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Abstract

The research context of this work is dynamic
texture analysis and characterization. Many dy-
namic textures can be modeled as a large scale
propagating wave and local oscillating phenomena.
The Morphological Component Analysis algorithm
(MCA) is used to retrieve these components using
a well chosen dictionary. We define a new strategy
for adaptive thresholding in the MCA framework,
which greatly reduces the computation time when
applied on videos. Tests on synthetic and real image
sequences illustrate the efficiency of the proposed
method and future prospects are finally exposed.

1 Introduction

The study of Dynamic Textures (DT) is a re-
cent research topic in the field of video process-
ing. A DT can be described as a time varying phe-
nomenon with a certain repetitiveness in both space
and time. A flag in the wind, ripples at the surface
of water, smoke or an escalator are all examples
of DT. Rather than a simple extension of static
textures to the time domain, a DT is a more com-
plex phenomenon resulting from several dynamics.
Their study is an active research topic with many
applications such as synthesis [9], segmentation [5]
or characterization [14]. The context of our work is
the indexation of DT for automatic video retrieval
[7].

Each DT has its own characteristics, such as
stationary, repetitiveness, velocity . . . On Figure 1
showing an image sequence of a river surface, two
motions can be observed: a high frequency motion

(2)

(1)

Figure 1. 2D+T slices of a dynamic tex-
ture: local oscillating phenomenon (2)
and long range propagating wave (1).

(2) carried by an overall motion (1). Many DT can
be decomposed into one or several local oscillating
motions carried by far range waves. In order to
better characterize these two sets of components, it
is necessary to extract them separately.

In this article, the Morphological Component
Analysis (MCA) is used for decomposing and an-
alyzing image sequences of natural scenes. To our
knowledge, the only existing work using MCA and
video is recent and focuses on the inpainting of a
cartoon sequence [13].

In Section 2, the MCA is briefly described. The
dictionaries selected in the MCA, adapted to the
model used for DT, are then presented. A key is-
sue is the computation time of MCA that is related
to the thresholding strategy. We propose in Sec-
tion 3 a new adaptive thresholding strategy that
reduced the computation time by a factor of four
compared to the original algorithm. Results on syn-
thetic and real sequences of DT are presented and
future prospects are discussed in Section 4.
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2 Decomposing a DT using MCA

According to researches on synthesis [10] and
observations made on a large DT database [11], a
DT can be modelled as a sum of local oscillations
carried by longer range waves. Recent works for
decomposing images and videos [12, 4, 1] seem
relevant for extracting these components. We have
chosen the MCA because of the richness of the
available dictionnary, which is crucial regarding
the complexity of DT.

Given a signal y described as a linear superposi-
tion of morphological components K disturbed by
a noise ε: y =

∑K

i=1 yi + ε.
The MCA approach allows to find an acceptable

solution to the inverse problem of decomposing a
signal on a given vectorial basis, i.e. to extract
components (yi)i=1,...,K from a degraded obser-
vation y according to a sparsity constraint. The
MCA approach assumes that each component yi

can be represented sparsely in the associated basis
Φi: ∀i = 1, . . . ,K, yi = Φiαi.

Algorithm 1 describes the main steps of the
MCA. A detailed description can be found in [12].

Algorithm 1 Morphological Component Analysis

1. while
∥

∥

∥
y −

∑K

j=1 ỹ
(k−1)
j

∥

∥

∥

2
6 σ do

2. // For each component
3. for i = 1 à K do
4. // Compute the marginal residual

5. r̃
(k)
i = y −

∑i−1
j=1 ỹ

(k)
j −

∑K

j=i+1 ỹ
(k−1)
j

6. // Projection of r̃
(k)
i on basis Φi

7. α
(k)
i = ΦT

i

(

r̃
(k)
i

)

8. // The new estimation of yi

9. ỹ
(k)
i = Φi

(

δλ(k)α
(k)
i

)

10. end for
11. // Update of the threshold λ

12. λ(k+1) = update(λ(k), strategy)
13. end while

A crucial point in the MCA approach is the
dictionary definition. An unsuitable choice of
transformations will lead to non sparse and irrel-
evant decompositions of the different dynamical
phenomena present in the sequence. As mentioned
previously, we model DT as a sum of local oscilla-
tions carried by long range waves. It is therefore
necessary to associate each component with the
most representative basis. In [6], the authors
show that the curvelet transform [3] is relevant

for extracting non-local phenomena propagating
temporally. It thus seems particularly interesting
to model long range waves present in a DT.

The second part of the model is composed
of locally oscillating phenomena that will be
extracted using the local cosine transform.

The dictionary that we use in the MCA algo-
rithm is then composed of the curvelet transform
Φ1 and the local cosine transform Φ2.

3 Thresholding strategy

Context
The computation time of decomposition algo-

rithms represents a major challenge for sequence
analysis (indexing and browsing). Some transforms
require several minutes of computation on a short
image sequence. A recent work [2] has shown that
a hundred of iterations is necessary to establish a
good separation of the different components when
a linear thresholding strategy (LTS) is used. In
our case, the total computational time for a 5 sec-
ond sequence is given by: 100 ∗ [T (ΦT

1 ) + T (Φ1) +
T (ΦT

2 ) + T (Φ2)] = 20 hours, where T () measures
the execution time of one projection on Φi during
one cycle of the algorithm.

If we extend this result to the entire DT database
DynTex [11], 583 days of calculation are required.
Recently Bobin et al. [2] have proposed a threshold-
ing strategy ’Mean of Max’ (MOMS) that enables
to obtain similar results but with fewer iterations
(25 in average instead of 100). It represents a com-
putation time of approximately 7 hours 30 for a 5
second video, resulting in approximately 219 days
for the whole database.

For indexing the DynTex database, the compu-
tation time of the MOMS is still acceptable, since it
is always possible to divide the workload on several
processors. In the case where one searches for a par-
ticular texture using a query sequence, these calcu-
lations are acceptable only on sequences of limited
duration and of low resolution. One goal of this
work is to reduce these limitations by proposing a
new thresholding strategy.

An adaptive thresholding strategy
The quality of the results from the decomposi-

tion of a signal using the MCA algorithm strongly
depends on the evolution of the threshold λ(k) in
one iteration (in one for loop). Figure 2 shows
two different evolutions of λ(k) corresponding to
two strategies (1) and (2). The evolution of λ(k)
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is slower in case (1) than in (2). In this example,
evolution (1), respectively (2), leads to select 5% of
the coefficients, respectively 25%, in the two bases.
If we consider that evolution (1) gives an optimal
threshold here, a failure to control the value of λ(k)

(in case 2) will lead to a rapid allocation of too
many coefficients in the two bases, degrading the
final decomposition.

(1)

(2)

5%

25%

1 iteration

Figure 2. Two thresholding strategies

leading to different evolutions of the
threshold value (in one for loop).

The linear thresholding strategy (LTS) leads to
the optimum λ(k) for 100 iterations [2]. In a large
number of natural textures, this number of itera-
tions can be greatly reduced, depending on the tex-
ture itself. LTS is then no longer optimum. How-
ever, the threshold evolution using LTS can be con-
sidered as a minimum slope below which the evo-
lution of λ(k) is sub-optimal. A good strategy for
the calculation of λ(k) must lead to a slope greater
than or equal to the one obtained using LTS. The
’Mean of Max’ strategy (MOMS) is interesting as it
can adaptively change the evolution of λ(k). How-
ever, on natural texture sequences, this strategy
tends to reduce too drastically this slope, or even
almost cancel it.

We propose to combine these two strategies
into a new so-called adaptive thresholding strategy
(ATS), which defines λ(k) as the minimum value of
λ(k) calculated using strategies LTS and MOMS.

The λ(k) update using ATS is formalized as fol-
lows:

λ(k) = min

(

1

2
(m1 + m2), λ

(k)
−

λ(1)
− λmin

100

)

with :
m1 = max

i

∥

∥ΦT
i r(k)

∥

∥

∞
, m2 = max

j 6=i

∥

∥ΦT
j r(k)

∥

∥

∞

r(k) = y −
∑K

j=1 ỹ
(k)
j is the residual term

Using this strategy, we are sure to change the
value of λ(k) corresponding to the steepest slope.
In other words, when MOMS leads to values
of λ(k) evolving slowly, λ(k) follows the LTS

λ(k) = λ(k)
−

λ(1)
− λmin

100
. Otherwise, λ(k) follows

the MOMS, reducing the number of for loops in
the algorithm and the computation time.

4 Applications

Figure 3.a shows a video of water generated by
our DT model (not detailed here due to a lack
of space, see [8]). After our MCA decomposition
scheme, we are able to retrieve the long term wave
(fig. 3.b) and the local oscillations (fig. 3.c) used
in the synthesis. This reinforces the choice of the
chosen dictionary composed of the curvelet and lo-
cal cosine transforms.

(a) (b) (c)
Figure 3. MCA decomposition of a syn-

thetic video (a) on the curvelet basis (b)
and the local cosine basis (c)

Applied on a real sequence from DynTex of a
duck on streaming water (fig. 4.a), our algorithm is
still able to separate geometrical components (fig.
4.b) from more local oscillations (fig. 4.c)1. One
can observe on the spatio-temporal (xt) slices of
figure 4 and on figure 4.b, that the reflection of
trees in water are better observable in the curvelet
component sequence than in the original video.

Let us point out that the use of ATS enables a
significant gain in computation time. Indeed, in av-
erage for one video sequence, the computation time
is about 4 hours 30 (instead of 7h30), which leads
to 131 days for the whole DynTex database.

5 Conclusion and prospects

This paper deals with the decomposition of DT
in videos into different dynamical components. We
show that the MCA algorithm is well suited for this
decomposition in a well chosen basis, but suffers
from significant computation time. We propose a
new thresholding strategy which leads to a signifi-
cant gain in the algorithm speed.

Other thresholding strategies are being studied
to further improve this computation time. It is par-
ticularly necessary to develop strategies that take

1
This video and other results are visible at:

http://mia.univ-larochelle.fr/demos/dynamic_textures/
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Real video

Curvelet component LDCT component

(a)

(b) (c)
Figure 4. MCA decomposition of a real video (a) on the curvelet basis (b) and the local cosine

basis (c)

better into account our proposed model and the fea-
tures of natural DT. The extracted components of
DT can later be used as features for video retrieval
applications.
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