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Abstract 
This paper proposes to investigate the use of a coordinate free approach for the mapping of geometrical 
requirement along a product life cycle. The geometry of the studied assembly is represented using a Gram 
matrix that is issued from a parametric model constituted of points and vectors. This parametric model is 
instanced for all relevant phase of the product life cycle. The calculation of instanced parameters is based 
on part deformation due to changing operating conditions. This calculation is carried out thanks to existing 
theoretical techniques. The application presented in this paper is constituted of a simple 3D case composed 
of 3 articulated bars disposed as a tetrahedron and subjected to some thermal expansion. 
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1 INTRODUCTION 
In most cases, a mechanical product is subjected to 
thermo-mechanical loads which vary along its life cycle. 
These variations are inducing elastic deformations, which 
in turn can influence the value of the functional or 
geometrical requirements. Generally the useful value of a 
requirement is the one taken under operating conditions. 
However, the great majority of products are designed and 
represented in Computer Aided Design (CAD) systems at 
the assembly stage of their life cycle. Moreover, the 
contractual drawings are generally specified at ambient 
temperature. This means that in fact, the values of 
geometrical or functional requirements are not necessarily 
calculated, specified and checked under operating 
conditions. As a matter of fact, considering the designer 
point of view, several problems appear: “Does the chosen 
dimension allows to meet the requirements under 
operating conditions?” or “Which dimensions must be 
specified on the drawing to ensure a given value of the 
functional requirement in operation?” 
A typical application that illustrates best the above idea 
would be that of a jet engine for which the functional 
requirement varies during its own lifecycle. Indeed, the 
clearance between the rotor blades and engine housing 
(or stator) of the turbine will be quite different at assembly 
and in operation due to the high temperature and rotation 
velocity to which the rotor is subjected in service. In this 
case, the above-mentioned designer problem should be: 
“Does the actual dimensions of the blades and the stator 
housing of the turbine ensure that interference under 
operating conditions will not appear?” and “Which 
dimension have to be specified at assembly to avoid any 
interference between the blade and the stator in 
operation?” 
In order to provide the designer with proper tools for this 
kind of issue, this paper investigates the suitability of a 

coordinate free approach based on Gram matrix for the 
calculation of a functional or geometrical requirement 
along the product life cycle. To effectively take into 
account the dimensions evolution along the product life 
cycle, the proposed approach integrates part deformation 
(as calculated from the stress analysis) as a variation of 
the parameters of the model. 
This paper will introduce previous scientific contributions 
done in this field of research. Afterwards the coordinate 
free parametric model used in this research will be 
exposed and then an application case will be detailed. 
2 LITERATURE REVIEW 
This section presents first some prior work done for the 
tolerancing of parts subjected to deformations. Afterwards 
geometrical models used to build the presented 
coordinate free approach are introduced. Finally, this 
section will conclude with the introduction of two 
configuration management concepts inspired from the 
PLM1 community that might be useful for complex cases. 
2.1 Tolerancing flexible parts 
Researches that have caught the authors’ attention will 
now be presented. Firstly, Samper [1][2] presents an 
approach which considers the influence of both part 
deformation and fit of joint into the analysis or synthesis 
of tolerance zones. Secondly, Cid [3] developed a model 
which permits the evaluation of clearances under loads 
using a clearance torsor introduced in [4]. This study 
investigates the case of the clearance between a vehicle 
door and its frame. The representation of parts considers 
3D surfaces instead of 3D volumes. Finally, Pierre [5][6] 
has investigated part of the jet engine particular issue 
mentioned in the introduction. 
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2.2 Geometrical representations 
Desrochers [7] proposed the TTRS2 model which is based 
on a binary and recursive association of two functional 
surfaces (or group of surfaces). Globally, the goal of this 
association is to link each functional surface to another. 
The result of the association process on all the functional 
surfaces of a part or a mechanism is generally 
represented as a hierarchy tree. Additionally, this 
approach uses the concept of MGRE3 to obtain a 
mathematical representation of a given TTRS. The 
hierarchy tree is constructed by going through 
independent cycles in the kinematic graph. This theory is 
detailed in [7][8][9]. 
Serré [10] proposes a theory to specify univocally a 
geometrical problem. This is based on an information 
model that ensure the coherence of the specifications 
made by the designer and on the specification of univocal 
constraints between surfaces. Afterwards, in order to 
obtain the solution to the problem, these specifications 
and constraints are implemented in a coordinate free 
geometrical model (based on the Gram matrix [11]) to 
generate the algebraic relations to be solved. According to 
Serré this model is appropriate to describe both 
geometrical and technological problems. In this work 
Serré uses the TTRS/MGRE model to describe the 
relative spatial positions of specifications in 3D vector 
space. This research proposes to use this theory for the 
specification and resolution of geometrical requirements. 
2.3 Configuration management 
In the field of Product Life-cycle Management (PLM), 
some researchers have introduced interesting concepts 
like Zina [12] who defined the concept of "context" which 
could be used to define loads and environment in the 
proposed approach. Alternatively Eynard [13] presents an 
object-oriented approach to help the designing team with 
the transmission of both design and calculation data such 
as geometry, use cases, loads, etc. 
3 MODELS USED 
3.1 Context 
As previously explained in [14] and [15] functional or 
geometrical requirements will be taken into account 
considering the evolution of their mean value along the 
product life cycle as presented in figure 1. 

Figure 1: Functional requirement values evolution along 
the product life cycle 
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Indeed if the width of the tolerance zone (noted Δj1 in 
figure 1) is small compared to the dimension itself, then at 
a first order of approximation, the variations of the 
tolerance zone width will be negligible with regard to the 
variations of the dimension itself. This is why the width of 
the tolerance zone remains unchanged in figure 1 
whereas the load variation induce a shift of the mean 
value (noted  in figure 1) of the geometrical (or 
functional) requirement.  
However, it remains necessary to include tolerance zones 
in the model as they provide the designer with intervals 
for the possible value of a requirement (due to machining 
uncertainties). If necessary, the width of the interval can 
be calculated by using existing techniques of tolerance 
analysis or synthesis [16][17][18][19]. 
The geometric dimensioning problem addressed in this 
paper is the coupling of dimensions (or geometric 
parameters) with one or several physical effects. More 
specifically, as mentioned in the introduction the goal of 
this research is to evaluate the variation of functional or 
geometrical requirements due to the changing 
environment. This paper proposes to use a topological 
connector between the geometrical vectors space and 
some physicals vectors spaces. 
3.2 Coupling several physical effects through the 

topology of their vector space 
In our study, we suppose that the topology of the 
mechanism remains unchanged during the shift from one 
stage of the product life cycle to another. The topology 
and the geometrical (or functional) requirements define 
some relations between geometrical elements. In order to 
meet user’s expectations, these relations have to be 
satisfied. If we consider two configurations of the same 
product at two different stages of its own life cycle, the 
topological and functional relations remain the same for 
both configurations. Only the values of the parameters 
involved in these relations are changing. 
As a fist step, the authors propose to map geometrical 
requirement evolution along the relevant stages of the 
product life cycle. This means that, firstly the calculation 
inputs are topology, initial values of dimensional 
parameters, and loads and the result is the value of the 
geometrical requirement under the considered loads. This 
approach is a form of geometrical requirement analysis 
along the product life cycle.  
3.3 Proposed approach 
This paper proposes to investigate the use of a 
coordinate free approach for the calculations of the 
geometrical requirement evolution along the product 
lifecycle. With this approach, for a given geometry 
described in different coordinate systems, the resulting 
coordinate free description would be exactly the same 
whatever the initial coordinate systems may have been. 
This choice has been motivated by the existence of 
generic constraints specification techniques (like in [10]) 
and solvers (cf. in [20]) to resolve these constraints. 
Authors decided to use a Gram matrix (presented below) 
as the chosen mathematical representation of the 
mechanism. 
As this approach is vector space based, it becomes 
necessary to obtain vectors to represent the product 
model. There exists several ways to obtain these vectors. 
Among these possibilities it is conceivable to use the 
TTRS/MGRE model to obtain the relative position of the 
technological surfaces. From there it becomes possible to 
extract one or several vectors to represent the relative 
positions of two surfaces, parts or components. 
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Moreover, during the early stages of the design of a 
product, there often exists a simple geometrical 
representation of the product such as a skeleton from 
which positioning vector parameters will be extracted. 
3.4 Mathematical tools 
Gram matrices theory 
The following definition is found in [11] : «the Gram matrix 
(or Gramian matrix or Gramian) of a set of vectors 
{x1,x2,…,xk} in an inner product space is the Hermitian 
matrix of inner products, whose entries are given by 
equation (1)». In this paper the names of all Gram 
matrices start with a “G”.  Gramian matrix are always 
square (same number of rows and columns). 

1 Glm = <xl,xm> (1) 

A metric tensor is a particular case of a Gram matrix 
which has its rank equal to its dimension. For example, in 
the 3D Euclidian space, a 3 by 3 Gram matrix which has a 
nonzero determinant (which also means the matrix is 
constituted of 3 independent vectors) is called a metric 
tensor. In this paper the names of all metric tensor start 
with an “M”. 
Application to assemblies 
In any case, this paper supposes that a vectorial 
representation of the assembly already exists. The 
vectors included in this representation will be noted unl 
where n represents the current life-cycle stage and l is an 
index used to count the vectors. For example at the 
assembly stage noted n of the product life cycle, the set of 
k vectors is noted : Sun = {ua1 , ua2 , … , ual , … , uak}. 
From this set of vector, and for each configuration of the 
product, the assembly is represented by its associated 
Gram matrix which will be noted Gn where n represents 
the current life-cycle stage. 
Geometrical requirement calculation 
Functional requirements are expressed as an algebraic 
relation between the vectors (or combination of vectors) 
used in the Gram matrix. Basically it’s immediately 
possible to obtain the scalar product between two vectors. 
From there it’s easy to deduce the angle between two 
vectors and the norm of a vector. 
More generally, the geometrical requirement (noted grn at 
stage n) might be expressed thanks to a linear 
combination of scalar products between vectors included 
in the set Sun above mentioned and presented in 
equation (2) where the two vectors β and γ  represent the 
weight of Gn in grn.. 

2 grn = <βl unl , γm unm> 

 = βl Gnlm γm  (2) 

Reworking equation (2) in a matrix form yields equation 
(3): 

3 grn = β • Gn • γT (3) 

Link between configurations 
In order to map the evolution of the geometrical 
requirement along the life cycle from an initial stage i to a 
final stage f it become necessary to propose a way to link 
(or superpose) the two relevant configurations. A vectorial 
association of the two configurations is required in order 
to define their relative orientation. The Gi and Gf Gram 
matrices (Gi stand for the Gram matrix corresponding to 
the initial stage and Gf for the Gram matrix corresponding 
to the final stage) are supposed to be known and the goal 

of the association is the calculation of a relative 
orientation matrix Gif such as that defined in equation (4). 

4 Giflm = <uil,ufm> (4) 

From there it become possible to build a Gram matrix G, 
expressed in equation (6), including all the vectors from 
the two configurations that define the set Suif as 
expressed in equation (5). 

5 Suif  = {ui1, … uik,uf1, … , ufk}  
 = {uif1, uif2, … , uifm} (5) 

6 Glm = <uifl,uifm> (6) 

Moreover, in order to calculate a point deviation it’s 
necessary to associate the configuration in an affine way. 
This association basically consist in assuming that a point 
in the two configurations has a known deviation (that 
could be null) during the shift from stage i to stage f. 
Relations between two configurations 
The above section pointed out the necessity of an 
association between the relevant configurations of a 
mechanism. To carry out this association it is necessary 
to calculate the “relative orientation Gram matrix” 
described in equation (4). The direct application of 
equation (4) is impossible because the Gram matrix 
approach is coordinate free. Therefore, the relative 
orientation has to be calculated using another technique. 
Authors propose to use matrix factorisation techniques to 
express any Gn as a product specified in equation (7) 
where Id stands for the identity matrix. 

7 Gn = FnT • Fn = FnT • Id • Fn (7) 

Relation (7) is equivalent to (8) using Enstein’s 
convention.  

8 Gnlm = Fnpl • Fnpm = Fnpl • δpq • Fnqm (8) 

In the relation (7), Id can be viewed as the metric tensor 
of an ortho-normal basis noted Se {e1,e2,e3}. From there 
FnT can in turn be viewed as the transformation matrix 
defined in (9). As Gn is a Gram matrix that is positive 
semidefinite, the terms of Fn are Real numbers. 

9 unl = Fnlq • eq with n=i or n=f (9) 

The application of relation (9) on the terms of relation (4) 
Sui and Suf (as defined in section 3.4) finally gives the 
expression (10) that allows the calculation on Gif.  

10 Giflm = <Filp•ep,Ffqm•eq> = Filp • Ffmq <ep,eq>  
 = Filp • Ffmq• δpq = Filp • Ffmp (10) 

Currently, authors have envisaged the use of two 
factorization techniques:  

• A singular value decomposition 
• A Cholesky based factorisation 

The affine association consists simply in an appropriate 
choice of a point to connect a path from the initial to the 
final configuration. The application on the case in the 
following section will clearly explicit this. 
4 APPLICATION CASE: 3 ARTICULATED BARS IN 

3D 
This section proposes an application of the techniques 
presented above. 
4.1 Case description 
This subsection presents the case that has been chosen 
for the illustration of the method. The following 
subsections introduce elements such as: the initial 
geometry, the topology, the initial gram matrix, the 
studied geometrical requirements, the physical effect that 



rules the part deformation and the geometrical 
requirement evolution. 
Initial geometry 
The proposed model for this study is composed of three 
articulated bars disposed as a tetrahedron on a wall such 
as presented in figure 2. 

 
Figure 2: Initial geometry of the case study. 

The four points constituting the structure {O,A,B,C} have 
their initial coordinates in a global ortho-normal coordinate 
system (noted {ei,ej,ek})presented in table 1 below. This 
coordinate matrix is noted X0. 

Point X coordinate 
(along ei) 

Y coordinate 
(along ej) 

Z coordinate 
(along ek) 

O 0 0 0 
A 1 0 0 
B 0 1 0 
C 0 0 1 

Table 1: Matrix X0 of initial point coordinates in a global 
reference system. 

Case topology 
The topological diagram of the truss is defined using 4 
vertex and 6 edges. Three of these edges are the bars 
represented in figure 2 and the three others are used to 
define the support wall {ABC}. The connexion between 
points and bars is done thanks to a connection matrix 
(noted C0) which rows contains the six bars and which 
columns contains the four {O,A,B,C} points. This matrix is 
presented in table 2. 

 O A B C 
oa -1 1 0 0 
ob -1 0 1 0 
oc -1 0 0 1 
ab 0 1 -1 0 
ac 0 1 0 -1 
bc 0 0 -1 1 

Table 2: Connectivity Matrix C0 
Initial coordinate free representation. 
As explained in section Erreur ! Source du renvoi 
introuvable. the coordinate free approach use in the 
paper uses the Gram matrix that is vector based. This 
model induces intuitively the choice of the six vectors of 
the edges presented in table 2. The Gram matrix Gi 
associated to the initial configuration is calculated using 
equation (11). 

11 Gi = (X0T • C0T) • (X0T • C0T)T (11) 

The numerical values of Gi are presented in table 3. 
 
 
 

 
 oa ob oc ab ac bc 

oa 1 0 0 -1 -1 0 
ob 0 1 0 1 0 -1 
oc 0 0 1 0 1 1 
ab -1 1 0 2 1 -1 
ac -1 0 1 1 2 1 
bc 0 -1 1 -1 1 2 

Table 3: initial Gram matrix Gi 
Geometrical requirements definition 
For this study, authors arbitrarily propose to take into 
account as geometrical requirements, the deviation of the 
vertex O and the scalar products <oo’,oa> , <oo’,ob>  
and <oo’,oc>. O’ correspond to O in the deformed 
configuration in accordance with section 4.2. 
Physical effect: thermal expansion 
In accordance with the objective exposed in section 3.2, 
authors decided to study the effect of a thermal 
expansion of the structure. This physical effect has been 
chosen for the ease of its theoretical formulation as given 
in equation (12). In expression (12) li and lf stands 
respectively for initial and final length of the bars 
(vectors). In the same way ti and tf are representing the 
initial and final temperature and α refers to the thermal 
expansion coefficient (typical values of α are found in the 
literature).  

12 lf = α × li × (tf – ti) + li (12) 

Authors assume that the wall of figure 2 is not subjected 
to thermal expansion, consequently the value of α is set 
to zero for vectors ab, ac and bc. Moreover, the value of 
α is set at 3E-05 K-1 for oa, ob and oc vectors. 
It’s also supposed that the initial temperature is 20°C and 
the final temperature is 100°C for all the bars involved in 
the configuration. 
Thanks to equation (1), the values of the initial lengths (li) 
of the bars (or the initial norm of the vectors) are directly 
deduced from the square root of the diagonal terms of Gi 
(see in table 3). For example: ||oa||= = . 

With these hypotheses and the formulation of (12) it 
become possible to calculate the value of the final length 
(lf) of the bars (or the final norm of the vectors). 
A summary of these assumptions and the result of the 
final length calculations are presented in table 4 below. 
Vector α ti tf li lf 

oa 3E-05 K-1 1 1.0024 
ob 3E-05 K-1 1 1.0024 
oc 3E-05 K-1 1 1.0024 

ab 0   

ac 0   

bc 0 

20°C 100°C 

  
Table 4: value for thermal expansion calculation 

Geometrical requirements 
Authors propose to consider the position of the vertex O 
as the geometrical requirement under study. The 
mapping of its evolution will be done with the 
measurement of the norm of the displacement vector of 
vertex O. This vector is noted oo’ and its norm is 
calculated with: ||oo’||= . Moreover, in order 



 

to compare the results with a Cartesian method, the 
scalar products <oa,oo’> <ob,oo’> and <oc,oo’> will also 
be computed. 
4.2 Calculations and results 
Gram matrix of the final configuration 
First of all, the reader is advised that the points in the final 
configuration (represented by the Gram matrix Gf) are 
expressed with primes. For example, the vertex O’ in the 
final configuration corresponds to the initial vertex O. In 
accordance with section 4.1, the displacement vector of 
vertex O is noted oo’. 
Moreover, relation (1) allows the direct calculation of the 
diagonal terms of the Gf matrix. These values are directly 
the square of the final lengths presented in the lf column 
of table 4.  For example Gf1,1=<o’a’,o’a’>=|| o’a’||2. 
From there, it becomes possible to calculate all the others 
terms of the matrix using the Chasles relation as in (13). 

13 <u,v> = (<u+v,u+v> - <u,u> - <v,v>)/2 (13) 

For example the value of <o’a’,o’b’> is given by equation 
(14) below which uses only the diagonal terms of Gf. 

14 <o’a’,o’b’> = - <a’o’,o’b’>  
 =-(<a’b’,a’b’>-<a’o’,a’o’>-<o’b’,o’b’>)/2 (14) 

In the end, the Gf matrix expression is given in table 5 
below. 

 o’a’ o’b’ o’c’ a’b’ a’c’ b’c’ 
o’a’ 1.0048 0.0048 0.0048 -1 -1 0 
o’b’ 0.0048 1.0048 0.0048 1 0 -1 
o’c’ 0.0048 0.0048 1.0048 0 1 1 
a’b’ -1 1 0 2 1 -1 
a’c’ -1 0 1 1 2 1 
b’c’ 0 -1 1 -1 1 2 

Table 5: Final Gram matrix Gf 
As the problem addressed here is quite simple, it is 
possible to carry out the calculation of the Gf matrix using 
the Chasles relation (13). For more complicated cases 
other techniques exist [20] to solve the Gf matrix 
constrained by complex geometrical or topological 
requirements. 
Vectorial association of initial and final configurations 
In order to respect the fixed point hypothesis for points 
A,B and C the Cholesky factorisation has been chosen. 
This criterion is only applicable to a metric tensor such as 
that defined in section 3.4. In order to obtain a metric 
tensor from the Gi and Gf Gram matrices, it is necessary 
to choose three independent vectors in the configuration 
to build an ortho-normal basis for the application of 
relation (8). As the Cholesky factorisation algorithm is 
recursive (see in [21]) the choice of the three vectors and 
their order is an important issue. In order to respect the 
zero expansion condition of the wall (see in section 4.1) 
the first two vectors are chosen as part of the wall and the 
third is just chosen to be independent from the two others. 
Finally the vectors ab, ac and oa and a’b’, a’c’ and o’a’ 
have been chosen respectively for initial and final 
configurations. The following metric tensors are then 
calculated. Mi and Mf are associated respectively to the 
basis {ab, ac, oa} and {a’b’ , a’c’ , o’a’} for the initial and 
final configurations. The Mi and Mf metric tensor are 
extracted from Gi and Gf respectively. 
These two metric tensors are then factorised with the 
Cholesky technique and the Mif metric tensor is 
calculated thanks to relation (10). Mif values are 
presented in table 6 below. 

 
 
 

 a’b’ a’c’ o’a’ 
ab 2 1 -1 
ac 1 2 -1 
oa -1 -1 1.0024 

Table 6: Mif metric tensor 
Again with the Chasles relation it is possible to deduce 
from Mif the global Gif matrix presented in table 7 below. 

 o’a’ o’b’ o’c’ a’b’ a’c’ b’c’ 
oa 1,0024 0,0024 0,0024 -1 -1 0 
ob 0.0024 1.0024 0.0024 1 0 -1 
oc 0.0024 0.0024 1.0024 0 1 1 
ab -1 1 0 2 1 -1 
ac -1 0 1 1 2 1 
bc 0 -1 1 -1 1 2 

Table 7: Gif Gram matrix 
As a first result we can notice that in Gif (table 7) the last 
three columns are exactly the same as in Gi (table 3). 
This means that the position of points A,B and C has not 
changed between the initial and the final stages of the 
experiment. 

 
Figure 3: Initial and final configuration of the structure 

Finally the global matrix G representing the two 
configurations (figure 3) is obtained with the aggregation 
of Gi, Gf and Gif described in figure 4 below. 

Gi Gif 
G= 

GifT Gf 
Figure 4: global matrix G of the two configurations 

Geometrical requirement calculation: 
In this application case, the geometrical requirement 
studied is the norm of the displacement vector for vertex 
O. This displacement is defined by the vector oo’. Thanks 
to the Chasles relation the expression (15) is obtained. 

15 oo’ = oa + aa’ + a’o’ (15) 

As explained in section Erreur ! Source du renvoi 
introuvable. an affine association of the two 
configurations is required for the calculation of a vertex 
displacement. In this case it has been decided that the 
point A and A’ are coincident (others connection points 
such as the middle of a bar or the barycentre of A, B, C 
could have been chosen). This means that the aa’ vector 
is null. From there, the equation (15) becomes, after 
simplification, the relation (16). 

16 oo’ = oa - o’a’ (16) 



As ||oo’||= , the following paragraph will detail 
the calculation of <oo’,oo’>. With Chasles relation (16) 
we obtain the expression (17). 

17 <oo’,oo’>=<oa,oa> + <o’a’,o’a’> - 2 <oa,o’a’> (17) 

With the definition of βoo’ such as in (18), relation (17) is 
rewritten as relation (19) using the principles set forth in 
relations (2) and (3). 

18 βoo’ = [1,0,0,0,0,0,-1,0,0,0,0,0] (18) 

19 <oo’,oo’> = βoo’ • G • βoo’T (19) 

The coordinates of βoo’ are directly deduced from 
relation (16), using the set of vectors 
Suif={oa,ob,oc,ab,ac,bc,o’a’,o’b’,o’c’,a’b’,a’c’,b’c’} 
defined accordingly with expression (5). One can notice 
that the βoo’ coordinates are exactly the coefficient of the 
vectors of Suif in the linear construction of oo’ defined in 
(16). 
The numerical application of (19) gives the results 
expressed in equation (20). 

20 ||oo’||= =41E-4. (20) 

In a manner similar to that of relation (18), the following 
vectors (21, 22, 23) are defined for the calculation of the 
<oa,oo’> <ob,oo’> and <oc,oo’> scalar products. 

21 βoa = [1,0,0,0,0,0,0,0,0,0,0,0] (21) 

22 βob = [0,1,0,0,0,0,0,0,0,0,0,0] (22) 

23 βoc = [0,0,1,0,0,0,0,0,0,0,0,0] (23) 

For example the calculation of <oa,oo’> is given by 
relation (24) below. 

24 <oa,oo’> = βoa • G • βoo’T (24) 

The numerical application of (24) gives the results 
expressed in (25) below. 

25 <oa,oo’>=<ob,oo’>=<oc,oo’>=-2.4E-3 (25) 

The results presented in equations (20) and (25) prove 
that a coordinate free approach is applicable for the 
mapping of a geometrical requirement along the product 
life cycle. 
Verification using a Cartesian method 
As the application case is simple: only one vertex and 
three edges are subjected to some variations, the authors 
have applied a Cartesian method to solve problem and 
compare the result obtained with that of the previous 
section. 
Let’s suppose that the O’ coordinates are [x,y,z] in the 
initial global ortho-normal coordinate system {ei,ej,ek} of 
section 4.1. The coordinates of points {O,A,B,C} are given 
in table 1. In order to determine the coordinates of O’ after 
the thermal expansion, the following equations (26, 27, 
28) have to be solved: 

26 ||o’a’||=||o’a||= =1.0024 (26) 

27 ||o’b’||=||o’b||= =1.0024 (27) 

28 ||o’c’||=||o’c||= =1.0024 (28) 

This system gives the following solutions:  
{x,y,z} = {-2.394E-3, -2.394E-3, -2.394E-3} and 
{x,y,z} = {0.66906, 0.66906, 0.66906}. The second 

solution has to be excluded because it changes the 
topology of the structure: for this solution, the O’ point has 
to pass through the wall. 
This result has to be compared with that obtained in (25) 
because {oa, ob oc} = {ei,ej,ek} (see table 3). One can 
see that the two methods give the same results. 
5 CONCLUSION AND PERSPECTIVES 
This paper has first presented some mathematical 
models and tools for a coordinate free approach to 
represent mechanisms. This model describes how to 
represent the mechanism in the proposed coordinate free 
model, how to calculate the value of a geometrical 
requirement at a given stage of the product life-cyle and 
finally how to link two geometrical configurations to map 
the evolution of a corresponding geometrical requirement. 
Later on an application of this coordinate free approach 
has been presented on a simple 3D example. The 
simplicity of the chosen case allowed the authors to 
address it from the beginning to the end using simple 
formulations and calculations. It has also allowed a 
comparison and validation of the results with a Cartesian 
approach. 
Globally, this paper has shown that a generic coordinate 
free approach is applicable for the analysis of a 
geometrical requirement evolution along the product life 
cycle. 
As the approach is generic, authors propose to 
investigate an application of this method on more 
complicated cases such as mobile mechanisms and 
hyperstatic mechanisms or structures. It is also 
envisioned to use more efficient existing solvers to obtain 
the global matrix G, which would then allow the 
specification of requirements based on multiple 
configurations. 
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