A Generalization of Siegel's Theorem and Hall's Conjecture

Abstract : Consider an elliptic curve, defined over the rational numbers, and embedded in projective space. The rational points on the curve are viewed as integer vectors with coprime coordinates. What can be said about a rational point if a bound is placed upon the number of prime factors dividing a fixed coordinate? If the bound is zero, then Siegel's Theorem guarantees that there are only finitely many such points. We consider, theoretically and computationally, two conjectures: one is a generalization of Siegel's Theorem and the other is a refinement which resonates with Hall's conjecture.
Type de document :
Article dans une revue
Experimental Mathematics, Taylor & Francis, 2009, 18 (1), pp.1 -- 9
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00482447
Contributeur : Valery Mahe <>
Soumis le : lundi 10 mai 2010 - 14:57:17
Dernière modification le : jeudi 11 janvier 2018 - 06:15:40

Lien texte intégral

Identifiants

  • HAL Id : hal-00482447, version 1
  • ARXIV : 0803.0700

Citation

Graham Everest, Valery Mahe. A Generalization of Siegel's Theorem and Hall's Conjecture. Experimental Mathematics, Taylor & Francis, 2009, 18 (1), pp.1 -- 9. 〈hal-00482447〉

Partager

Métriques

Consultations de la notice

72