Computing the Pessimism of Inclusion Functions

Abstract : “Computing the pessimism” means bounding the overestimation produced by an inclusion function. There are two important distinctions with classical error analysis. First, we do not consider the image by an inclusion function but the distance between this image and the exact image (in the set-theoretical sense). Second, the bound is computed over a infinite set of intervals. To our knowledge, this issue is not covered in the literature and may have a potential of applications. We first motivate and define the concept of pessimism. An algorithm is then provided for computing the pessimism, in the univariate case. This algorithm is general-purpose and works with any inclusion function. Next, we prove that the algorithm converges to the optimal bound under mild assumptions. Finally, we derive a second algorithm for automatically controlling the pessimism, i.e., determining where an inclusion function is accurate.
Keywords : Interval arithmetic
Type de document :
Article dans une revue
Reliable Computing, Springer Verlag, 2007, 13 (6), pp.489-504
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger
Contributeur : Gilles Chabert <>
Soumis le : jeudi 6 mai 2010 - 14:02:42
Dernière modification le : jeudi 20 janvier 2011 - 15:09:23
Document(s) archivé(s) le : jeudi 16 septembre 2010 - 12:58:00


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00481319, version 1


Gilles Chabert, Luc Jaulin. Computing the Pessimism of Inclusion Functions. Reliable Computing, Springer Verlag, 2007, 13 (6), pp.489-504. 〈hal-00481319〉



Consultations de la notice


Téléchargements de fichiers