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ABSTRACT So, one challenge is to be able to understand the relatidnebe
spike trains and stimuli.

In the literature, several measurable features of spilkestmgere
proposed. In this paper, we focus on the latency time of thedjike
given the stimulus onset. This choice was motivated by Téetgal

We present a novel bio-inspired static image compressibarse.
Our model is a combination of a simplified spiking retina maue
well known data compression techniques. The fundamentathy

esis behind this work is that the mammalian retina geneeatesf- ; . A A
neurophysiologic results [1] on ultra-rapid stimulus gatézation.

ficient neural code associated to the visual flux. The maireltypv Auth h d that still i lassificati be redlizy th
of this work is to show how this neural code can be exploited i uthors showed that stillimage classification can be re fay the

the context of still image compression. Our model has thragam visual cortex within Very s_hort latencies of about .150 MS e
stages. The first stage is the bio-inspired retina modelqzeg by faster. As an explanation, it was stated ttthe order in which neu-
Thorpé etal [1, 2], which transforms an image into a wave e rons emit their first spike is related to their level of extida. This

This transform is based on the so-called rank order codinghé _temporal ordering of Sp”.(es was further st_udied in [1, 2] aed-
second stage, we show how this wave of spikes can be expressed ignated byrank order codingROC). Interestingly, the relevance of

ing a 4-ary dictionary alphabet, through a stack run codee third ROC was recently confirmed by electrophysiologic experissl,

stage consists of applying a first order arithmetic codehéostack and we would like to investigate if it could be useful for ineagom-
run coded signal. We compare our result§REGstandards and we Préssion. . . ) . .
show that our model has comparable performance for lower com  ThiS paper is organized as follows: In Section 2, we detal th

putational cost under strong bit rate restrictions whem éahighly ~ Stages of our static image compression scheme, then inoSedti
contaminated with noise. In addition, our model offers abity ~ W€ Summarize the results obtained, and in Section 4, weiglghl

for monitoring data transmission flow. The subject mattespnted ~ Many potential avenues for future research efforts in tieeption
highlights a variety of important issues in the conceptibmavel ~ ©f novel bio-inspired compression schemes.

bio-inspired compression schemes and additionally pteseany
potential avenues for future research efforts. 2. PROPOSED CODING-DECODING SYSTEM

Index Terms— Static image compression, spiking retina model, 2.1. System overview

rank order coding, stack run. . . .
Our compression scheme encompass three stages: first,iagspik

1. INTRODUCTION retina model based on rank order coding (ROC), second, armaro

length coder, namely a stack run coder, and finally an aritieme

During the past two decades, research in still image comsjmes coder. This is summarized in the block diagram in Figure 1e Th

generated several coding algorithms, especially =G stan-  following sections detail each one of these stages.

dards. Since then, subsequent efforts followed the samarstifor

conceiving lossy image coders [3]. These compression ithgos

were, for the most part, designed in a signal processing avai/do dogo

not account for actual biological visual systems behavior.

Yet, computational neuroscience made substantial preghas 5°""beu'°"= S—
ing the same period of time in better understanding theriateep- Input dog, activation —\‘ oo [ onetle Ly el

resentation of the sensory world. For example, concertiegisual meee degree

system, one can find many results and heuristics on how iform L“Tt
tion is encoded, transmitted and interpreted. Based ore tressilts, dogy, stimator
it is our conviction that the visual system developed effitikills
and coding strategies that could be used as a source ofdtispito ROC-based retina model

imagine novel compression techniques.

The human visual system conveys information as a set of eled-ig. 1. Block Diagram of the compression scheme. First, a ROC
trical impulses called spikes. Spikes [4], which are the teat our  based retina model. Second, the ROC code is zero-run length e
nervous system chose to communicate information broaglyea  coded by the stack run coder. Finally a first order arithmadiber is
very early in the chain of treatment of the human visual systat applied to get the compressed image file. The decoding paoueEs
the retina level, after a chain of internal treatments, fiangcells  exactly the opposite way.
convert an analogous signal into a series of spikes cali&d gains.




2.2. From image to rank order code

Experiments show that we are very talented in categorizimages
even with very short presentation durations. As an explamdor
this extraordinary performance in ultra-fast categorargt Thorpe
et al [1, 2] proposed that the order in which spikes are ethitte
codes for the stimulus. This yielded the ROC code which weéll b
the base of our approach. ROC relies on the following simipigf
assumptions:

i) From stimulus onset, only the first spike emitted is coassdl
in the response.

ii) The time to fire of each ganglion cell is proportional ts it
degree of excitation.

iii) Only the order of firing of the neurons encodes for therst
lus.

In order to obtain spikes from an image, the authors in [2ppsed
an N;-layered dyadic gridG of filters as an architecture for the
retina model In a layerGy, of G, ganglion cells are regularly spaced
by 2° pixels over the horizontal and vertical axes. The set of famg
cell locations defines a subdgtof N. For anN?-sized imagel/
is defined by :

U = {(s,4,j) such thats, i, j) € N* s € [0, N],

i< N,j < N,i=[2°]andj = [2°]},

@)

wheres denotes the scale of the cell afij) its position. Then
the response of a ganglion cell can be approximated by arlfitea
ter [6]. In particular, [6] proposed thég filter which is a weighted
difference of Gaussians and is defined as follows:

dog(x,y) = Wego (T, Y) — Wsgao (2,Y), 2

whereo is the so-called central standard deviation of the filigis
an a priori fixed real numberg, (resp.ga.) is the Gaussian kernel
of standard deviation (resp.aoc), andw, (resp.ws) is the weight
of g, (resp.gac). With biologically realistic parametersdag filter
applied to the image is a contour detector.

So, in order to measure the degree of activation of a given ne

ron, we compute the convolution of the original imafi®y a dog
filter defined by its scale and its locatior(s, j), so that:

Csij = Z dogs(z—a?,]—y)f(x,y)

T, y=—00

©)

Neuron responses are then sorted in the decreasing ordbeiof t

amplitude, i.e.)c;;|. For anN?-sized image we obtain the series

of sorted triplet s, ix, jk ) o< < 4 N2, defined recursively by:
N

Uo =U
(s0,%0,70) = argmax (|csij|)
(s,1,7)€Uq
Uk :U\{(807i03.j0)3"'7(Sk—laik—17jk—l))}
(8ksik,Jk) = argmax (|esij|)

(8,4,3)EU}

So, if we consider the set of the firdf. spikes, the reconstruction
estimatef, of the original inputf can be obtained as follows:
Ne.—1

ch (z,y) = Z Csy ig jx AOGsy, (ik — =, jk — y)- (4)
k=0

Formula (4) gives a progressive reconstruction dependmgva
This feature will make the coder scalable. Note that in (4¢, w
implicitly made the assumption that the filters considerewinf an
orthonormal basis, which is an approximation as mentiondd]i

Some enhanced versions of this algorithm are presentee iliten-
ature. For example, in [8], the authors use a matching pupsoi
cedure in order to eliminate redundancies between coeftgiand
in [7], the authors proposed to invert tHeg basis using a Moore-
Penrose pseudo-inversion procedure for the same purpose.

A step further, it appears that we do not need to remember ex-
plicitly the amplitude of the responsés,;;| in (4). In [1, 2], the
authors showed that there exists a mapping between the rahk a
the amplituddc,;;| which has approximately the same shape across
natural images. Thus the authors supposed that the exaetsvaf
|csrin i, | @re known a priori at the level of the decoder. This allows
a great gain in the amount of information necessary to entoele
input image. The characteristic serieaf, ;, 5, | is constructed off-
line and stored in a look up tabl&{UT). The LUT used in [2] is
obtained as an average over a set of natural images. In {s,pa-
stead of a predefined mapping as in [2], we use a parametatdnn
LUT, of the rankk of (si, ir, ji) defined by:

LUT, (k) = Ck™7, (5)

where(C' is an arbitrary constant positive value ands the param-
eter of the function. The motivation is to find the best fit fack
image. To do so, we implemented a gradient descent pubat
minimizes the criterion of Mean Squarred Errdv/ S E) between
the real coefficientc,, i, ;,. | and the estimated onéd/ T, (k).

At the end of this stage, the ROC code generated consists only
of the parametery of LUT.,, and a series of sorted quadruplets
(ek)ogngc defined by:

YO0 < k< Nm €r = (Slﬁi}ﬁjkvSign(CSkikjk))' (6)
So the reconstruction formula (4) becomes:
Ng.—1
ch (x,y) = Z Sign(cSkik,jk) LUT“/(k) dOgSk, (Zk -, Jk — y)'
k=0

An example of progressive reconstruction of Lena is shown in

Figure 2. Remark that, as an enhancement to the current, coeer

dded a Gaussian scaling function [9] to catch low frequenaimit-

ed by the original model. The latter modification improvies im-
age reconstruction quality BydB in PSNR for5% of fired spikes
used for the reconstruction (see Figure 2). Note that thenstouc-
tion evolution maps actual retina behavior, as low freqiemare
first transmitted, then details are progressively addes] €sg., [10]).

2.3. Coding spikes using stack run

The ROC coder presented in Section 2.2 generates a serigsoft
N, spikes denoted a&k)o<k<n.—1, Where N, is the size of the
dyadic grid. As demonstrated in Figure 2, few spikes canomady
represent the image to code. This property is loosely redeto as
sparseness in the literature. The sparseness of neura baddeen
shown to help conceive meaningful representations of daeaping
sparseness as a design principle, we define, in this seetigparse
representation of the seriés; ) in the sense that, we look for a series
mainly populated with zero’s. We then introduce a zero-ength
coder well suited for sparse data coding, namely the staclcoder.
We consider the definition @f; in (6). For each triplet elements
(Skyik, Jx) Of ek, let us define the scalar index € [0, N, — 1]
defined by: ji @
297
such thatcs, i, ;, can be denoted,,. So, the ROC response re-

stricted to the firstV, spikes can be written as the following sorted
list of N. couples (spiking cell index, sign of the response):

Tk:SkNQ—‘r;—}ZN—F



then applying the rules of stack-run encoding we obtain tuked/
with: M =+ + +10++ — 40100, (10)
where the first- + + string encodes for 7 zero’s and+ for 5, etc.

2.4. Arithmetic coding

While reading the code in (10), the decoder can switch froemuh
length contexto thenon-zero value contexsss it encounters the char-
acter( or 1. Obviously the decoder switch contexts in the opposite
way as it encounters the characteror —. This remark allows us
splitting the code we obtained into 2 different files, onetfu run
length context and the other for non-zero value context.sitieming

the example in (10), we get in the first fife:

Fo=+++1+ — 40, (11)

and in the second ong; :
Fy = 0+100—. (12)

Thanks to this split, we get a first fil&, mainly populated with+’s
and—’s andF; mainly populated witl)’s and1’s. Having these two
files with enhanced contextual features, we can apply ahnaetic
coder, which we said to be a first order coder, for compressitn
optimal performance. We concatenate the two resulting cessed
Fig. 2. Progressive image reconstruction of Lena using Thorpe ROGIES to obtain a single ong.. which will be the output of this stage.
coder with a scaling function. Upper left: Lena. Upper rigind 3 RESULTS

lower: The coded/decoded image reconstruction with areasing
percentage of spikes decoded.

Rate/quality curves are plotted to show the new codec pegnce.
We remind the reader that, the stack run code as generatdd)in (
M im0 = ((ro, sign(crg)), -y (i, sign(cr,)), -..).- and (12) is passed through an arithmetic coder to obtain gueni
compressed filé,. We compute the rate as the sizelofdivided by
Coding this list may be quite expensive in terms of bit-ratkis is  the pixels numbeiN? in the original image’. Quality is assessed by
because from one index to the next, one does not considersfieei  classical image quality criteria, PSNR and mean strucsinailarity
tial arrangements. The dimension &f;.c:in. is Ne but the values measure (SSIM) [12], as we compare the reconstructed infirge
to encode may be large. For this reason, we propose instesm a r to the original inputf. Here, results are shown only in terms of mean
resentation taking into account the relative positionshefdpiking  SSIM, and PSNR results are available in [13] as both critehniav

cells. So we define the vector: the same behavior.
Mg;me = (M0, ooy M,y ooy MN,—1), Application to noiseless data We compared our results to the ex-
isting JPEG standards behavior under strong bandwidthiatish
so that: (rate< 0.2 bpp). Performance is comparable utid7 bpp image
— { ksign(cr,) if3k <N /l=rs ®) rate (see Figure 3(a)), which shows our algorithm to havewnc
Y10 otherwise. aging performance though still less efficient than JPEG200@d-

dition, as each spike;, encodes for the whole image, we avoid the
The dimension ofl\lj\;fme is N (the size of the dyadic grid), but block effect of JPEG compression, though this implies a ghing
the range of values to encode now depend&/pnFor a sufficiently  effect on the image [13].
small value ofN,, Mj\,ffme is a sparse data set: this is the feature
we tried to enhance in our message cddﬁgm. Zero-run length : ‘ N
coders are well suited for the compression of such data betsur | Ew Codee
J

. . 20.8 R 20.8' +Jpeg
coder we use an enhanced run-length coding algorithm, dlo& atin 8 ot g peg2000 |
code [11]. Stack run coding uses a 4-ary dictionédy1, +, —}. §°'6'//_'_4‘ 8%

M. is mapped into a series of couples: (zero-run length, non o4 —New Coded | S04 .
zero value) . As specified in [11] the subsequent bit-wiseatiims 5o, Jhegz000 | | %02 S
are applied. First, every non-zero value is set to its albsolalue

G0 0.05 0.15 0.2 0 0.1 0.4 0.5

after we stored its sign. Then, the most significant bit (M$Ba Rate (bpp) 0-Zate (p0)

non-zero value is set to "+” (resp. "-”) if the sign is pos#igresp. (a) Noiseless data (b) Noisy data

negative). Finally, binary bit "1” (resp "0”) in run lengths replaced

by "+” (resp. "-"). Binary bits, other than the MSB, in nonze . . . o .

values are kept as they are. The use of 4 symbols in the alphab'é'g' 3 Ra(tje/ Quil,'ltzy behzwoPr.E q;antltatl\_/e comparlsoI:A between |

removes ambiguity between run lengths and coefficient gal&er our new codec, J G’. and J . G2000 using mean SS as a qual-
: . . ity measure. 3(a): noiseless input. 3(b): additive Gaunssiaise

example, if we consider the code: 4 . ) .

(mean = 0, variance = 0.05 for a normalized image dynamic

Mg,ime =(0,0,0,0,0,0,0,5,0,0,0,0,0,—18), 9) range)



Application to noisy data Our codec shows good robustness toserved in terms of rate/quality, when compared to JPEG2600 f
noise compared to JPEG and JPEG2000 which also perform sonmiseless data transmissions. Beyond the proposition efvecom-
kind of denoising while compressing data. Figure 3(b) shtves pression scheme, we would like to highlight a variety of ptitd
comparative performances of our codec and JPEG standaptischp avenues for future research efforts in this direction.

on an image strongly corrupted with a Gaussian additiveends The first perspective concerns the retina coding model of our
low and median bit ratesq 0.5 bpp). Indeed, the wavelet-like retina scheme. Although we focused on the latency time of the fiigesp
behavior in the model [2] enables a better robustness. several models take into account the whole structure oegpéins.

Results show up t6 d B of gain in PSNR and.4 in mean SSIM  For example, it appears that burst or synchronies are fathat
for 0.25 bpp of image rate compared to classic JPEG. As the rateould encode for the stimulus. This opens new perspectvexsténd
increases JPEG codecs convey more high frequency (HF)Isjgnathis model as soon as we are able to produce realistic skestr
which are noise. This explains the decreasing rate/quadihavior  In particular, we will need to consider more realistic ratimodels
of JPEG. As HF is encoded with loss in JPEG, artifacts appear iconverting videos into spike trains, such as [10]. The go#hén to
the decoded image. On the contrary, our new codec does net shaeproduce spiking patterns as observed in real cell recgsdiand
artifacts because every spike is transmitted with no lossfofma-  establish how spikes are triggered by a stimulus then decf@de

tion and encodes for the whole image. The scalability of amaec The second perspective concerns compressing spikes. sln thi
is monitored only by the choice of the numh&¥. of spikes to be paper, even with a simplified representation of the spikictiyity
encoded. as a wave of spikes, classical approaches as stack run cading

not optimal. In the general case, with a continuous spikictiyiay,
new ideas will have to be introduced. New bio-inspired cagspion
schemes will have to take into account the features of theaheode
that are the most relevant for the stimulus representation.

4. DISCUSSION

We have proposed a new bio-inspired codec for static imdgest,

the image is converted into a ROC code via a simplified retinal
model, then a stack run coder is applied, followed by a firdeor
arithmetic compressor.
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