
HAL Id: hal-00483663
https://hal.science/hal-00483663

Submitted on 15 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Four Reasoning Models for C3 Metamodel
Abdelkrim Amirat, Mourad Oussalah

To cite this version:
Abdelkrim Amirat, Mourad Oussalah. Four Reasoning Models for C3 Metamodel. International
Review on Computers and Software (IRECOS), 2007, 2 (6), pp.594-601. �hal-00483663�

https://hal.science/hal-00483663
https://hal.archives-ouvertes.fr

International Review on Computer and Software (I.RE.CO.S), Vol. xx, n.x

Copyright © 2007 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software,
Vol. xx, n. x

Four Reasoning Models for C3 Metamodel

Abdelkrim Amirat and Mourad Oussalah

Abstract - The architecture is considered to be the driving aspect of the development process; it
allows specifying which aspects and models in each level needed according to the software
architecture design. Early Architecture Description Languages (ADLs), nearly exclusive, focus on
structural abstraction hierarchy ignoring behavioural description hierarchy, conceptual
hierarchy, and metamodeling hierarchy. In our approach these four hierarchies constitute views
to appropriately “reason about” the architecture of a system described using our C3 metamodel.
C3 is defined to be a minimal and complete architecture description language. In this paper we
provide a set of mechanisms to deal with different levels of each type of hierarchy, also we
introduce our proper structural definition for connector types used to instantiate any connexion
elements deployed at the architectures and application levels.

Keywords: Conceptual, Configuration, Connector, Behaviour, Hierarchy, Metamodeling,
Structure

I. Introduction
One of the key goals of software architecture

research is to understand and to manipulate a system at
a higher level of granularity than modules or lines of
code. Generally, software architectures are composed of
components, connectors and configurations, constraints
on the arrangement and behaviour of components and
connectors. The architecture of a software system is a
model, or abstraction of that system. Software
architecture researchers need extensible, flexible
architecture descriptions languages (ADLs) and equally
clear and flexible mechanisms to manipulate these core
elements of the architecture.

Recently Medvidovic [1] gives the following
definition for software architecture “A software system’s
architecture is the set of design decisions about the
system which, if made incorrectly, may cause your
project to be cancelled”. However, these design
decisions encompass every aspect of the system under
development, including:

• Design decisions related to system structure – for

example, “there should be exactly three components
in the system, the data store, the business logic and
the user interface component;”

• Design decisions related to behaviour (also referred to
as functional) – for example, “data processing,
storage, and visualisation will be handled separately;”

• Design decisions related to the system’s non
functional properties – for example, “the system
dependability will be ensured by replicated
processing modules;”

• Also, we can elicit other design decisions related to
the development process or the business position
(product-line).

We note that in the description languages

architectures (ADLs) that currently exist, there is no
standard about architectural concepts or standards in
terms of mechanisms for manipulating those concepts
(i.g. in the ADLs defining explicit connectors, we see
that each one gives its proper definition for connectors,
some ADLs define the concept of configuration while
others do not).

For the reasoning model, the majority of ADLs
proposes only sub-typing (inheritance) as a mechanism
for specialization (e.g. Acme, C2). Otherwise, for the
rest of ADLs, they propose their own ad hoc
mechanisms based on methods designed specially for
these ADLs.

Based on a bread survey of architecture description
notations and approaches, we identified that ADLs
capture aspects of software design centred around a
system’s Component, connectors, and configurations.
The core elements of our model are basically defined
around these tree elements. So, from this we derive the
name of our model C3 for Component, Connector, and
Configuration. Taking into consideration that our C3
have no relationship with C2 defined bay Taylor [2] nor
with C3 with is an extension of C2 defined by Pérez-
Martínez [3]. The rest of the paper is organized as
fellows. In section 2 presents our research motivations.
Section 3 describes the C3 metamodel C3. The last
section presents our conclusion and the different
perspectives of our work.

A. Amirat, M. Oussalah

Copyright © 2007 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software,
Vol. xx, n. x

II. Motivation
In this work the goal is to develop a generic model

for the description of software architectures which must
be minimal and complete. It is minimal because we are
only interested by the core concepts in each ADL. And
complete because with this minimum of concepts the
architect can be able to describe any required structures
he need to realize.

However, describing only the architecture structure is
not sufficient to provide correct and reliable software
systems. In this paper we are even more going to focus
on representation architecture model and to raison about
its elements following four different types of
hierarchies. Each of these hierarchies provides a
particular view on the architecture. In the following
sections we present more details about these hierarchies.

Using our approach software architecture is more
explicit and clarified by:

• Make explicit the possible types of hierarchies being

used as support of reasoning on the architectures, with
the different possible levels in each hierarchy.

• Show semantics convey by every type of hierarchy by
providing the necessary mechanisms used to connect
elements of in the same level of hierarchy and the
mechanisms used to connect elements of every level
with the elements of the super and lower levels.

• Allows introducing various mechanisms of reasoning
within the same architecture according to the
requirement problem in a specific domain space.

• Establish the position of existing mechanisms
developed for reasoning with regard to our referential.

In order to have a complete C3 model, we define mainly
two models to describe and raison about software
architectures. A representation model to describe any
architecture based on C3 elements and a reasoning
model to understand and analyse the representation
model.

III. Representation Model
The core elements of the C3 representation model are

components, connectors, and configurations, each of
these elements have an interface to interact with its
environment. Figure 1 depicts those principal elements.

III.1. Component

Components represent computation elements and
data storage for software systems. In C3, each
component can have one or more ports. Ports are the
interaction points between components and their
environments.

��������	
���

��������	
���

������
�

��������	
���

����

����
�
��

��������	
���

���

��

��	�

���
���
 �
����

������
���
�
����
���
 ������
���
�
����
���
 ������
�
����
�
����
�
����

Fig. 1. Basic elements of C3 Meta model

III.2. Connector

Connectors are very important entities that
unfortunately are not dealt with by the conventional
component-based models. In C3, connectors represents
interconnections among components for supporting
their interactions and they are defined explicitly and
considered as a first class entities by separating their
interfaces (roles) from their services [4]. The glue
represents the mapping function between the input roles
and the output roles. Our contribution at this level
consists in enhancing the structure connectors by
encapsulating the attachment links inside the connector
(Figure 2.a). So, the application builder will have to
spend no effort in connecting connectors with its
compatible components/configuration. Consequently,
the task of the developer consists only in choosing a
suitable type of connector which is compatible with the
types of components/configurations which are expected
to be connected. Thus, by this way the application will
be constructed like a Lego blocks where the attachments
are predefined inside each type of connector. We have
given the following definition (Figure 2.b) for
connectors in a previous work [5].

Fig. 1.a. The new structure of a connector

Glue Component
B

Component
A

P1

P2
R2

R1 P4

P5 R4

R3

Attachment New structure
of a connector

Old structure
of a connector

Legend: Pi : Port i ; Rj : Role j

A. Amirat, M. Oussalah

Copyright © 2007 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software,
Vol. xx, n. x

Fig. 1.b. Syntax of a connector

III.3. Configuration

For more clarity, in our model C3 each component or
connector is perceived and handled from the outside as
primitive element. But their inside can be real primitive
elements, or composite with a configuration which wrap
up all the internal elements of this composite. These
configurations are first class entities. They represent a
graph of components and connectors and describe how
they are fastened to each other. A configuration may
have ports, and each port is bound to one or more ports
of the internal components. In general, configurations
can be hierarchical where components and connectors
represent sub-configurations that have internal
architectures as represented in Figure 1.

III.4. Interface

Every architectural element has an interface. Each
interface is associated with a type which corresponds to
a set of operations which it defines. Via this interface
the element publish to the outside environment it needs
in term of required services as well as the services
which it provides. However, elements are selected and
connected from their published interface. So, the
interface is though as a contract�with the environment
that the element should honour.

To establish connections between elements we use
ports for components and configurations and roles for
connectors and we assign the services to each port and
role with a necessary set of constraints to be respected
during the connections. From conceptual view ports and
roles are concrete classes inherited from the interface
abstract class as shown in Figure 2.

Also, in modelling level we use cardinality to
describe the multiplicity of each relation (connection)
between architectural elements. This cardinality express
the number of ports associated with components and
configurations and the number of roles associated with
connectors. Each port or role is considered as a channel
to carry in/out required/provided services exchanged
with element environment.

The previous architectural elements are manipulated
and used via predefined mechanisms in the reasoning
model. Essentially, we are going to study the
instantiation, specialization, composition,
decomposition, and connections mechanisms. In the
following section, we define the using context of each
mechanism. Some details about the structure of these
architectural elements are presented in our previous
works [5]-[6]

IV. Reasoning Model
In our approach we intended to analyze the software

architecture by using different hierarchies where each
hierarchy is investigated at different levels of
representations. The Figure 3 illustrates the C3
reasoning model of C3. This model is defined by four
types of hierarchies and each type represents a specific
view on the C3 representation model different from the
others. The four hierarchies are:

Fig. 3. C3 Meta Model and reasoning models

The structural abstraction hierarchy used to explicit the
different nested levels of structural hierarchies that
software architecture can have.

The behavioural description hierarchy to explicit the
different levels of system behaviour hierarchy
represented bay protocols.

The conceptual hierarchy to describe the library of
element types corresponding to each element at the
architecture level.

The metamodeling hierarchy to locate our C3 model in
the pyramid of hierarchies defined by the OMG [5].

We associate to each hierarchy two points of views.

The first one is an external view “the logical
architecture” as it is perceived by the user (designer or
developer) of the architecture. The second kind of view
is internal view “the physical architecture” which

Connector_TypeName (List of elements interfaces) {

 Roles {List of roles}

 Services {List of services}

 Properties {List of properties}

 Constraints {List of constraints}

 Glue {The communication protocol}

 Attachments {List of attachments}

}

Behavioural
Hierarchy

-II-

-III-

Conceptual

Hierarchy

 -IV-

Metamodeling
Hierarchy

Structural
Hierarchy

 -I- C3

Representation
Metamodel

A. Amirat, M. Oussalah

Copyright © 2007 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software,
Vol. xx, n. x

represents the memory image of the logical architecture.
Some details about the logical and physical architecture
are presented in [6]. In the following sections, we
present those types of hierarchy and we investigate the
possible levels of each hierarchy.

IV.1. Structural Hierarchy (SH)

Structural hierarchy also called structural hierarchy
has to provide the structure of a particular architecture
in terms of the architectural elements defined by the
ADL. The majority of academic ADLs like Aesop,
MetaH, Rapide, SADL, and other [7] or the industrials
like CORBA, CCM/CORBA, EJB/J2EE [8] allow only
a flat description of software architectures.

Using those ADLs architecture is described only in
terms of components connected by connectors without
any nested elements - without any structural hierarchy.
This design choice was made in order to simplify the
structure and also by lack of concepts and mechanisms
that respectively define and manipulate configurations
of components and connectors.

In our C3 model the structure of architectures is
described using components, and connectors, and
configurations where configurations are composite
elements. Each element in this configuration
(component or connector) can be a primitive (with a
basic behaviour scenario) or configuration which
contains another set of components and connectors,
which in their turn can be primitive or composite
material, and so on.

However, the metamodel C3 allows the
representation of architecture with a real hierarchy (with
an arbitrary n abstraction levels). It should be noted
that practically all architectural solutions for domain
problems, have a nested hierarchical nature. Thus,
software architecture can be viewed as a graph where
each internal node of this graph represents a
configuration and each end-node represents a primitive
component arcs between nodes are connectors.

In Figure 4.a, the root node is the first level of
abstraction; it is also the configuration which
encapsulates all elements of the architecture. The small
white circles represent primitive components and small
black circles represent sub-configurations (composites)
in the system architecture. These configurations contain
other elements inside. Thus, the configurations will
never be end-nodes in the hierarchy tree of abstractions.
The node with double circles represents the global
configuration of the architecture. The arcs represent the
bonds of hierarchy - the father/child relationship. This
relationship does not necessarily imply a service-
connection between the father node and the child one.
To explicit the parental relationship between each
element and its sub-elements we define the following
type of connector:

Fig. 4.a. External view of the structural hierarchy

• Composition-Decomposition Structural Connector
(CDSC) used to link each configuration to its
underling elements. Therefore, this type of connector
allows the navigation among levels of the structural
hierarchy. Also, we can determine the childs or the
father, if it is the case, of each elements deployed in
the architecture. Figure 4.b represents the notation
adopted for this type of connectors.

Fig. 4.b. CDSA connector

Figures 5.a illustrates two service-connection types

of connector; the fist one is generally represented by an
implicit link called Binding and the second one is
defined by several ADLs as Attachment link. In our
model those two types of link are explicated as first
class entities and are defined as follows:

Fig. 5.a. Internal view of the structural hierarchy

Root

Configuration

Primitive Component

Legend:

2 3 4

7 8 9

14

5 6

15 17 13 16 10 11 12

1 L n

L n-3

L n-2

Ln-1

Attachment Connector (Assembly)
Expansion-Compression Connector

Legend:

CDCA
C

om
po

si
tio

n

D
ecom

position

4

7 8 9

2 3 4

7 8 9

14

5 6

15 17 13 16 10 11 12

1

e1

e1.1 e1.2

s2 s4

s3

s1

s9

s16 s17

A. Amirat, M. Oussalah

Copyright © 2007 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software,
Vol. xx, n. x

• Expansion-Compression Connector (ECC) is
represented by discontinuous arc. We use this type of
connectors to establish service-connections between
each configuration and the underling elements (Figure
5.b). In some ADLs this type of link is called binding
or delegation but not defined as a first class entity.

Fig. 5.b. ECC connector

• Structural Attachment Connector (SAC) is

represented by full arc. We use this type of connectors
to establish service-connections between components
and configurations deployed in the same level of
abstraction (Figure 5.c). In some ADLs this type of
connector in called assembling connector and
represented by first class entity (e.g. Acme) [9].

Inside the SAC connector the glue code (Figure 5.c)

defines the mapping among communicating elements.

• The provided service of “a” is required by “x” (e1=s1),

• The provided service of “b” is required by “z” (e2=s2),

• The provided service of “c” is required by “y” (e3=s3).

Attachments among elements {a,b,c,x,y,z} and the
SAC connector are also defined inside the connector.
We note that the example described in Figure 5.c is
independent from the one described in Figure 5.a.

The different elements of the architecture are
connected through their interfaces. Thus the types of
interfaces are checked if they are compatible or not
(interface matching). Consequently, in the structural
hierarchy, the consistency of elements assembly is
controlled syntactically.

Fig. 5.c. Internal view of SAC connector

IV.2. Behavioural hierarchy (BH)

The behavioural description hierarchy represent the
description of the system’s behaviour at different levels.
Each primitive element of the architecture has its own
behaviour. The behaviour description associated with
the highest level of the hierarchy - level n in Figure 6.a -
represents the overall behaviour of the architecture. This
behaviour is described by a global protocol P0. The
system architecture at this level is perceived as a black
box with inputs (required services) and outputs
(provided services). At lower level each component,
connector, configuration, port, or role has its own
protocol to describe its functionality (e.g. glue code is
the protocol describing the connector behaviour, also
the component behaviour can be described by a state
chart diagram). So, protocol is a mechanism used
specifying the behaviour of an architectural element by
defining the relationship among the possible states of
this element and its ability to produce coherent results.

Figure 6.a sketches by a plan representation how to
decompose the protocol P0 at level n into its sub-
protocols at level n-1. This decomposition process
produces a set of other behaviours {P01, P02, P03}. By the
same process each protocol of the level n-1 is
decomposed to produce an other set of sub-protocols at
the level n-2, and so on until level 0. The last level of
the hierarchy is a set of protocols representing primitive
behaviour elements which are available in the library of
the architect. The total set of protocol levels represents
the behaviour hierarchy of the system architecture.

So, by Figure 6.a we explicit that all inputs and
outputs are preserved at each plane representation.

Fig. 6.a. Plane representation of behavioural hierarchy

P0

P01

P02

P03

P032

P031

e1 e2

e1 e2
x y

P01

P02

s2 s1

e1 e2

s2 s1

s2 s1

x y

Legend: Pi: Protocol (i); ej : Input (j) ; sk: Output (k);
 x , y : intermediate results

L n

L n-2

Ln-1

ECC

e1

e1.2 e1.1

1

2 4

ECC

s9

s16

9

E
xp

an
si

on
 C

om
pression

16 17

s16

e1
s9

SAC
a

y

x

z

b c e2

e1

e3

s2
 s3

s1

A. Amirat, M. Oussalah

Copyright © 2007 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software,
Vol. xx, n. x

• Composition-Decomposition Behavioural Connector
(CDBC) used to link each protocol to its possible sub-
protocols. Therefore, this type of connector allows the
navigation among levels of the behavioural
description hierarchy. Also, we can determine the
childs or the father, if it is the case, of each protocol
used in the architecture. Figure 6.b represents the
notation adopted to represent this type of connector.

Fig. 6.b. CDCB connector

To navigate among behavioural description hierarchy

levels we define the following type of connector:

• Binding Identity Connector (BIC) used to keep the
identity and the traceability of inputs and outputs of
protocols. There is no expansion or compression of
respectively inputs and outputs of protocols like in
structural hierarchy. The identity of inputs and output
is preserved (Figure 6.c).

• Behaviour Attachment connector (BAC) used to

connect protocols belonging to the same level of
hierarchy. This connection is explicated by real
transition between the end-state of the first protocol
and the start-state of the second one (Figure 6.c)

Fig. 6.c. BIC and BAC connectors

If we use, for example, transition-based system to

specify the behaviour protocol associated with each
element then connections between behaviours are made
by simple transitions between the end-state of the fist
protocol and the start-state of the second one. Inputs and
outputs of each protocol are respectively required and
provided services.

The syntactic correction (discussed before) of the
assembled elements cannot insure the validation of the
produced architecture. The syntactic correction checks
only the compatibility of interfaces types. So, elements
are compatible to exchange information, but fail to
check if their collaboration “the semantic of
connections” can produce a coherent result.
Consequently, the behavioural description can insure
the compatibility of protocols (protocol matching)
associated with elements at any level of the hierarchy
[10].

IV.3. Conceptual hierarchy (CH)

The conceptual hierarchy allow the architect to
model the relationship among elements of the same
family as illustrated in Figure 7.a. The architectural
entities are represented by types (classes). Each type is a
class library and each class have its sub-classes in the
library. So, we can shape the graph representing entities
hierarchy of the same family. Each graph has its proper
number of levels (sub-type levels).

At the highest level of hierarchy we have the basic
element types developed to be reused. The element
types of the intermediate levels are created by reusing
the previous ones. Those intermediate element types are
reused to produce others (development by reuse and to
be reused) or used as end-elements to describe
architectures, and so on. Element types at the last level
of the hierarchy are only created to be used in the
description of architectures.

Fig. 7.a. External view of the conceptual hierarchy

CDCB

C
om

po
si

tio
n

D
ecom

position

P0

P01

P02

P03

Component

Component
[Cpt2]

Component
[Cpt1]

Component
[Cpt3]

Component
[Cpt22]

Connector

Component
[Cpt221]

Component
[Cpt222]

Component
[Cpt223]

Taxonomy
of concepts

(Types)

Sub-
Types 1

Sub-
Types 2 Component

[Cpt23]
Component

[Cpt21]

Sub-
Types 3

Configuration

….

….

….

….….

BIC

e1

e1 BAC s1

s1

BIC

P01

P03

P0

x x

A. Amirat, M. Oussalah

Copyright © 2007 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software,
Vol. xx, n. x

Through the mechanism of specialization
generalisation (inheritance) the architect will classify
the library of elements according to architecture
development needs in each target domain. The number
of sub-class levels is unlimited. But we must remain at
reasonable levels of specialization in order to keep
compromise between the use and the reuse of the
architectural elements. To navigate among levels of the
conceptual hierarchy we define the following type of
connector:

• Specialisation-Generalisation Connector (SGC) is

used to connect element types coming from the same
type (implemented by inheritance mechanism in
Java). So, we can construct easily all trees
representing the classification library types. Figure
7.b represents the notation adopted.

Fig. 7.b. SGC connector

IV.4. Metamodeling hierarchy (MH)

In the metamodeling hierarchy of we have only 4
architectural levels with instantiation mechanism. Thus,
according to Figure 8.a, each level (Ai) must conforms
with the description given above in A(i+1) level
(instance-of relationship). The level A3 conforms to
itself. Symmetrically, each level (Ai) describe the
inferior level A(i-1). A0 is the end-level (run-time
instance) [11]-[12].

A0 Level is the real word level (application level)
which is an instance of the architecture model level A1.
At this level the developer has the possibility to select
and instantiate elements any times as he needed to
describe a complete application. Instances are created
from element types which are defined at A1. Elements
are created assembled with respect to the different
constraints defined at A1.

A1 Level is also called architecture level. At this
level we have models of architecture, possibly with a
given style, described using the language constructions
or notations defined at A2 level (e.g. C3 metamodel).
Thus, each architecture model is an instance of the
metamodel defined in the above level.

A2 Level (meta-architecture level) defines the
language or the notation used to describe architectures
at A1. This level is also used to modify or adapt the
description language. All operations are undertaken at

this level will always be in conformance with the last
level.

Fig. 8.a. Metamodeling hierarchy

A3 Level (meta meta-architecture) has the top level

concepts and elements used when we want to define any
new architecture description language or new notation.
In our previous work we have defined our proper meta
meta-architecture model called MADL [13]. So, our C3
metamodel is defined in conformance with MADL.
MADL is similar to MOF but component-oriented.

To connect architecture levels we define the
following connector:

• Instance-Of Connector (IOC) is used to establish

connection among elements of a given level (model)
with their classifier defined in the above level
(metamodel). Figure 8.b represents the notation
adopted.

Figure 8.b. IOC connector

Cpt2

Cpt21

SGC

Sp
ec

ia
lis

at
io

n

G
eneralisation

Cpt22 Cpt23

C3 Meta
Component

Client

IOC

Data Base
Manager

Server

A2-Level

A1-Level

Meta MetaArchitecture
e.g. MADL, MOF

(Metacomponent, Metaconnector,
MetaAttribute …)

MetaArchitecture
e.g. C3, UML 2.0

(Component, Connector, Attribute …)

Model of Architecture
e.g. Client/Server, Pipe/Filter
(Client Component, RPC Connector,

Server Component …)

Architecture Instance
e.g. Application1

(Client1, Client2, RPC1, Server1, …)

A3-Level

A2-Level

A1-Level

A0-Level Instance_Of

Instance_Of

Instance_Of

Instance_Of

Type : Classifier
Name: Classifier

Type : Classifier
Name: Component
Feature: Attributes,
Services,
Connections,

Type : Component
Name: Client
Attribute: Name
Service: …..
Connection : …….

Type : Client
Name: Client1

A. Amirat, M. Oussalah

Copyright © 2007 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software,
Vol. xx, n. x

V. Conclusion
The success of the component-construction paradigm

in mechanical and electrical engineering has led to call
its adoption in software development. To this end we
have defined a minimal and a complete representation
metamodel called C3 to describe software architecture
and to reason about this architecture from different
perspective view. The core elements of C3 are
components, connectors and configurations. Elements
are assembled using their interfaces. Syntactic and
semantic corrections are carried out using respectively
interfaces-matching and protocols-matching.
Perspective views are defined by different kind
hierarchies. Mainly, we use structural abstraction
hierarchy to describe the structural decomposition
hierarchy, behaviour description hierarchy to describe
the behaviour decomposition, conceptual hierarchy to
describe element libraries, the new elements generated
by this type of hierarchy will be used to populate
elements libraries, and finally the metamodeling
hierarchy to show how we can modify the metamodel
C3 and how to use it. Each hierarchy is supported and
tooled by explicit connection mechanisms to provide the
different form of connections required in each
hierarchy. Structural hierarchy uses CDSC, ECC, and
SAC connectors. Behavioural hierarchy uses CDBA,
BIC and BAC connectors. Conceptual hierarchy uses
SGC connector, and metamodeling hierarchy uses IOC
connector.

Acknowledgements
We would like to thank the anonymous referees

whose comments helped us to significantly improve the
first version of this paper.

References

[1] N. Medvidovic, E. Dashofy, R. N. Taylor, Moving Architectural

Description from Under the Technology Lamppost, Information
and Software Technology. Vol. 49, n. 1, pp. 12-31, 2007.

[2] R. N. Taylor, N. Medvidovic, , K. M. Anderson, E. J. Whitehead,

J. E. Robbins, K. A. Nies, P. Oreizy, D. L. Dubrow, A
Component- and Message-based Architectural Style for GUI
Software, IEEE Transaction Software Engineering, Vol. 22, n.
6, pp. 390–406, 1996.

[3] J. E. Pérez-Martínez, Heavyweight Extensions to the UML

Metamodel to Describe the C3 Architectural Style, ACM
SIGSOFT Software Engineering Notes, Vol.28, n. 3, pp. 5-15,
2003.

[4] A. Smeda, M. Oussalah, T. Khammaci, Improving Component-

Based Software Architecture by Separating Computations from
Interactions, Proceedings of the 1st International Workshop on
Coordination and Adaptation Techniques for Software Entities,
WCAT'04 held in conjunction with ECOOP, Oslo, Norway,
June 2004.

[5] A. Amirat, M. Oussalah, T. Khammaci, Towards an Approach

for Building Reliable Architectures, Proceedings of IEEE

Information Reuse and Integration (IRI’07), Las Vegas, Nevada,
USA, Pages 467-472, August 2007.

[6] M. Oussalah, A. Amirat, T. Khammaci, Software Architecture

Based Connection Manager, Proceedings of Software
Engineering and Data Engineering (SEDE’07), Las Vegas,
Nevada, USA, Pages 194-199, July 2007.

[7] J. Matevska-Meyer, W. Hasselbring, R. Reussner, Software

Architecture Description Supporting Component Deployment
and System Runtime Reconfiguration, Proceedings of Workshop
on Component-Oriented Programming WCOP 2004, Oslo,
Norway, June 2004.

[8] M. Pinto, L. Fluentes, M. Troya, A Dynamic Component and

Aspect-Oriented Platform, The Computer Journal, Vol.48, n. 4,
pp. 401-420, 2005.

[9] D. Garlan, R. T. Monroe, D. Wile, Acme: Architectural

Description Component-Based Systems, Foundations of
Component-Based Systems, Cambridge University Press, pp.
47-68, 2000.

[10] A. Lanoix, D. Hatebur, M. Heisel, J. Souquières, Enhancing

Dependability of Component-Based Systems, Proceedings of
Ada-Europe, Lecture Notes in Computer Science Springer,
ISBN 978-3-540-73229-7 pp. 41-54, 2007.

[11] OMG: Unified Modeling Superstructure [Electronic Version]

from http://www.omg.org/docs/ptc/06-04-02.pdf, 2006.

[12] OMG: Unified Modeling Language: Infrastructure [Electronic

Version] from http://www.omg.org/docs/formal/07-02-06.pdf,
2007.

[13] A. Smeda, M. Oussalah, , T. Khammaci, MADL: Meta

Architecture Description Language, Proceedings of the 3rd ICIS
International conference on Software Engineering Research,
Management & Applications, SERA’05, Pleasant, Michigan,
USA, Pages 152-159, August 2005.

Abdelkrim Amirat was born in Souk-Ahras,
Algeria in February, 1964. He received the
Diploma of Ingénieur d’Etat and Magistere
degrees in computer science, from Badji-
Mokhtar University, Annaba, Algeria, in 1988
and 1991 respectively.
Actually he is a researcher at MODAL team,
LINA Laboratory, University of Nantes,
France. His research interests include

requirement engineering, aspect oriented software development,
component-based architecture, architecture description language, and
architecture evolution. His contact address is: LINA Laboratory,
CNRS FRE 2729, University of Nantes, 2, Rue de la Houssinière, BP
92208, 44322 Nantes, France, Abdelkrim.Amirat@Univ-Nantes.fr

Mourad Oussalah is a professor at the
department of computer science and the head of
the MODAL research group, LINA Laboratory,
University of Nantes, France. His Interest
include object oriented Software development,
component-based systems, architecture
modelling, and architecture evolution. His
contact address is: LINA Laboratory, CNRS
FRE 2729, University of Nantes, 2, Rue de la

Houssinière, BP 92208, 44322 Nantes, France,
Mourad.Oussalah@Univ-Nantes.fr

