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ABSTRACT

We present a novel bio-inspired static image compression scheme.
Our model is a combination of a simplified spiking retina model and
well known data compression techniques. The fundamental hypoth-
esis behind this work is that the mammalian retina generatesan ef-
ficient neural code associated to the visual flux. The main novelty
of this work is to show how this neural code can be exploited in
the context of still image compression. Our model has three main
stages. The first stage is the bio-inspired retina model proposed by
Thorpe et al [1, 2], which transforms an image into a wave of spikes.
This transform is based on the so-called rank order coding. In the
second stage, we show how this wave of spikes can be expressedus-
ing a 4-ary dictionary alphabet, through a stack run coder. The third
stage consists of applying a first order arithmetic coder to the stack
run coded signal. We compare our results toJPEGstandards and we
show that our model has comparable performance for lower com-
putational cost under strong bit rate restrictions when data is highly
contaminated with noise. In addition, our model offers scalability
for monitoring data transmission flow. The subject matter presented
highlights a variety of important issues in the conception of novel
bio-inspired compression schemes and additionally presents many
potential avenues for future research efforts.

Index Terms— Static image compression, spiking retina model,
rank order coding, stack run.

1. INTRODUCTION

During the past two decades, research in still image compression
generated several coding algorithms, especially theJPEG stan-
dards. Since then, subsequent efforts followed the same schema for
conceiving lossy image coders [3]. These compression algorithms
were, for the most part, designed in a signal processing way,and do
not account for actual biological visual systems behavior.

Yet, computational neuroscience made substantial progress dur-
ing the same period of time in better understanding the internal rep-
resentation of the sensory world. For example, concerning the visual
system, one can find many results and heuristics on how informa-
tion is encoded, transmitted and interpreted. Based on those results,
it is our conviction that the visual system developed efficient skills
and coding strategies that could be used as a source of inspiration to
imagine novel compression techniques.

The human visual system conveys information as a set of elec-
trical impulses called spikes. Spikes [4], which are the waythat our
nervous system chose to communicate information broadly, appear
very early in the chain of treatment of the human visual system. At
the retina level, after a chain of internal treatments, ganglion cells
convert an analogous signal into a series of spikes called spike trains.

So, one challenge is to be able to understand the relations between
spike trains and stimuli.

In the literature, several measurable features of spike trains were
proposed. In this paper, we focus on the latency time of the first spike
given the stimulus onset. This choice was motivated by Thorpe et al
neurophysiologic results [1] on ultra-rapid stimulus categorization.
Authors showed that still image classification can be realized by the
visual cortex within very short latencies of about 150 ms or even
faster. As an explanation, it was stated that:the order in which neu-
rons emit their first spike is related to their level of excitation. This
temporal ordering of spikes was further studied in [1, 2] anddes-
ignated byrank order coding(ROC). Interestingly, the relevance of
ROC was recently confirmed by electrophysiologic experiments [5],
and we would like to investigate if it could be useful for image com-
pression.

This paper is organized as follows: In Section 2, we detail the
stages of our static image compression scheme, then in Section 3
we summarize the results obtained, and in Section 4, we highlight
many potential avenues for future research efforts in the conception
of novel bio-inspired compression schemes.

2. PROPOSED CODING-DECODING SYSTEM

2.1. System overview

Our compression scheme encompass three stages: first, a spiking
retina model based on rank order coding (ROC), second, a zero-run
length coder, namely a stack run coder, and finally an arithmetic
coder. This is summarized in the block diagram in Figure 1. The
following sections detail each one of these stages.

Fig. 1. Block Diagram of the compression scheme. First, a ROC
based retina model. Second, the ROC code is zero-run length en-
coded by the stack run coder. Finally a first order arithmeticcoder is
applied to get the compressed image file. The decoding process goes
exactly the opposite way.



2.2. From image to rank order code

Experiments show that we are very talented in categorizing images
even with very short presentation durations. As an explanation for
this extraordinary performance in ultra-fast categorization, Thorpe
et al [1, 2] proposed that the order in which spikes are emitted en-
codes for the stimulus. This yielded the ROC code which will be
the base of our approach. ROC relies on the following simplifying
assumptions:

i) From stimulus onset, only the first spike emitted is considered
in the response.

ii) The time to fire of each ganglion cell is proportional to its
degree of excitation.

iii) Only the order of firing of the neurons encodes for the stimu-
lus.

In order to obtain spikes from an image, the authors in [2] proposed
an Ns-layered dyadic gridG of filters as an architecture for the
retina model. In a layerGk of G, ganglion cells are regularly spaced
by2s pixels over the horizontal and vertical axes. The set of ganglion
cell locations defines a subsetU of N

3. For anN2-sized image,U
is defined by :

U = {(s, i, j) such that(s, i, j) ∈ N
3, s ∈ [0, Ns], (1)

i < N, j < N, i ≡ [2s] andj ≡ [2s]},

wheres denotes the scale of the cell and(i, j) its position. Then
the response of a ganglion cell can be approximated by a linear fil-
ter [6]. In particular, [6] proposed thedog filter which is a weighted
difference of Gaussians and is defined as follows:

dog(x, y) = wcgσ(x, y) − wsgασ(x, y), (2)

whereσ is the so-called central standard deviation of the filter,α is
an a priori fixed real number,gσ (resp.gασ) is the Gaussian kernel
of standard deviationσ (resp.ασ), andwc (resp.ws) is the weight
of gσ (resp.gασ). With biologically realistic parameters adog filter
applied to the image is a contour detector.

So, in order to measure the degree of activation of a given neu-
ron, we compute the convolution of the original imagef by adog
filter defined by its scales and its location(i, j), so that:

csij =
∞

∑

x,y=−∞

dogs(i − x, j − y) f(x, y). (3)

Neuron responses are then sorted in the decreasing order of their
amplitude, i.e.,|csij |. For anN2-sized image we obtain the series
of sorted triplets(sk, ik, jk)06k6 4

3
N2−1 defined recursively by:
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










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
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U0 = U
(s0, i0, j0) = argmax

(s,i,j)∈U0

(|csij |)

Uk = U \ {(s0, i0, j0), ..., (sk−1, ik−1, jk−1))}
(sk, ik, jk) = argmax

(s,i,j)∈Uk

(|csij |)

So, if we consider the set of the firstNc spikes, the reconstruction
estimatef̃Nc

of the original inputf can be obtained as follows:

f̃Nc
(x, y) =

Nc−1
∑

k=0

csk ik jk
dogsk

(ik − x, jk − y). (4)

Formula (4) gives a progressive reconstruction depending on Nc.
This feature will make the coder scalable. Note that in (4), we
implicitly made the assumption that the filters considered form an
orthonormal basis, which is an approximation as mentioned in [7].

Some enhanced versions of this algorithm are presented in the liter-
ature. For example, in [8], the authors use a matching pursuit pro-
cedure in order to eliminate redundancies between coefficients; and
in [7], the authors proposed to invert thedog basis using a Moore-
Penrose pseudo-inversion procedure for the same purpose.

A step further, it appears that we do not need to remember ex-
plicitly the amplitude of the responses|csij | in (4). In [1, 2], the
authors showed that there exists a mapping between the rank and
the amplitude|csij | which has approximately the same shape across
natural images. Thus the authors supposed that the exact values of
|cskikjk

| are known a priori at the level of the decoder. This allows
a great gain in the amount of information necessary to encodethe
input image. The characteristic series of|cskikjk

| is constructed off-
line and stored in a look up table (LUT ). TheLUT used in [2] is
obtained as an average over a set of natural images. In this paper, in-
stead of a predefined mapping as in [2], we use a parametric function
LUTγ of the rankk of (sk, ik, jk) defined by:

LUTγ(k) = C k−γ , (5)

whereC is an arbitrary constant positive value andγ is the param-
eter of the function. The motivation is to find the best fit for each
image. To do so, we implemented a gradient descent overγ that
minimizes the criterion of Mean Squarred Error (MSE) between
the real coefficients|cskikjk

| and the estimated onesLUTγ(k).

At the end of this stage, the ROC code generated consists only
of the parameterγ of LUTγ and a series of sorted quadruplets
(ek)06k6Nc

defined by:
∀ 0 6 k < Nc, ek = (sk, ik, jk, sign(cskikjk

)). (6)

So the reconstruction formula (4) becomes:

f̃Nc
(x, y) =

Nc−1
∑

k=0

sign(cskikjk
) LUTγ(k) dogsk

(ik − x, jk − y).

An example of progressive reconstruction of Lena is shown in
Figure 2. Remark that, as an enhancement to the current coder, we
added a Gaussian scaling function [9] to catch low frequencies omit-
ted by the original model. The latter modification improves the im-
age reconstruction quality by5 dB in PSNR for5% of fired spikes
used for the reconstruction (see Figure 2). Note that the reconstruc-
tion evolution maps actual retina behavior, as low frequencies are
first transmitted, then details are progressively added (see, e.g., [10]).

2.3. Coding spikes using stack run

The ROC coder presented in Section 2.2 generates a series of at most
Ns spikes denoted as(ek)06k6Ns−1, whereNs is the size of the
dyadic grid. As demonstrated in Figure 2, few spikes can reasonably
represent the image to code. This property is loosely referred to as
sparseness in the literature. The sparseness of neural codes has been
shown to help conceive meaningful representations of data.Keeping
sparseness as a design principle, we define, in this section,a sparse
representation of the series(ek) in the sense that, we look for a series
mainly populated with zero’s. We then introduce a zero-run length
coder well suited for sparse data coding, namely the stack-run coder.

We consider the definition ofek in (6). For each triplet elements
(sk, ik, jk) of ek, let us define the scalar indexrk ∈ [0, Ns − 1]
defined by:

rk = skN2 +
ik
2s

N +
jk

2s
, (7)

such that,cskikjk
can be denotedcrk

. So, the ROC response re-
stricted to the firstNc spikes can be written as the following sorted
list of Nc couples (spiking cell index, sign of the response):



Fig. 2. Progressive image reconstruction of Lena using Thorpe ROC
coder with a scaling function. Upper left: Lena. Upper rightand
lower: The coded/decoded image reconstruction with an increasing
percentage of spikes decoded.

MNc

retina = ((r0, sign(cr0
)), ..., (rk, sign(crk

)), ...).

Coding this list may be quite expensive in terms of bit-rate.This is
because from one index to the next, one does not consider their spa-
tial arrangements. The dimension ofMretina is Nc but the values
to encode may be large. For this reason, we propose instead a rep-
resentation taking into account the relative positions of the spiking
cells. So we define the vector:

MNc

sparse = (m0, ..., ml, ..., mNs−1),

so that:

ml =

{

k sign(crk
) if ∃ k < Nc / l = rk

0 otherwise.
(8)

The dimension ofMNc

sparse is Ns (the size of the dyadic grid), but
the range of values to encode now depends onNc. For a sufficiently
small value ofNc, MNc

sparse is a sparse data set: this is the feature
we tried to enhance in our message codeMNc

sparse. Zero-run length
coders are well suited for the compression of such data sets.In our
coder we use an enhanced run-length coding algorithm, the stack run
code [11]. Stack run coding uses a 4-ary dictionary{0, 1, +,−}.
MNc

sparse is mapped into a series of couples: (zero-run length, non-
zero value) . As specified in [11] the subsequent bit-wise operations
are applied. First, every non-zero value is set to its absolute value
after we stored its sign. Then, the most significant bit (MSB)of a
non-zero value is set to ”+” (resp. ”-”) if the sign is positive (resp.
negative). Finally, binary bit ”1” (resp ”0”) in run lengthsis replaced
by ”+” (resp. ”-”). Binary bits, other than the MSB, in non-zero
values are kept as they are. The use of 4 symbols in the alphabet
removes ambiguity between run lengths and coefficient values. For
example, if we consider the code:

MNc

sparse = (0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0,−18), (9)

then applying the rules of stack-run encoding we obtain the codeM
with:

M = + + +10++ − +0100−, (10)

where the first++ + string encodes for 7 zero’s and10+ for 5, etc.

2.4. Arithmetic coding

While reading the code in (10), the decoder can switch from the run
length contextto thenon-zero value contextas it encounters the char-
acter0 or 1. Obviously the decoder switch contexts in the opposite
way as it encounters the character+ or −. This remark allows us
splitting the code we obtained into 2 different files, one forthe run
length context and the other for non-zero value context. Considering
the example in (10), we get in the first fileF0:

F0 = + + +1+ − +0, (11)

and in the second oneF1:

F1 = 0+100−. (12)

Thanks to this split, we get a first fileF0 mainly populated with+’s
and−’s andF1 mainly populated with0’s and1’s. Having these two
files with enhanced contextual features, we can apply an arithmetic
coder, which we said to be a first order coder, for compressionwith
optimal performance. We concatenate the two resulting compressed
files to obtain a single oneFc which will be the output of this stage.

3. RESULTS

Rate/quality curves are plotted to show the new codec performance.
We remind the reader that, the stack run code as generated in (11)
and (12) is passed through an arithmetic coder to obtain a unique
compressed fileFc. We compute the rate as the size ofFc divided by
the pixels numberN2 in the original imagef . Quality is assessed by
classical image quality criteria, PSNR and mean structuralsimilarity
measure (SSIM) [12], as we compare the reconstructed imagef̃Nc

to the original inputf . Here, results are shown only in terms of mean
SSIM, and PSNR results are available in [13] as both criteriashow
the same behavior.

Application to noiseless data We compared our results to the ex-
isting JPEG standards behavior under strong bandwidth restriction
(rate< 0.2 bpp). Performance is comparable until0.07 bpp image
rate (see Figure 3(a)), which shows our algorithm to have encour-
aging performance though still less efficient than JPEG2000. In ad-
dition, as each spikeek encodes for the whole image, we avoid the
block effect of JPEG compression, though this implies a smoothing
effect on the image [13].

(a) Noiseless data (b) Noisy data

Fig. 3. Rate/Quality behavior: quantitative comparison between
our new codec, JPEG, and JPEG2000 using mean SSIM as a qual-
ity measure. 3(a): noiseless input. 3(b): additive Gaussian noise
(mean = 0, variance = 0.05 for a normalized image dynamic
range)



Application to noisy data Our codec shows good robustness to
noise compared to JPEG and JPEG2000 which also perform some
kind of denoising while compressing data. Figure 3(b) showsthe
comparative performances of our codec and JPEG standards applied
on an image strongly corrupted with a Gaussian additive noise, for
low and median bit rates (< 0.5 bpp). Indeed, the wavelet-like retina
behavior in the model [2] enables a better robustness.

Results show up to6 dB of gain in PSNR and0.4 in mean SSIM
for 0.25 bpp of image rate compared to classic JPEG. As the rate
increases JPEG codecs convey more high frequency (HF) signals,
which are noise. This explains the decreasing rate/qualitybehavior
of JPEG. As HF is encoded with loss in JPEG, artifacts appear in
the decoded image. On the contrary, our new codec does not show
artifacts because every spike is transmitted with no loss ofinforma-
tion and encodes for the whole image. The scalability of our codec
is monitored only by the choice of the numberNc of spikes to be
encoded.

4. DISCUSSION

We have proposed a new bio-inspired codec for static images.First,
the image is converted into a ROC code via a simplified retinal
model, then a stack run coder is applied, followed by a first order
arithmetic compressor.

Fig. 4. Robustness to noise: qualitative comparison between our new
codec, JPEG, and JPEG2000 under the same rate restriction (here
0.27bpp). Upper left: Lena with additive Gaussian noise (mean =
0, variance = 0.05 for a normalized image dynamic range). Up-
per right: coded/decoded image using the new codec. Lower left:
coded/decoded image using JPEG. Lower right: coded/decoded im-
age using JPEG2000.

The performance of this coding scheme was tested against well
established JPEG standards, and we obtain encouraging results for
low bandwidth transmissions, especially when dealing withnoisy
data. This compression scheme also offers interesting features such
as scalability and reasonable complexity. Limitations have been ob-

served in terms of rate/quality, when compared to JPEG2000 for
noiseless data transmissions. Beyond the proposition of a new com-
pression scheme, we would like to highlight a variety of potential
avenues for future research efforts in this direction.

The first perspective concerns the retina coding model of our
scheme. Although we focused on the latency time of the first spike,
several models take into account the whole structure of spike trains.
For example, it appears that burst or synchronies are features that
could encode for the stimulus. This opens new perspectives to extend
this model as soon as we are able to produce realistic spike trains.
In particular, we will need to consider more realistic retina models
converting videos into spike trains, such as [10]. The goal is then to
reproduce spiking patterns as observed in real cell recordings, and
establish how spikes are triggered by a stimulus then decoded [4].

The second perspective concerns compressing spikes. In this
paper, even with a simplified representation of the spiking activity
as a wave of spikes, classical approaches as stack run codingare
not optimal. In the general case, with a continuous spiking activity,
new ideas will have to be introduced. New bio-inspired compression
schemes will have to take into account the features of the neural code
that are the most relevant for the stimulus representation.
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