Number of hidden states and memory: a joint order estimation problem for Markov chains with Markov regime

Abstract : This paper deals with order identification for Markov chains with Markov regime (MCMR) in the context of finite alphabets. We define the joint order of a MCMR process in terms of the number of states of the hidden Markov chain and the memory of the conditional Markov chain. We study the properties of penalized maximum likelihood estimators for the unknown order of an observed MCMR process, relying on information theoretic arguments. The novelty of our work relies in the joint estimation of two structural parameters. Furthermore, the different models in competition are not nested. In an asymptotic framework, we prove that a penalized maximum likelihood estimator is strongly consistent without prior bounds on and . We complement our theoretical work with a simulation study of its behaviour. We also study numerically the behaviour of the BIC criterion. A theoretical proof of its consistency seems to us presently out of reach for MCMR, as such a result does not yet exist in the simpler case where (that is for hidden Markov models).
Keywords : Mathematics
Type de document :
Article dans une revue
ESAIM: Probability and Statistics, EDP Sciences, 2009, 13, pp.38-50. <10.1051/ps:2007048>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00480190
Contributeur : Hal Peer <>
Soumis le : lundi 3 mai 2010 - 15:53:47
Dernière modification le : vendredi 10 février 2017 - 01:11:43
Document(s) archivé(s) le : jeudi 1 décembre 2016 - 00:17:49

Fichier

PEER_stage2_10.1051%2Fps%3A200...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Antoine Chambaz, Catherine Matias. Number of hidden states and memory: a joint order estimation problem for Markov chains with Markov regime. ESAIM: Probability and Statistics, EDP Sciences, 2009, 13, pp.38-50. <10.1051/ps:2007048>. <hal-00480190>

Partager

Métriques

Consultations de
la notice

103

Téléchargements du document

23