise, for the 
rest of ADLs, they propose their own ad hoc 
mechanisms based on methods designed specially for 
these ADLs. 

Based on a bread survey of architecture description 
notations and approaches, we identified that ADLs 
capture aspects of software design centred around a 
system’s Component, connectors, and configurations. 
The core elements of our model are basically defined 
around these tree elements. So, from this we derive the 
name of our model C3 for Component, Connector, and 
Configuration. Taking into consideration that our C3 
have no relationship with C2 defined bay Taylor [2] nor 
with C3 with is an extension of C2 defined by Pérez-
Martínez [3]. The rest of the paper is organized as 
fellows. In section 2 presents our research motivations. 
Section 3 describes the C3 metamodel C3. The last 
section presents our conclusion and the different 
perspectives of our work. 
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II. Motivation 
In this work the goal is to develop a generic model 

for the description of software architectures which must 
be minimal and complete. It is minimal because we are 
only interested by the core concepts in each ADL. And 
complete because with this minimum of concepts the 
architect can be able to describe any required structures 
he need to realize. 

However, describing only the architecture structure is 
not sufficient to provide correct and reliable software 
systems. In this paper we are even more going to focus 
on representation architecture model and to raison about 
its elements following four different types of 
hierarchies. Each of these hierarchies provides a 
particular view on the architecture. In the following 
sections we present more details about these hierarchies. 

Using our approach software architecture is more 
explicit and clarified by: 
 
• Make explicit the possible types of hierarchies being 

used as support of reasoning on the architectures, with 
the different possible levels in each hierarchy. 

• Show semantics convey by every type of hierarchy by 
providing the necessary mechanisms used to connect 
elements of in the same level of hierarchy and the 
mechanisms used to connect elements of every level 
with the elements of the super and lower levels. 

• Allows introducing various mechanisms of reasoning 
within the same architecture according to the 
requirement problem in a specific domain space. 

• Establish the position of existing mechanisms 
developed for reasoning with regard to our referential. 

 
In order to have a complete C3 model, we define mainly 
two models to describe and raison about software 
architectures. A representation model to describe any 
architecture based on C3 elements and a reasoning 
model to understand and analyse the representation 
model. 

III. Representation Model 
The core elements of the C3 representation model are 

components, connectors, and configurations, each of 
these elements have an interface to interact with its 
environment. Figure 1 depicts those principal elements.  

III.1. Component 

Components represent computation elements and 
data storage for software systems. In C3, each 
component can have one or more ports. Ports are the 
interaction points between components and their 
environments. 
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Fig. 1. Basic elements of C3 Meta model 

III.2. Connector 

Connectors are very important entities that 
unfortunately are not dealt with by the conventional 
component-based models. In C3, connectors represents 
interconnections among components for supporting 
their interactions and they are defined explicitly and 
considered as a first class entities by separating their 
interfaces (roles) from their services [4]. The glue 
represents the mapping function between the input roles 
and the output roles. Our contribution at this level 
consists in enhancing the structure connectors by 
encapsulating the attachment links inside the connector 
(Figure 2.a). So, the application builder will have to 
spend no effort in connecting connectors with its 
compatible components/configuration. Consequently, 
the task of the developer consists only in choosing a 
suitable type of connector which is compatible with the 
types of components/configurations which are expected 
to be connected. Thus, by this way the application will 
be constructed like a Lego blocks where the attachments 
are predefined inside each type of connector. We have 
given the following definition (Figure 2.b) for 
connectors in a previous work [5]. 
 

 
Fig. 1.a.  The new structure of a connector 
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Fig. 1.b. Syntax of a connector 

III.3. Configuration 

For more clarity, in our model C3 each component or 
connector is perceived and handled from the outside as 
primitive element. But their inside can be real primitive 
elements, or composite with a configuration which wrap 
up all the internal elements of this composite. These 
configurations are first class entities. They represent a 
graph of components and connectors and describe how 
they are fastened to each other. A configuration may 
have ports, and each port is bound to one or more ports 
of the internal components. In general, configurations 
can be hierarchical where components and connectors 
represent sub-configurations that have internal 
architectures as represented in Figure 1. 

III.4. Interface 

Every architectural element has an interface. Each 
interface is associated with a type which corresponds to 
a set of operations which it defines. Via this interface 
the element publish to the outside environment it needs 
in term of required services as well as the services 
which it provides. However, elements are selected and 
connected from their published interface. So, the 
interface is though as a contract�with the environment 
that the element should honour. 

To establish connections between elements we use 
ports for components and configurations and roles for 
connectors and we assign the services to each port and 
role with a necessary set of constraints to be respected 
during the connections. From conceptual view ports and 
roles are concrete classes inherited from the interface 
abstract class as shown in Figure 2. 

Also, in modelling level we use cardinality to 
describe the multiplicity of each relation (connection) 
between architectural elements. This cardinality express 
the number of ports associated with components and 
configurations and the number of roles associated with 
connectors. Each port or role is considered as a channel 
to carry in/out required/provided services exchanged 
with element environment. 

 

The previous architectural elements are manipulated 
and used via predefined mechanisms in the reasoning 
model. Essentially, we are going to study the 
instantiation, specialization, composition, 
decomposition, and connections mechanisms. In the 
following section, we define the using context of each 
mechanism. Some details about the structure of these 
architectural elements are presented in our previous 
works [5]-[6] 

IV. Reasoning Model 
In our approach we intended to analyze the software 

architecture by using different hierarchies where each 
hierarchy is investigated at different levels of 
representations. The Figure 3 illustrates the C3 
reasoning model of C3. This model is defined by four 
types of hierarchies and each type represents a specific 
view on the C3 representation model different from the 
others. The four hierarchies are:  

 

 
Fig. 3. C3 Meta Model and reasoning models 

 
 

The structural abstraction hierarchy used to explicit the 
different nested levels of structural hierarchies that 
software architecture can have.  

 
The behavioural description hierarchy to explicit the 
different levels of system behaviour hierarchy 
represented bay protocols.  

 
The conceptual hierarchy to describe the library of 
element types corresponding to each element at the 
architecture level.  

 
The metamodeling hierarchy to locate our C3 model in 
the pyramid of hierarchies defined by the OMG [5]. 

 
We associate to each hierarchy two points of views. 

The first one is an external view “the logical 
architecture” as it is perceived by the user (designer or 
developer) of the architecture.  The second kind of view 
is internal view “the physical architecture” which 
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represents the memory image of the logical architecture. 
Some details about the logical and physical architecture 
are presented in [6]. In the following sections, we 
present those types of hierarchy and we investigate the 
possible levels of each hierarchy. 

IV.1. Structural Hierarchy (SH) 

Structural hierarchy also called structural hierarchy 
has to provide the structure of a particular architecture 
in terms of the architectural elements defined by the 
ADL. The majority of academic ADLs like Aesop, 
MetaH, Rapide, SADL, and other [7] or the industrials 
like CORBA, CCM/CORBA, EJB/J2EE [8] allow only 
a flat description of software architectures. 

Using those ADLs architecture is described only in 
terms of components connected by connectors without 
any nested elements - without any structural hierarchy. 
This design choice was made in order to simplify the 
structure and also by lack of concepts and mechanisms 
that respectively define and manipulate configurations 
of components and connectors.  

In our C3 model the structure of architectures is 
described using components, and connectors, and 
configurations where configurations are composite 
elements. Each element in this configuration 
(component or connector) can be a primitive (with a 
basic behaviour scenario) or configuration which 
contains another set of components and connectors, 
which in their turn can be primitive or composite 
material, and so on. 

However, the metamodel C3 allows the 
representation of architecture with a real hierarchy (with 
an arbitrary n abstraction levels). It should be noted 
that practically all architectural solutions for domain 
problems, have a nested hierarchical nature. Thus, 
software architecture can be viewed as a graph where 
each internal node of this graph represents a 
configuration and each end-node represents a primitive 
component arcs between nodes are connectors. 

In Figure 4.a, the root node is the first level of 
abstraction; it is also the configuration which 
encapsulates all elements of the architecture. The small 
white circles represent primitive components and small 
black circles represent sub-configurations (composites) 
in the system architecture. These configurations contain 
other elements inside. Thus, the configurations will 
never be end-nodes in the hierarchy tree of abstractions. 
The node with double circles represents the global 
configuration of the architecture. The arcs represent the 
bonds of hierarchy - the father/child relationship. This 
relationship does not necessarily imply a service-
connection between the father node and the child one. 
To explicit the parental relationship between each 
element and its sub-elements we define the following 
type of connector:  

 

 
 

Fig. 4.a. External view of the structural hierarchy 
 

• Composition-Decomposition Structural Connector 
(CDSC) used to link each configuration to its 
underling elements. Therefore, this type of connector 
allows the navigation among levels of the structural 
hierarchy. Also, we can determine the childs or the 
father, if it is the case, of each elements deployed in 
the architecture. Figure 4.b represents the notation 
adopted for this type of connectors. 

 
Fig. 4.b.  CDSA connector 

 
Figures 5.a illustrates two service-connection types 

of connector; the fist one is generally represented by an 
implicit link called Binding and the second one is 
defined by several ADLs as Attachment link. In our 
model those two types of link are explicated as first 
class entities and are defined as follows: 

 

 
 

Fig. 5.a.  Internal view of the structural hierarchy  
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• Expansion-Compression Connector (ECC) is 
represented by discontinuous arc. We use this type of 
connectors to establish service-connections between 
each configuration and the underling elements (Figure 
5.b). In some ADLs this type of link is called binding 
or delegation but not defined as a first class entity. 

 
Fig. 5.b.  ECC connector 

 
• Structural Attachment Connector (SAC) is 

represented by full arc. We use this type of connectors 
to establish service-connections between components 
and configurations deployed in the same level of 
abstraction (Figure 5.c). In some ADLs this type of 
connector in called assembling connector and 
represented by first class entity (e.g. Acme) [9].  

 
Inside the SAC connector the glue code (Figure 5.c) 

defines the mapping among communicating elements. 
 
• The provided service of “a” is required by “x” (e1=s1), 

• The provided service of “b” is required by “z” (e2=s2), 

• The provided service of “c” is required by “y” (e3=s3). 
 

Attachments among elements {a,b,c,x,y,z} and the 
SAC connector are also defined inside the connector. 
We note that the example described in Figure 5.c is 
independent from the one described in Figure 5.a. 

The different elements of the architecture are 
connected through their interfaces. Thus the types of 
interfaces are checked if they are compatible or not 
(interface matching). Consequently, in the structural 
hierarchy, the consistency of elements assembly is 
controlled syntactically. 

 
Fig. 5.c.  Internal view of SAC connector 

 
 

IV.2. Behavioural hierarchy (BH) 

The behavioural description hierarchy represent the 
description of the system’s behaviour at different levels. 
Each primitive element of the architecture has its own 
behaviour. The behaviour description associated with 
the highest level of the hierarchy - level n in Figure 6.a - 
represents the overall behaviour of the architecture. This 
behaviour is described by a global protocol P0. The 
system architecture at this level is perceived as a black 
box with inputs (required services) and outputs 
(provided services). At lower level each component, 
connector, configuration, port, or role has its own 
protocol to describe its functionality (e.g. glue code is 
the protocol describing the connector behaviour, also 
the component behaviour can be described by a state 
chart diagram). So, protocol is a mechanism used 
specifying the behaviour of an architectural element by 
defining the relationship among the possible states of 
this element and its ability to produce coherent results.  

Figure 6.a sketches by a plan representation how to 
decompose the protocol P0 at level n into its sub-
protocols at level n-1. This decomposition process 
produces a set of other behaviours {P01, P02, P03}. By the 
same process each protocol of the level n-1 is 
decomposed to produce an other set of sub-protocols at 
the level n-2, and so on until level 0. The last level of 
the hierarchy is a set of protocols representing primitive 
behaviour elements which are available in the library of 
the architect. The total set of protocol levels represents 
the behaviour hierarchy of the system architecture.  

So, by Figure 6.a we explicit that all inputs and 
outputs are preserved at each plane representation. 

 
 

 
Fig. 6.a. Plane representation of behavioural hierarchy  
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• Composition-Decomposition Behavioural Connector 
(CDBC) used to link each protocol to its possible sub-
protocols. Therefore, this type of connector allows the 
navigation among levels of the behavioural 
description hierarchy. Also, we can determine the 
childs or the father, if it is the case, of each protocol 
used in the architecture. Figure 6.b represents the 
notation adopted to represent this type of connector. 

 

 
 

Fig. 6.b.  CDCB connector  
 
To navigate among behavioural description hierarchy 

levels we define the following type of connector:  
 

• Binding Identity Connector (BIC) used to keep the 
identity and the traceability of inputs and outputs of 
protocols. There is no expansion or compression of 
respectively inputs and outputs of protocols like in 
structural hierarchy. The identity of inputs and output 
is preserved (Figure 6.c).   

 
• Behaviour Attachment connector (BAC) used to 

connect protocols belonging to the same level of 
hierarchy. This connection is explicated by real 
transition between the end-state of the first protocol 
and the start-state of the second one (Figure 6.c) 

 

 
Fig. 6.c. BIC and BAC connectors 

 
If we use, for example, transition-based system to 

specify the behaviour protocol associated with each 
element then connections between behaviours are made 
by simple transitions between the end-state of the fist 
protocol and the start-state of the second one. Inputs and 
outputs of each protocol are respectively required and 
provided services. 

 
 

The syntactic correction (discussed before) of the 
assembled elements cannot insure the validation of the 
produced architecture. The syntactic correction checks 
only the compatibility of interfaces types. So, elements 
are compatible to exchange information, but fail to 
check if their collaboration “the semantic of 
connections” can produce a coherent result. 
Consequently, the behavioural description can insure 
the compatibility of protocols (protocol matching) 
associated with elements at any level of the hierarchy 
[10]. 

IV.3. Conceptual hierarchy (CH) 

The conceptual hierarchy allow the architect to 
model the relationship among elements of the same 
family as illustrated in Figure 7.a. The architectural 
entities are represented by types (classes). Each type is a 
class library and each class have its sub-classes in the 
library. So, we can shape the graph representing entities 
hierarchy of the same family. Each graph has its proper 
number of levels (sub-type levels). 
 

At the highest level of hierarchy we have the basic 
element types developed to be reused. The element 
types of the intermediate levels are created by reusing 
the previous ones. Those intermediate element types are 
reused to produce others (development by reuse and to 
be reused) or used as end-elements to describe 
architectures, and so on. Element types at the last level 
of the hierarchy are only created to be used in the 
description of architectures. 
 

 
 

Fig. 7.a. External view of the conceptual hierarchy 
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Through the mechanism of specialization 
generalisation (inheritance) the architect will classify 
the library of elements according to architecture 
development needs in each target domain. The number 
of sub-class levels is unlimited. But we must remain at 
reasonable levels of specialization in order to keep 
compromise between the use and the reuse of the 
architectural elements. To navigate among levels of the 
conceptual hierarchy we define the following type of 
connector:  
 
• Specialisation-Generalisation Connector (SGC) is 

used to connect element types coming from the same 
type (implemented by inheritance mechanism in 
Java). So, we can construct easily all trees 
representing the classification library types. Figure 
7.b represents the notation adopted. 

 
Fig. 7.b.  SGC connector 

IV.4. Metamodeling hierarchy (MH) 

In the metamodeling hierarchy of we have only 4 
architectural levels with instantiation mechanism. Thus, 
according to Figure 8.a, each level (Ai) must conforms 
with the description given above in A(i+1) level 
(instance-of relationship). The level A3 conforms to 
itself. Symmetrically, each level (Ai) describe the 
inferior level A(i-1). A0 is the end-level (run-time 
instance) [11]-[12]. 

A0 Level is the real word level (application level) 
which is an instance of the architecture model level A1.  
At this level the developer has the possibility to select 
and instantiate elements any times as he needed to 
describe a complete application. Instances are created 
from element types which are defined at A1. Elements 
are created assembled with respect to the different 
constraints defined at A1. 

A1 Level is also called architecture level. At this 
level we have models of architecture, possibly with a 
given style, described using the language constructions 
or notations defined at A2 level (e.g. C3 metamodel). 
Thus, each architecture model is an instance of the 
metamodel defined in the above level. 

A2 Level (meta-architecture level) defines the 
language or the notation used to describe architectures 
at A1. This level is also used to modify or adapt the 
description language. All operations are undertaken at 

this level will always be in conformance with the last 
level. 

 

 
Fig. 8.a.  Metamodeling hierarchy 

 
A3 Level (meta meta-architecture) has the top level 

concepts and elements used when we want to define any 
new architecture description language or new notation. 
In our previous work we have defined our proper meta 
meta-architecture model called MADL [13]. So, our C3 
metamodel is defined in conformance with MADL. 
MADL is similar to MOF but component-oriented. 

To connect architecture levels we define the 
following connector: 
 
• Instance-Of Connector (IOC) is used to establish 

connection among elements of a given level (model) 
with their classifier defined in the above level 
(metamodel). Figure 8.b represents the notation 
adopted. 

 
Figure 8.b. IOC connector 

  

Cpt2 

Cpt21  

SGC 

Sp
ec

ia
lis

at
io

n 

G
eneralisation 

Cpt22  Cpt23 

C3 Meta 
Component 

Client  

IOC 

Data Base 
Manager  

Server  

A2-Level  

A1-Level  

Meta MetaArchitecture 
e.g. MADL, MOF 

(Metacomponent, Metaconnector,  
MetaAttribute …) 

MetaArchitecture 
e.g. C3, UML 2.0 

(Component, Connector, Attribute …) 

Model of  Architecture 
e.g. Client/Server,  Pipe/Filter  
(Client Component, RPC Connector,  

Server Component …) 

Architecture Instance 
e.g. Application1 

(Client1, Client2, RPC1, Server1, …) 

A3-Level  

A2-Level  

A1-Level 

A0-Level  Instance_Of 

Instance_Of 

Instance_Of 

Instance_Of 

Type : Classifier 
Name: Classifier 

Type : Classifier 
Name: Component 
Feature: Attributes, 
Services, 
Connections, 

Type : Component 
Name: Client 
Attribute: Name 
Service:  ….. 
Connection : ……. 

Type : Client 
Name: Client1 



A. Amirat, M. Oussalah 

Copyright © 2007 Praise Worthy Prize S.r.l. - All rights reserved                                International Review on Computers and Software, 
Vol. xx, n. x 

 

V. Conclusion 
The success of the component-construction paradigm 

in mechanical and electrical engineering has led to call 
its adoption in software development. To this end we 
have defined a minimal and a complete representation 
metamodel called C3 to describe software architecture 
and to reason about this architecture from different 
perspective view. The core elements of C3 are 
components, connectors and configurations. Elements 
are assembled using their interfaces. Syntactic and 
semantic corrections are carried out using respectively 
interfaces-matching and protocols-matching. 
Perspective views are defined by different kind 
hierarchies. Mainly, we use structural abstraction 
hierarchy to describe the structural decomposition 
hierarchy, behaviour description hierarchy to describe 
the behaviour decomposition, conceptual hierarchy to 
describe element libraries, the new elements generated 
by this type of hierarchy will be used to populate 
elements libraries, and finally the metamodeling 
hierarchy to show how we can modify the metamodel 
C3 and how to use it.  Each hierarchy is supported and 
tooled by explicit connection mechanisms to provide the 
different form of connections required in each 
hierarchy. Structural hierarchy uses CDSC, ECC, and 
SAC connectors. Behavioural hierarchy uses CDBA, 
BIC and BAC connectors. Conceptual hierarchy uses 
SGC connector, and metamodeling hierarchy uses IOC 
connector. 
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