
HAL Id: hal-00480859
https://hal.science/hal-00480859

Submitted on 24 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experience with ConSer: A System for Server Control
Through Fluid Modeling

Luc Malrait, Sara Bouchenak, Nicolas Marchand

To cite this version:
Luc Malrait, Sara Bouchenak, Nicolas Marchand. Experience with ConSer: A System for Server
Control Through Fluid Modeling. IEEE Transactions on Computers, 2011, 60 (7), pp.951-963.
�10.1109/TC.2010.164�. �hal-00480859�

https://hal.science/hal-00480859
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 7, JULY 2011 1

Experience with CONSER: A System for Server
Control Through Fluid Modeling
Luc Malrait,Sara Bouchenak, Member, IEEE, and Nicolas Marchand

Abstract—Server technology provides a means to support a wide range of online services and applications. However, their ad-hoc

configuration poses significant challenges to the performance, availability and economical costs of applications. In this paper, we

examine the impact of server configuration on the central tradeoff between service performance and availability. First, we present

a server model as a nonlinear continuous-time model using fluid approximations. Second, we develop concurrency control on

server systems for an optimal configuration. We primarily provide two control laws for two different QoS objectives. AM -C is an

availability-maximizing server control that achieves the highest service availability given a fixed performance constraint; and PM -C is

a performance-maximizing control law that meets a desired availability target with the highest performance. We then improve the

control with two additional multi-level laws. AA-PM -C is an availability-aware performance maximizing control, and PA-AM -C is a

performance-aware availability maximizing control. In this paper, we present CONSER, a novel system for the control of servers. We

evaluate CONSER’s fluid model and control techniques on the TPC-C industry-standard benchmark. Our experiments show that the

proposed techniques sucessfully guarantee performance and availability constraints.

Index Terms—Server systems, QoS, SLA, Performance, Availability, Modeling, Control.

✦

1 INTRODUCTION

1.1 Context and challenges

A large variety of Internet services exists, ranging from
web servers to e-mail servers [1], streaming media ser-
vices [2], e-commerce servers [3], and database sys-
tems [4]. These services are usually based on the classical
client-server architecture, where multiple clients concur-
rently access an online service provided by a server
(e.g. reading web pages, sending emails or buying the
content of a shopping cart). Such server systems face
varying workloads as shown in several studies [5], [6],
[7]. For instance, an e-mail server is likely to face a heav-
ier workload in the morning than in the rest of the day,
since people usually consult their e-mails when arriving
at work. In its extreme form, a heavy workload may
induce server thrashing and service unavailability, with
underlying economical costs. These costs are estimated
at up to US$ 2.0 million/hour for Telecom and Financial
companies [8], [9].

A classical technique used to prevent servers from
thrashing when the workload increases consists in lim-
iting client concurrency on servers – also known as the
multi-programming level (MPL) configuration parame-
ter of servers. This technique is a special case of admis-

• L. Malrait is with the NeCS Networked Controlled System Research
Group, INRIA – Gipsa Lab, Grenoble, France.
E-mail: Luc.Malrait@inria.fr

• S. Bouchenak is with the SARDES Distributed Systems Research Group,
INRIA – Grenoble Universities, France.
E-mail: Sara.Bouchenak@inria.fr

• N. Marchand is with the NeCS Networked Controlled System Research
Group, CNRS – Gipsa Lab, Grenoble, France.
E-mail: Nicolas.Marchand@inria.fr

sion control [10]. Obviously, servers’ MPL configuration
has a direct impact on server performance, availabil-
ity and quality-of-service (QoS). Existing approaches to
server control either rely on ad-hoc tuning and heuris-
tics without optimality guarantees [11], [12], [13], or
apply linear control theory which does unfortunately
not capture the intrinsic nonlinear behavior of server
systems [14], [15], or follow a queueing theory approach
where the system can be accurately modeled but at
the expense of a hard model calibration process which
makes it unwieldy to use [16], [17], [18]. We believe
that modeling server systems is necessary to provide
guarantees on the QoS. However, we argue that for
the effective deployment of server modeling, the models
must accurately capture the dynamics and the nonlinear
behavior of server systems while being simple to deploy
on existing systems.

1.2 Scientific contributions

In this paper, we apply a nonlinear continuous-time
control theory based on fluid approximations, in order to
model and control the QoS of server systems. The main
contribution of the paper is twofold:

• The design and implementation of a nonlinear
continuous-time model of server systems that is
simple to use since it involves very few external
parameters, and which still accurately captures the
dynamics of server systems as fluid flows.

• The design and implementation of nonlinear MPL
control for server systems. First, two variants of
control laws are proposed: AM -C is an availability-
maximizing optimal server control that achieves
the highest service availability given a fixed per-

IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 7, JULY 2011 2

formance constraint, and PM -C is a performance-
maximizing optimal server control that meets a
desired availability target with the highest perfor-
mance. Furthermore, two additional control laws are
proposed for applying performance and availability
optimization at multiple levels, the PA-AM -C and
AA-PM -C laws.

In this paper, we present the implementation and
evaluation of CONSER, a novel system for the control
of servers. An evaluation of CONSER was conducted
on the TPC-C application, an industry-standard bench-
mark, running on the PostgreSQL database server. A
wide range of application workload conditions was con-
sidered. The results of the experiments show that the
proposed techniques provide significant benefits on the
performance and the availability of the controlled system
compared to ad-hoc control solutions.

1.3 Paper roadmap

The remainder of the paper is organized as follows.
Section 2 gives an overview of the background. Section 3
presents our contribution in terms of fluid modeling of
server systems. Section 4 describes the validation of the
proposed model. Sections 5 and 6 respectively present
and evaluate the proposed AM -C and PM -C feedback
control laws for servers. Sections 7 and 8 describe and
evaluate the PA-AM -C and AA-PM -C control laws for
multi-level optimization. Section 9 describes the related
work. Finally, Section 10 draws our conclusions.

2 SERVER SYSTEMS

2.1 Definitions

We consider server systems such as database servers
and web servers that follow the client-server architecture
where servers provide clients with some online service,
such as on-line bookstore, or e-banking. Clients and
servers are hosted on different computers connected
through a communication network. Basically, a client
remotely connects to the server, sends it a request, the
server processes the request and builds a response that
is returned to the client before the connection is closed.
Multiple clients may concurrently access the same server.

2.1.1 Server workload

Server workload is characterized, on the one hand, by
the number of clients that try to concurrently access
a server (i.e. workload amount), and on the other hand,
by the nature of requests made by clients (i.e. workload
mix), e.g. read-only requests mix vs. read-write requests
mix. Workload amount is denoted as N while workload
mix is denoted as M . Furthermore, server workload
may vary over time. This corresponds to different client
behaviors at different times. For instance, an e-mail
service usually faces a higher workload amount in the
morning than in the rest of the day.

2.1.2 Server MPL control

Admission control is a classical technique to prevent a
server from thrashing [19]. MPL control is a special case
of admission control that consists in fixing a limit for
the maximum number of clients allowed to concurrently
access a server – the Multi-Programming Level (MPL)
configuration parameter of a server. Above this limit,
incoming client requests are rejected. Thus, a client re-
quest arriving at a server either terminates successfully
with a response to the client, or is rejected because of the
server’s MPL limit. Therefore, due to the MPL limit,
among the N clients that try to concurrently access a
server, only Ne clients actually access the server, with
Ne ≤ MPL. Servers’ MPL has a direct impact on the
quality-of-service (QoS), performance and availability of
servers as discussed below.

2.2 Quality-of-service of server systems

Several criteria may be considered to characterize service
performance and availability [13]. In the following, we
consider in particular two metrics that reflect perfor-
mance and availability from the user’s perspective [13],
namely latency and abandon rate.

2.2.1 Service performance – Latency

Client request latency is defined as the time needed
by the server to process a request. The average client
request latency is denoted as L. A low client request
latency (or latency, for short) is a desirable behavior
which reflects a reactive system. Figure 1 describes the
impact of server’s MPL value on client request latency,
when the workload amount varies 1. Here, three values
of MPL are considered, a low value (1), a medium
value (25) and a high value (75). The low MPL is very
restrictive regarding client concurrency on the server and
thus, keeps the server unloaded and implies a low client
request latency. In contrast, with a high MPL, when the
server workload amount increases client request latency
increases too.

2.2.2 Service availability – Abandon rate

Client request abandon rate is defined as the ratio be-
tween requests rejected due to server control and the
total number of requests received by a server. It is
denoted as α. A low client request abandon rate (or
abandon rate, for short) is a desirable behavior that
reflects service availability. Figure 2 describes the impact
of MPL on client request abandon rate 1. A low MPL
is very restrictive regarding client concurrency on the
server, and obviously implies a higher abandon rate
compared to a high MPL which accepts more clients.

1. Details on the underlying experimental testbed are given in Sec-
tion 4.1.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 7, JULY 2011 3

0 20 40 60 80 100
0

2

4

6

8

10

12

Workload amount (#clients)

La
te

nc
y

(s
)

MPL=1
MPL=25
MPL=75

Fig. 1. Impact of MPL on performance

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Workload amount (#clients)

A
ba

nd
on

 ra
te

 (%
)

MPL=1
MPL=25
MPL=75

Fig. 2. Impact of MPL on availability

2.2.3 Service Level Agreement

Service Level Agreement (SLA) is a contract negotiated
between clients and their service provider [20]. Service
performance and service availability are part of the
SLA (Service Level Agreement). The SLA specifies the
service level objectives (SLOs) such as the maximum
latency Lmax and the maximum abandon rate αmax to
be guaranteed by the server.

3 CONSER’S FLUID MODEL

We propose a fluid model which renders the dynamics
of server systems and captures characteristics that reflect
the state of servers in terms of performance and avail-
ability. Roughly speaking, fluid approximation consists
in looking at all the state variables of the system - that
are most integers - as real variables in R. This enables
to write the infinitesimal variation of characteristic state
variables of the system with respect to time. Those
variations can be seen as fluid flows, e.g. client request
flows in the present case; and a request queue on the
server is similar to a fluid tank [21]. The model is
therefore built as a set of differential equations - as for
most physical systems in mechanics, physics, electricity,
etc. - that describe the time evolution of state variables.

In the present case, we identify three state variables
that describe and have an impact on server perfor-
mance and availability, namely the current number of
concurrent client requests in the server Ne, the server

Server


























Ne

To

α

State:
MPL

Clients

N M
Ti

L

α

Control Input:

Outputs:

Exogenous

Inputs:

Fig. 3. Model inputs/outputs

throughput To and the client request abandon rate α.
State variables are usually influenced by themselves
and by input variables. The inputs of the proposed
model are: the server workload amount N and workload
mix M exogenous inputs, and the server MPL tunable
parameter that can be used to control the admission
to the server. In addition to input and state variables,
the model has output variables such as the average
latency L to process a client request on the server. In the
following, we describe the proposed fluid model through
the formulas of its state and output variables.

3.1 Model state variables

Among the N concurrent clients that try to connect to
a server, MPL control authorizes Ne concurrent clients
to actually enter the server, with 0 ≤ Ne ≤ N and
0 ≤ Ne ≤ MPL. Let cr(t, t + dt) be the number of
client connections created on the server between t and
t+dt, and cl(t, t+dt) be the number of client connections
closed on the server between t and t+dt. Thus, a balance
on Ne between t and t + dt gives

Ne(t + dt) = Ne(t) + cr(t, t + dt) − cl(t, t + dt) (1)

Let Ti be the incoming throughput of the server,
measured as the number of client connection demands
per second. It comes that the number of connections
created between t and t + dt is

cr(t, t + dt) = (1 − α(t)) · Ti(t) · dt (2)

where α is the abandon rate of the server.
Similarly, let To be the outgoing throughput of the

server, measured as the number of client requests a
server is able to handle per second. Thus, the number
of connections closed between t and t + dt is

cl(t, t + dt) = To(t) · dt (3)

Deriving from (1), (2) and (3), we have Ṅe, the deriva-
tive of Ne

Ṅe(t) = (1 − α(t)) · Ti(t) − To(t) (4)

Moreover, we assume that the system reaches a steady
state in a reasonably short period of time ∆; this is par-
ticularly reflected in state variables outgoing throughput
To and abandon rate α. During this short period of time,
the workload is relatively stable, which is consistent with

IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 7, JULY 2011 4

studies such as [7]. Thus, the dynamics of To and α can
be approximated by first order systems through their
derivatives as follows

Ṫo(t) = −
1

∆

(

To(t) − T̄o

)

α̇(t) = −
1

∆
(α(t) − ᾱ)

where T̄o and ᾱ are the steady state values of respectively
the outgoing throughput and the abandon rate of the
server. The next step naturally consists in finding the
expression of T̄o and ᾱ. A balance on the number of
served client requests (or outgoing requests) No gives

No(t + dt) = No(t) + sr(t, t + dt)

where sr(t, t + dt) is the number of served request
between t and t+dt. Since there are Ne concurrent clients
on the server and the average client request latency
is L, the number of served requests during dt will be
sr(t, t + dt) = dt

L
Ne. Thus, we get Ṅo = Ne

L
, that is

T̄o = Ne

L
which is an expression of Little’s law [22].

55 60 65 70 75 80

0

2

4

6

8

10

12

14

16

18

20

Workload amount (#clients)

A
ba

nd
on

 r
at

e
(%

)

 Real system

 Naive model

 Improved model

Fig. 4. Accuracy of modeled abandon rate

By definition, ᾱ is equal to zero if Ne is smaller than
MPL, and ᾱ is equal to 1−To

Ti

if Ne = MPL (see Figure 4,
naive model). However, the stochastic nature of the
client request arrival may lead to situations where the
measured average Ne is smaller than MPL but where
punctually, the number of clients that try to access the
server is actually higher than MPL, and thus, some
clients are rejected. This is illustrated in Figure 4 which
compares the actual measured abandon rate with the
naive estimation of the abandon rate, showing a mis-
match between the two 2 . In order to take this behavior
into account, we choose to write ᾱ = Ne

MPL
·

(

1 −
To

Ti

)

.

This renders that the probability to reject a client con-
nection is higher when the average Ne is close to MPL.
Figure 4 shows that this improved method provides a
more accurate estimation of the abandon rate. Finally, it

2. Details on the underlying experimental testbed are given in Sec-
tion 4.1.

follows that

Ṫo(t) = −
1

∆

(

To(t) −
Ne(t)

L(t)

)

(5)

α̇(t) = −
1

∆

(

α(t) −
Ne(t)

MPL(t)
·

(

1 −
To(t)

Ti(t)

))

(6)

3.2 Model output variables

Now that we have defined the model state variables, the
last step consists in expressing the model output variable
latency L. Latency obviously depends on the global load
of the server, i.e. the workload mix M and the number
of concurrent clients on the server Ne. Figure 5 describes
the evolution of latency L as a function of Ne, for a
given workload mix 2. One can see that a second degree
polynomial in Ne is a good approximation of the latency
L. Thus:

L(Ne, M, t) = a(M, t)N2
e + b(M, t)Ne + c(M, t) (7)

The parameter c is positive as it represents the zero-load
latency. a and b are also positive since they model the
processing time of requests.

0 10 20 30 40 50 60 70
0

5

10

15

20

25

N
e

La
te

nc
y

(s
)

Fig. 5. Latency as a function of Ne

In summary, the proposed fluid model is given by
equations (4) to (7) that reflect the dynamics of the state
and outputs of server systems in terms of performance
and availability. Section 5 then describes the proposed
control techniques that build upon the fluid model in
order to guarantee service performance and availability
level objectives.

4 MODEL VALIDATION

This section first describes the environment that under-
lies our experiments, before presenting the results of the
evaluation of the proposed fluid model.

4.1 Experimental setup

The evaluation of the proposed fluid model has been
conducted using the TPC-C benchmark [23]. TPC-C is an
industry standard benchmark from the Transaction Pro-
cessing Council that models a realistic database server

IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 7, JULY 2011 5

application as a warehouse system where clients request
transactions on warehouses stored on a database server.
TPC-C comes with a client emulator which emulates a
set of concurrent clients that remotely send requests to
the database server. The TPC-C client emulator allows
to specify the number of concurrent clients to launch
(i.e. the workload amount N). It also specifies the client
think time, that is the interarrival time between two
consecutive client requests. We extended the client em-
ulator in order to be able, on the one hand, to vary the
workload amount N over time, and on the other hand,
to vary the workload mix M over time. For the latter
extension, we considered two mixes of workload, one
consisting of read-only requests, and another consisting
of read-write requests.

Our experiments have been conducted on a set of two
computers connected via a 100 Mb/s Ethernet LAN,
one computer dedicated to the database server and
another to the client emulator. The database server is
PostgreSQL 8.2.6 [4]. The proposed model was imple-
mented using an online monitoring of the system which
allows to maintain the state of the model. Well-known
Kalman filtering techniques were therefore applied [24].
Both client and server machines run Linux Fedora 7. The
server machine is a 3 GHz processor with 2GB RAM,
while the clients’ computer is a 2 GHz processor with
512MB RAM.

4.2 Real system vs. modeled system

We perform measurements to validate the accuracy of
the proposed fluid model and its ability to render the
dynamics of the system. In particular, we evaluate the
ability of the model to reflect the variation of the state
of the system when input variables such as the server
MPL and the workload amount N vary. The variation of
the state of the system is described by the state variables
Ne for the number of concurrent clients admitted in the
server, To for the outgoing throughput of the server, and
α for the client request abandon rate. Thus, for the same
set of input variables, the state reified by the model is
compared with the actual state of the real system.

Figure 6 describes the case of an open loop system
where the workload amount N trying to access the
database server is fixed (to 100 clients) and where the
MPL value of the server varies (see Figure 6(a)). Fig-
ures 6(b), 6(c) and 6(d) show the evolution over time
of respectively the number Ne of concurrent clients
admitted in the server, the outgoing throughput To and
the abandon rate α, for both the real system (+) and
the model (solid line). Results show that the model
accurately reflects the behavior of the real system. For
instance, we can observe a thrashing phenomenon of the
server when To decreases whereas Ne increases. And the
model is able to render that behavior, which would not
be possible without an overlinear term with respect to
Ne in Equation (7).

Figure 7 illustrates the case of a dynamic open loop
system where both the workload amount N and the

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

time (h)

N
MPL

(a) Varying MPL with a fixed workload amount

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

time (h)

N
e

(b) Admitted concurrent clients

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

time (h)

Th
ro

ug
hp

ut
 (r

eq
/s

)

(c) Throughput

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time (h)

re
je

ct
io

n
ra

te
 (%

)

(d) Abandon rate

Fig. 6. System behavior with a varying MPL and a fixed

workload amount – Real system (+) vs. modeled system

(solid line)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 7, JULY 2011 6

server MPL vary over time (see Figure 7(a)). Fig-
ures 7(b), 7(c) and 7(d) present the evolution over time
of respectively the number Ne of concurrent clients
admitted in the server, the outgoing throughput To and
the abandon rate α, for both the real system (+) and the
modeled system (solid line). Results show that the model
is able to render the behavior of the real system.

5 AM -C AND PM -C CONTROL LAWS

In the following, we study the tradeoff between the
performance and the availability of server systems, and
derive the optimal MPL control of server systems based
on the proposed fluid model, that is the optimal number
of concurrent clients admitted to the server with respect
to this tradeoff. In particular, we provide two variants
of control laws, namely AM -C and PM -C . AM -C is
an availability-maximizing optimal server MPL control
that achieves the highest service availability given a
fixed performance constraint. Symmetrically, PM -C is
a performance-maximizing optimal server MPL control
that meets a desired availability target with the highest
performance. In the present case, service availability is
measured as the client request acceptation rate (i.e. 1 -
α), and service performance is measured as the average
client request latency (i.e. L).

5.1 AM -C availability-maximizing control

AM -C aims at guaranteeing a tradeoff between server
performance and availability with the following proper-
ties:

(P1) the average client request latency does not exceed a
maximum latency Lmax, and

(P2) the abandon rate α is made as small as possible.

To that end, a feedback control law is proposed to
automatically adjust the MPL server control parameter
in order to satisfy this tradeoff. The basic idea behind
this law is to admit clients in such a way that the
average client request latency L is close (equal) to Lmax.
By construction, this maximizes the number of admitted
clients Ne, which induces a minimized abandon rate α.

A first approach could consist in solving Eq. (7) in such
a way that L = Lmax. Although accurately reflecting the
system, such an approach is unwieldy since it requires
the knowledge of accurate values of parameter a, b and
c in equation 7, through an online identification of these
parameters since the workload may change over time.

We propose another approach which avoids this online
identification of model’s parameters. It is obtained via a
simple input-output linearization technique in which the
considered output is latency L [25]. Roughly speaking,
the approach aims at determining how to control the
MPL value in such a way that

L̇ = − γ
L

(L − Lmax) (8)

As soon as γ
L

> 0, this will ensure the convergence
of L to its maximum Lmax. From Eq. (7), we have

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

time (h)

MPL

N

(a) Varying MPL and workload amount

0 1 2 3 4 5 6
−10

0

10

20

30

40

50

time (h)

N
e

(b) Admitted concurrent clients

0 1 2 3 4 5 6
−1

0

1

2

3

4

5

time (h)

Th
ro

ug
hp

ut
 (r

eq
/s

)

(c) Throughput

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time (h)

re
je

ct
io

n
ra

te
 (%

)

(d) Abandon rate

Fig. 7. System behavior with varying MPL and workload

amount – Real system (+) vs. modeled system (solid line)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 7, JULY 2011 7

L̇ = (2aNe + b) Ṅe. And since To and α reach a steady
state in a reasonably short period of time, To(t) = T̄o and
α(t) = ᾱ Therefore, with Eq. (4) we have

L̇ = (2aNe + b)

(

1 −
Ne

MPL

)

(

Ti − T̄o

)

(9)

As a result from Eq. (8) and (9), MPL should be
controlled as follows

MPL =
Ne

1 +
γ

L

(2aNe+b)(Ti−T̄o)
(L − Lmax)

To free ourselves from a and b, we choose to use
γ′

L
=

γ
L

(2aNe+b)(Ti−T̄o)
, which produces

MPL =
Ne

1 + γ′

L
(L − Lmax)

(10)

where γ′

L
> 0 is a tuning parameter. It follows that

with Eq. (8) and control described in (10), the dynamic
evolution of L is given by:

L̇ = −
(

γ′

L
(2aNe + b) (Ti − T̄o)

)

(L − Lmax)

Here again, L will converge to Lmax.
In summary, it is interesting to notice that the feedback

control law given in (10) will reflect one of the following
situations. If the current latency L is higher than Lmax,
property (P1) is not guaranteed and the control law
will produce an MPL as a decreased value of the
current number of admitted concurrent clients Ne (since
(1 + γ′

L
(L − Lmax)) > 1), which aims at meeting (P1).

Symmetrically, if L is lower than Lmax, property (P1)
holds but property (P2) may not hold, and the control
law will produce an MPL as an increased value of Ne

(since (1 + γ′

L
(L − Lmax)) < 1), which aims at meeting

(P2). Finally, if L is equal to Lmax, both properties (P1)
and (P2) hold.

Moreover, we observe that with the highest value of
γ

L
the MPL reaches its highest value while keeping the

latency near its authorized limit. Thus, with the AM -
C control law, the highest value of γ

L
to be used is

1/Lmax.

5.2 PM -C performance-maximizing control

Similarly, PM -C aims at guaranteeing the following
tradeoff between server performance and availability
where:

(P3) the client request abandon rate does not exceed a
given maximum abandon rate αmax,

(P4) with the lowest average client request latency.

In this context, (P4) will be ensured given (P3) iff the
MPL converges to the smallest value that guarantees
α ≤ αmax. Once again, we use an input-output
linearization approach, taking α as the output, to solve
the problem

α̇ = − γ
α
(α − αmax) (11)

with γ
α

> 0. Furthermore, since the workload remains
relatively stable during a short period of time, as stated
previously, Ṅe = 0. Then, from Eq. (4) and (6), we get

α = 1 −
To

Ti

α̇(t) = −
1

∆
α(t)(1 −

Ne(t)

MPL(t)
) (12)

Thus, from Eq. (11) and (12) and with the following
control applied to MPL, α will converge to αmax

MPL =
αNe

α − γ′

α
(α − αmax)

(13)

where γ′

α
= γ

α
∆.

We observe that with the highest value of γ
α

the MPL
reaches its highest value while keeping the abandon rate
under its authorized limit. Thus, with the PM -C control
law, the highest value of γ

α
to be used is 1/(1 − αmax).

6 AM -C AND PM -C EVALUATION

This section presents the results of the evaluation of the
implemented feedback controllers presented in Section 5
when applied to the PostgreSQL database server that
hosts the TPC-C database. The results of the experiments
conducted with the AM -C availability-maximizing con-
troller are first presented in Section 6.2, and the results of
the PM -C performance-maximizing controller are then
described in Section 6.3.

6.1 Experimental environment

We used the same experimental environment as the
one described in Section 4.1. The proposed controllers
were deployed as follows. A proxy-based approach was
followed to implement the AM -C and PM -C controllers
where a proxy stands in front of the database server to
implement online feedback server control. Moreover, the
CONSER-based controlled system is compared with two
base systems applying ad-hoc MPL control, that is ad-
hoc control 1 with a static MPL set to 25 and ad-hoc
control 2 with a static MPL at 40.

6.2 AM -C evaluation

In this section, we evaluate the proposed AM -
C availability-maximizing feedback controller presented
in Section 5.1. Here, we consider a performance con-
straint limiting the maximum average client request
latency to 8 s. The role of AM -C is thus to guarantee
that performance constraint while maximizing service
availability, through online feedback control of the server
MPL. We consider two scenari to evaluate this con-
troller, each one illustrating a variation of one of the
two exogeneous input variables of the system, i.e. the
first scenario considers a changing workload mix, and
the second scenario handles a varying workload amount
N .

IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 7, JULY 2011 8

6.2.1 Workload mix variation

Figure 8 describes the first scenario where the workload
mix varies from M1 to M2 twice (c.f. Figure 8(a)),
while the workload amount N is of 80 clients. The
workload mix M1 consists of read-only requests while
the workload mix M2 generates read-write requests.
The two mixes differ in their average request latency
as follows. With 10 concurrent clients in the server, the
average client request latency is 0.23s with mix M1
and 0.55s with mix M2. Figures 8(d), 8(b) and 8(c)
present the variation over time of respectively the server
MPL, the average client request latency and the client
request abandon rate. The figures compare the two base
systems using ad-hoc control 1 and ad-hoc control 2
with the CONSER-based controlled system. Notice that
the sudden change of MPL after the 10th, 20th and 30th
minutes corresponds to workload mix changes; this has
also an impact on latency and abandon rate.

Results demonstrate that the AM -C controller is able
to dynamically adjust MPL in order to guarantee the
latency performance constraint while keeping the ser-
vice availability to its maximum, with an abandon rate
minimized to 0% with M1 and to 10% in average with
M2. Whereas none of the two base systems with ad-hoc
control is able to guarantee the SLOs when the workload
varies. Here, compared to CONSER, a latency overhead
of up to 25% is induced by ad-hoc control 2 and an
abandon rate overhead of up to 28% results from ad-hoc
control 1.

6.2.2 Workload amount variation

Figure 9 presents another dynamics of the system, that
is the variation of the server workload amount over time
(c.f. Figure 9(a)) when the workload mix remains at M2.
Figures 9(d), 9(b) and 9(c) present the variation over
time of respectively the server MPL, the average client
request latency and the client request abandon rate, com-
paring the two base systems using ad-hoc control and
the CONSER-based controlled system. Notice that, due to
TPC-C client think time, the number of active clients at
any given time may be different from (i.e. lower than) the
actual load generated by TPC-C client emulator at that
time. Results show that the CONSER-based controlled
MPL is able to adjust its value to the optimal value so
that the performance constraint is guaranteed. Whereas
in the case of the system with ad-hoc control 1, the
latency grows up to 11.5 s, with an overhead of up to
44 % compared to CONSER. The system with ad-hoc
control 2 allows to guarantee the performance constraint
but the abandon rate grows up to 40 %, with an overhead
of up to 14 %.

In the CONSER-based controlled system, the abandon
rate is mainained at 0% with up to 70 clients. Then, the
abandon rate increases with the increase of concurrent
clients in the system, to attain its highest value when
the number of clients is maximum, in order to keep
latency below the target maximum latency. Notice that

0 5 10 15 20 25 30 35 40

1

2

W
or

kl
oa

d
m

ix

Time (min)

(a) Workload mix

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

Time (min)
La

te
nc

y
(s

)

Latency with ConSer
Latency with ad−hoc control 1
Latency with ad−hoc control 2
L

max

(b) Latency

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

Time (min)

A
ba

nd
on

 ra
te

 (%
)

Abandon rate with ConSer
Abandon rate with ad−hoc control 1
Abandon rate with ad−hoc control 2

(c) Abandon rate

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

Time (min)

M
P

L

MPL with ConSer
MPL with ad−hoc control 1
MPL with ad−hoc control 2

(d) MPL of controlled system

Fig. 8. System behavior upon workload mix variation –

AM -C -based controlled system vs. non-controlled sys-

tem

IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 7, JULY 2011 9

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

Time (min)

W
or

kl
oa

d
am

ou
nt

 (#
cl

ie
nt

s)

(a) Workload amount

0 10 20 30 40 50
0

2

4

6

8

10

12

14

Time (min)

La
te

nc
y

(s
)

Latency with ConSer
Latency with ad−hoc control 1
Latency with ad−hoc control 2
L

max

(b) Latency

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

Time (min)

A
ba

nd
on

 ra
te

 (%
)

Abandon rate with ConSer
Abandon rate with ad−hoc control 1
Abandon rate with ad−hoc control 2

(c) Abandon rate

0 10 20 30 40 50
0

10

20

30

40

50

60

70

Time (min)

M
P

L

MPL with ConSer
MPL with ad−hoc control 1
MPL with ad−hoc control 2

(d) MPL of controlled system

Fig. 9. System behavior upon workload amount variation

– AM -C -based controlled system vs. non-controlled sys-

tem

at the end of the experiment (between the 40th and 50th
minutes), it seems justifiable to have a high abandon
rate since latency attains its maximum authorized value
(c.f. Figure 9(d)) and client request rejection is necessary
at that time to guarantee the latency constraint.

6.3 PM -C evaluation

In this section, we evaluate the proposed PM -
C performance-maximizing feedback controller pre-
sented in Section 5.2. Here, we consider an availability
constraint limiting the maximum client request abandon
rate to 10%. The role of PM -C is thus to guarantee this
availability constraint while maximizing service perfor-
mance, through online feedback control of server MPL.

6.3.1 Workload mix variation

Figure 10 presents the variation of system behavior and
dynamic control when the exogeneous input variable of
workload mix M changes. In Figure 10(a), the workload
mix varies from M1 to M2 twice when the workload
amount N is of 80 clients. Figures 10(d), 10(b) and 10(c)
present the variation over time of respectively the server
MPL, the client request abandon rate and the average
client request latency, comparing the two base systems
using ad-hoc control with the CONSER-based controlled
system. Here again, we notice a sudden change in the
MPL when the workload mix suddenly changes, with an
impact on the latency and abandon rate.

Results demonstrate that the PM -C controller is able
to dynamically adjust MPL in order to meet the aban-
don rate constraint, although abandon rate is sensitive
to MPL control. Under this constraint, PM -C keeps
service performance to its maximum, with an average
latency minimized to 4 s with M1 and to 6 s with
M2. Whereas none of the two base systems with ad-hoc
control is able to guarantee the SLOs when the workload
varies. This results in an abandon rate overhead of up
to 250% with ad-hoc control 1, and a latency overhead
of up to 66% with ad-hoc control 2, compared to the
CONSER-based controlled system.

6.3.2 Workload amount variation

Figure 11 shows the variation of the system behavior
with a varying workload amount (c.f. Figure 11(a)) and
a constant workload mix M1. Figures 11(d), 11(c) and
11(b) present the variation over time of respectively the
server MPL, the average client request latency and the
client request abandon rate, comparing two base systems
using ad-hoc control with the CONSER-based controlled
system. Results show that the AM -C controller is able
to adjust the MPL so that the availability constraint
is met, although we can notice that abandon rate is
sentitive to MPL control. During the first 15 minutes
of the experiment, the CONSER-based controlled system
does not reject any request since too few clients are
trying to connect to the server. Compared to CONSER-
based control, the base system with ad-hoc control 1

IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 7, JULY 2011 10

0 5 10 15 20 25 30 35 40

1

2
W

or
kl

oa
d

m
ix

Time (min)

(a) Workload mix

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

Time (min)

A
ba

nd
on

 ra
te

 (%
)

Abandon rate with ConSer
Abandon rate with ad−hoc control 1
Abandon rate with ad−hoc control 2
α

max

(b) Abandon rate

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

Time (min)

La
te

nc
y

(s
)

Latency with ConSer
Latency with ad−hoc control 1
Latency with ad−hoc control 2

(c) Latency

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

Time (min)

M
P

L

MPL with ConSer
MPL with ad−hoc control 1
MPL with ad−hoc control 2

(d) MPL of controlled system

Fig. 10. System behavior upon workload mix variation

– PM -C -based controlled system vs. non-controlled sys-

tem

(respectively ad-hoc control 2) increases abandon rate
with a factor of up to 4 (respectively 3). In terms of
latency, these two ad-hoc systems induce an overhead of
up to 40 % (respectively 32%) compared to the CONSER-
based controlled system.

7 AA-PM -C AND PA-AM -C CONTROL

LAWS

7.1 AA-PM -C availability-aware performance-

maximizing control

AA-PM -C is another MPL control law that extends the
previously presented PM -C law. Indeed, in section 6.3,
Figure 11 illustrates the behavior of PM -C where the
client request abandon rate is kept below a service level
limit while the request latency is minimized. However,
this may result in a situation where client request latency
has a reasonable value (i.e. a value below a given service
level limit) whereas client requests are rejected. For
instance, Figures 11(b) and 11(c) respectively show that
between the 14th and 37th minutes of the experiment,
10% of client requests are rejected while request latency
is below 8 seconds. During that period of time, and if
availability is prioritized over performance, availability
could be maximized (i.e. rejection rate minimized) as
long as performance meets a given service level objective
(i.e. request latency is below a limit). Then, as long as
availability objective is guaranteed (i.e. abandon rate is
below a limit), performance is maximized.

Thus, AA-PM -C aims at guaranteeing the following
tradeoff between server performance and availability,
with a priority to availability as follows:

(P5) the client request abandon rate does not exceed a
given maximum abandon rate αmax,

(P6) furthermore, the client request abandon rate is min-
imized as long as request latency does not exceed a
given maximum latency Lmax, and

(P7) the request latency is minimized as long as abandon
rate reaches its limit αmax.

Therefore, the AA-PM -C control law takes into ac-
count two limits, a request abandon rate limit and a
request latency limit. This law consists in applying the
AM -C -based control when the latency is below its limit.
Then if the load is too heavy to guarantee both perfor-
mance and availability constraints, AA-PM -C switches
to the PM -C -based control.

7.2 PA-AM -C performance-aware availability-

maximizing control

Similarly, PA-AM -C extends the previously proposed
AM -C law with service level limits for both perfor-
mance and availability, and a priority of performance
over availability. Thus, PA-AM -C aims at guaranteeing
the following tradeoff between server performance and
availability:

(P8) the client request latency does not exceed a given
maximum latency Lmax,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 7, JULY 2011 11

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

Time (min)

W
or

kl
oa

d
am

ou
nt

 (#
cl

ie
nt

s)

(a) Workload amount

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

Time (min)

A
ba

nd
on

 ra
te

 (%
)

Abandon rate with ConSer
Abandon rate with ad−hoc control 1
Abandon rate with ad−hoc control 2
α

max

(b) Abandon rate

0 10 20 30 40 50
0

2

4

6

8

10

12

14

Time (min)

La
te

nc
y

(s
)

Latency with ConSer
Latency with ad−hoc control 1
Latency with ad−hoc control 2

(c) Latency

0 10 20 30 40 50
0

10

20

30

40

50

60

70

Time (min)

M
P

L

MPL with ConSer
MPL with ad−hoc control 1
MPL with ad−hoc control 2

(d) MPL of controlled system

Fig. 11. System behavior upon workload amount varia-

tion – PM -C -based controlled system vs. non-controlled

system

(P9) moreover, the client request latency is minimized
as long as request abandon rate does not exceed a
given maximum abandon rate αmax, and

(P10) the request abandon rate is minimized when the
latency reaches its maximum authorized limit.

Thus, PA-AM -C consists in first applying the PM -C -
based control when the abandon rate is below its limit.
Then if the load is too heavy to guarantee both availabil-
ity and performance constraints, PA-AM -C switches to
the AM -C -based control.

8 AA-PM -C AND PA-AM -C EVALUATION

In the following, we present the results of the evalua-
tion of the AA-PM -C and PA-AM -C control laws and
show how they improve the behavior of CONSER with
respectively PM -C and AM -C (c.f. Section 6). We used
the same experimental environment as the one described
in Section 4.1. Here again, the proposed controllers are
implemented following a proxy-based approach where
AA-PM -C and PA-AM -C controllers stand in front of
the database server to apply online feedback control.

8.1 AA-PM -C evaluation

Figure 12 presents the results of the experiments con-
ducted with AA-PM -C when the workload amount
varies between 1 and 100 clients and the workload mix is
M2. Here, AA-PM -C specifies that abandon rate should
not exceed αmax = 10% and is reduced as long as latency
remains below Lmax = 8 s.

Figures 12(b) and 12(c) show, for instance, that during
the first 35 minutes of the experiment the abandon rate
with AA-PM -C is reduced compared to PM -C and does
not exceed 5%, as long as latency does not exceed Lmax.
When latency increases above Lmax, AA-PM -C provides
similar behavior as PM -C .

8.2 PA-AM -C evaluation

Experiments were conducted with PA-AM -C and are
presented in Figure 13. They show how to improve
the behavior of AM -C . Here, PA-AM -C specifies that
latency should not exceed Lmax = 8 s and is reduced as
long as abandon rate remains below αmax = 10%.

Figure 13(a) shows that the server workload amount
is increasing over time while the workload mix remains
at M2. Figures 13(b) and 13(c) show that during the first
40 minutes of the experiment the abandon rate with PA-
AM -C remains below 10% while the latency is slightly
improved compared to AM -C . Here, latency is reduced
by up to 54%.

8.3 CONSER performance overhead

In addition to the previous evaluations, we conducted
experiments to measure the performance overhead that
may be induced by CONSER due to online monitoring. In
the following, we compare a baseline system that does

IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 7, JULY 2011 12

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

Time (min)

W
or

kl
oa

d
am

ou
nt

 (#
cl

ie
nt

s)

(a) Workload mix

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

Time (min)

A
ba

nd
on

 ra
te

 (%
)

Abandon rate with PM−C
Abandon rate with AA−AM−C

(b) Abandon rate

0 10 20 30 40 50
0

2

4

6

8

10

12

14

Time (min)

La
te

nc
y

(s
)

Latency with PM−C
Latency with AA−PM−C
L

max

(c) Latency

0 10 20 30 40 50
0

10

20

30

40

50

60

70

Time (min)

M
P

L

(d) MPL of controlled system with AA-PM -C

Fig. 12. System behavior upon workload amount vari-

ation – AA-PM -C -based controlled system vs. PM -C -

based controlled system

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

Time (min)

W
or

kl
oa

d
am

ou
nt

 (#
cl

ie
nt

s)

(a) Workload mix

0 10 20 30 40 50
0

2

4

6

8

10

12

14

Time (min)
La

te
nc

y
(s

)

Latency with AM−C
Latency with PA−AM−C
L

max

(b) Latency

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

Time (min)

A
ba

nd
on

 ra
te

 (%
)

Abandon rate with AM−C
Abandon rate with PA−AM−C

(c) Abandon rate

0 10 20 30 40 50
0

10

20

30

40

50

60

70

Time (min)

M
P

L

(d) MPL of controlled system with PA-AM -C

Fig. 13. System behavior upon workload amount vari-

ation – PA-AM -C -based controlled system vs. AM -C -

based controlled system

IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 7, JULY 2011 13

not apply control with a CONSER-based system. Both
systems run the TPC-C application with workload mix
M2 and 80 clients. Table 8.3 presents the results of this
evaluation which clearly show that CONSER does not
induce perceptible overhead on the application’s request
latency, memory usage and cpu usage.

Baseline system CONSER-based system
request latency 7 s 7 s

cpu usage 2% 2%
memory usage 98% 98%

TABLE 1

Performance overhead

9 RELATED WORK

This article builds upon our previous work on control of
server system performance and availability, which intro-
duced the design principles of AM -C and PM -C server
control laws [26]. Here, we describe our experience with
the CONSER server control prototype and, its extension
with two additional control laws for multi-level opti-
mization, at performance and availability levels, namely
PA-AM -C and AA-PM -C . We validate CONSER in a
wide range of application workload conditions, and
explore the parameter space for control accuracy and
control convergence time.

Previous work has noted that system configuration is
a crucial issue for the performance and availability of
server systems [27], [28]. Much related work has been
done in the area of system QoS management (see [19]
for a good overview), investigating techniques such as
session-based admission control [29], service degrada-
tion [30], service differentiation [31] and request schedul-
ing [32]. In the following, we briefly overview the work
related to admission control, and particularly MPL con-
trol, for server system management. While the improve-
ment of server performance and availability is usually
achieved by system administrators using ad-hoc tun-
ing [11], [12], new approaches tend to appear to ease the
management of such systems. Menascé et. al. propose
a heuristic for the management of the QoS of servers
through the determination of the multi-programming
level (MPL) of servers using the hill-climbing optimiza-
tion technique [13]. Although performing well in a va-
riety of applications, hill-climbing does not guarantee
optimality. In [32], a similar technique is applied; how-
ever the MPL is determined offline and thus, does not
adapt to changing workloads. Other solutions to MPL
identification were proposed specifically to some server
technologies, such as transactional servers [33]. Other
approaches aim at modeling the system in order to char-
acterize its capacity. In [34], a simulation-based study is
conducted and an analytic model is proposed to adjust
server MPL according to changing workloads. However,
this model is restricted to performance functions with a
parabola shape and thus, does not apply to criteria such
as request latency and abandon rate that usually underly
service level objectives (SLOs) as perceived by clients.

Other works aiming at applying control theory to
server systems appeared in the last decade. A first
approach consists in applying well-known linear control
theory on servers modeled as SISO (single-input single-
output) or MIMO (multiple-inputs multiple-outputs)
black-boxes [14], [15]. Nevertheless, due to the intrinsic
non-linear behavior of these systems, linear control the-
ory does not provide much success. Other approaches
are based on non-linear models derived from queuing
theory [16], [17] with a theoretical proposal in [35],
[36], [18]. The resulting models interestingly predict the
performance of the system, but this is obtained at the ex-
pense of a hard calibration of model parameters in order
to provide accurate results. [37], [38] are other examples
of the application of queuing theory models, however,
they are restricted to the control of performance and do
not consider availability contraints.

The proposed CONSER system differs from the pre-
vious works in many respects. It applies control theory
based on fluid approximation, which results in a simpler
non-linear model with very few external parameters.
Fluid approximation is successfully used to model and
control various systems in other areas such as car flow
control and population models. In the present work,
we apply it to model and control server systems, and
show how this allows to provide combined guarantees
on service performance and service availability.

10 CONCLUSION

This paper presents the design, implementation and
evaluation of CONSER, a novel system with a nonlinear
continuous-time model based on the fluid flow control
theory, upon which server control is derived for server
configuration. Two variants of control are primarily
proposed for two different QoS objectives. AM -C is
an availability-maximizing optimal server MPL control
that achieves the highest service availability given a
fixed performance constraint. PM -C is a performance-
maximizing optimal server MPL control that meets a
desired availability target with the highest performance.
Two additional laws are proposed for multi-level control.
AA-PM -C is an availability-aware performance maxi-
mizing control, and PA-AM -C is a performance-aware
availability maximizing control. Our experiments show
that the proposed techniques improve performance by
up to 30 % while guaranteeing availability constraints.

While this paper concentrates on QoS metrics such
as client request latency and abandon rate, we believe
that both the proposed modeling and control techniques
may apply to other metrics, such as server throughput.
Although the proposed modeling and server control
laws were applied to a database server, we believe
that they could be easily applied to any sever system
where MPL control holds (e.g. web servers, application
servers, etc.). We also believe that the proposed control
technique could be combined to other techniques such
as service differentiation and degradation. Furthermore,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 7, JULY 2011 14

we are interested in how these modeling and control
techniques can be applied to distributed systems.

REFERENCES

[1] Sendmail.org, 2007, http://www.sendmail.org/.
[2] Apple Inc., “QuickTime Streaming Server,” 2007,

http://www.apple.com/quicktime/streamingserver/.
[3] Amazon.com Inc, 2007, http://www.amazon.com/.
[4] PostgreSQL, 2008, http://www.postgresql.org/.
[5] M. Arlitt and C. L. Williamson, “Web server workload charac-

terization: the search for invariants,” SIGMETRICS Perform. Eval.
Rev., vol. 24, no. 1, pp. 126–137, 1996.

[6] J. A. Dilley, “Web Server Workload Characterization ,” HP Labo-
ratories, Tech. Rep. HPL-96-160, Dec. 1996.

[7] M. Arlitt and T. Jin, “Workload Characterization of the 1998 World
Cup Web Site,” HP Laboratories Palo Alto, Tech. Rep. HPL-1999-
35(R.1), Sep. 1999.

[8] Iron Mountain, “The Business Case for Disaster Recovery
Planning: Calculating the Cost of Downtime,” 2001,
http://www.ironmountain.com/dataprotection/resources/
CostOfDowntimeIrnMtn.pdf.

[9] North American Systems International Inc., “The True Cost of
Downtime,” 2008, http://www.nasi.com/downtime cost.php.

[10] J. Hyman, A. A. Lazar, and G. Pacifici, “Joint Scheduling and
Admission Control for ATS-based Switching Nodes,” in ACM
SIGCOMM), Baltimore, MA, Aug. 1992.

[11] M. Brown, “Optimizing Apache Server Performance,” Feb. 2008,
http://www.serverwatch.com/tutorials/article.php/3436911.

[12] Microsoft, “Optimizing Database Perfor-
mance,” http://msdn.microsoft.com/en-
us/library/aa273605(SQL.80).aspx.

[13] D. A. Menascé, D. Barbara, and R. Dodge, “Preserving QoS of
E-Commerce Sites Through Self-Tuning: A Performance Model
Approach,” in ACM Conference on Electronic Commerce, Tampa, FL,
Oct. 2001.

[14] S. Parekh and N. Gandhi and J. Hellerstein and D. Tilbury and T.
Jayram and J. Bigus, “Using Control Theory to Achieve Service
Level Objectives In Performance Management,” Real-Time Syst.,
vol. 23, no. 1-2, pp. 127–141, 2002.

[15] Y. Diao, N. Gandhi, J. Hellerstein, S. Parekh, and D. Tilbury,
“Using MIMO feedback control to enforce policies for interrelated
metrics with application to the Apache Web server,” Network
Operations and Management Symposium, 2002.

[16] D. Tipper and M. Sundareshan, “Numerical methods for mod-
eling computer networks under nonstationary conditions,” IEEE
Journal on Selected Areas in Communications, vol. 8, no. 9, pp. 1682–
1695, Dec. 1990.

[17] W.-P. Wang, D. Tipper, and S. Banerjee, “A simple approximation
for modeling nonstationary queues,” IEEE INFOCOM, Mar. 1996.

[18] A. Robertsson, B. Wittenmark, M. Kihl, and M. Andersson, “Ad-
mission control for web server systems - design and experimental
evaluation,” 43rd IEEE Conference on Decision and Control, Dec.
2004.

[19] J. Guitart, J. Torres, and E. Ayguadé, “A survey on performance
management for internet applications,” Concurr. Comput. : Pract.
Exper., vol. 22, no. 1, pp. 68–106, 2010.

[20] J. Lee and R. Ben-Natan, Integrating Service Level Agreements.
Wiley, 2002.

[21] T. Abdelzaher, Y. Lu, R. Zhang, and D. Henriksson, “Practical
application of control theory to Web services,” American Control
Conference, Jun. 2004.

[22] J. D. C. Little, “A proof for the queueing formula L = λ W,”
Operation Research, vol. 9, pp. 383–387, 1961.

[23] TPC-C, “Tpc transaction processing performance council,” 2008,
http://www.tpc.org/tpcc/.

[24] R. E. Kalman, “A New Approach to Linear Filtering and Predic-
tion Problems,” Transactions of the ASME–Journal of Basic Engineer-
ing, vol. 82, no. 1, pp. 35–45, 1960.

[25] H. Khalil, Nonlinear Systems. Prentice Hall, 2002.
[26] L. Malrait, S. Bouchenak, and N. Marchand, “Fluid Modeling and

Control for Server System Performance and Availability,” in 39th
Annual IEEE International Conference on Dependable Systems and
Networks (DSN 2009), Estoril, Lisbon, Portugal, Jun. 2009.

[27] C. Loosley, F. Douglas, and A. Mimo, High-Performance
Client/Server. John Wiley & Sons, Nov. 1997.

[28] E. Marcus and H. Stern, Blueprints for High Availability. Wiley,
Sep. 2003.

[29] L. Cherkasova and P. Phaal, “Session-based admission control: A
mechanism for peak load management of commercial web sites,”
IEEE Trans. Comput., vol. 51, no. 6, pp. 669–685, 2002.

[30] T. F. Abdelzaher and N. Bhatti, “Web content adaptation to
improve server overload behavior,” Comput. Netw., vol. 31, no.
11-16, pp. 1563–1577, 1999.

[31] T. F. Abdelzaher, K. G. Shin, and N. Bhatti, “Performance guaran-
tees for web server end-systems: A control-theoretical approach,”
IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 1, pp. 80–96, 2002.

[32] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel, “A Method
for Transparent Admission Control and Request Scheduling in
E-Commerce Web Sites,” in 13th international conference on World
Wide Web, New York, NY, May 2004.

[33] B. Schroeder, M. Harchol-Balter, A. Iyengar, E. Nahum, and
A. Wierman, “How to determine a good multi-programming level
for external scheduling,” in 22nd International Conference on Data
Engineering, Atlanta, GA, Apr. 2006.

[34] H.-U. Heiss and R. Wagner, “Adaptive Load Control in Transac-
tion Processing Systems,” in 17th International Conference on Very
Large Data Bases, San Francisco, CA, 1991.

[35] M. Kihl, A. Robertsson, and B. Wittenmark, “Analysis of admis-
sion control mechanisms using non-linear control theory,” 8th
IEEE International Symposium on Computers and Communication, pp.
1306–1311 vol.2, Jul. 2003.

[36] M. Kihl, “Performance Modelling and Control of Server Systems
Using Non-Linear Control Theory,” in 18th International Teletraffic
Congress, Berlin, Germany, Sep. 2003.

[37] A. Kamra, “Yaksha: A self-tuning controller for managing the
performance of 3-tiered web sites,” in In International Workshop
on Quality of Service (IWQoS, 2004, pp. 47–56.

[38] X. Liu, J. Heo, and L. Sha, “Adaptive control of multi-tiered
web application using queueing predictor,” in in: 10th IEEE/IFIP
Network Operations and Management Symposium (NOMS 2006, 2006.

Luc Malrait is a PhD candidate in Control at
Grenoble Institute of Technology and conducts
his research at INRIA and Gipsa-Lab. His re-
search focuses on applying control theory to
server systems. He received his MS in control
engineering from Grenoble Institute of Technol-
ogy in 2007.

Sara Bouchenak is Associate Professor in com-
puter science at Grenoble University since 2004.
She conducts research at INRIA and LIG Labo-
ratory, focusing on highly-available, dependable
and manageable distributed systems. Prior to
that, she worked at EPFL, Switzerland, in 2003.
Sara Bouchenak is an IEEE member, an ACM
EuroSys member, and an officer of the French
chapter of the ACM-SIGOPS. She received her
PhD in computer science from the Grenoble
Institute of Technology in 2001, and her MS in

computer science from Grenoble University in 1998.

Nicolas Marchand is Researcher at CNRS,
France. His research interests focus on the con-
trol of server systems and systems on chips with
asynchronous interconnections. He received his
PhD in control from the Grenoble Institute of
Technology in 1999.

