A. Aitken, 14-3-3 proteins: A historic overview, Seminars in Cancer Biology, vol.16, issue.3, pp.162-172, 2006.
DOI : 10.1016/j.semcancer.2006.03.005

D. Bridges and G. B. Moorhead, 14-3-3 proteins: a number of functions for a numbered protein. Sci STKE, pp.10-13, 2005.

D. L. Darling, J. Yingling, and A. Wynshaw-boris, Role of 14???3???3 Proteins in Eukaryotic Signaling and Development, Curr Top Dev Biol, vol.68, pp.281-315, 2005.
DOI : 10.1016/S0070-2153(05)68010-6

M. K. Dougherty and D. K. Morrison, Unlocking the code of 14-3-3, Journal of Cell Science, vol.117, issue.10, pp.1875-1884, 2004.
DOI : 10.1242/jcs.01171

H. Hermeking and A. Benzinger, 14-3-3 proteins in cell cycle regulation, Seminars in Cancer Biology, vol.16, issue.3, pp.183-192, 2006.
DOI : 10.1016/j.semcancer.2006.03.002

P. Mhawech, 14-3-3 proteins???an update, Cell Research, vol.160, issue.4, pp.228-236, 2005.
DOI : 10.1002/ijc.20492

K. Michelsen, H. Yuan, and B. Schwappach, Hide and run, EMBO reports, vol.21, issue.8, pp.717-722, 2005.
DOI : 10.1073/pnas.051630198

P. Rubio, M. Geraghty, K. M. Wong, B. H. Wood, N. T. Campbell et al., 14-3-3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation and trafficking, Biochemical Journal, vol.379, issue.2, pp.395-408, 2004.
DOI : 10.1042/bj20031797

G. Tzivion, V. S. Gupta, L. Kaplun, V. G. Balan, and H. Y. Steensma, 14-3-3 proteins as potential oncogenes, Seminars in Cancer Biology, vol.16, issue.3, pp.203-213, 2006.
DOI : 10.1016/j.semcancer.2006.03.004

E. Wilker and M. B. Yaffe, 14-3-3 Proteins???a focus on cancer and human disease, Journal of Molecular and Cellular Cardiology, vol.37, issue.3, pp.633-642, 2004.
DOI : 10.1016/j.yjmcc.2004.04.015

M. Morrice, N. A. Mackintosh, and C. , Differential 14-3-3-affinity capture reveals new downstream targets of PI 3-kinase signaling, Mol Cell Proteomics, vol.8, pp.2487-2499, 2009.

M. F. Yip, G. Ramm, M. Larance, K. L. Hoehn, M. C. Wagner et al., CaMKII-Mediated Phosphorylation of the Myosin Motor Myo1c Is Required for Insulin-Stimulated GLUT4 Translocation in Adipocytes, Cell Metabolism, vol.8, issue.5, pp.384-398, 2008.
DOI : 10.1016/j.cmet.2008.09.011

B. Kostelecky, A. T. Saurin, A. Purkiss, P. J. Parker, and N. Q. Mcdonald, Recognition of an intra-chain tandem 14-3-3 binding site within PKC??, EMBO reports, vol.265, issue.9, pp.983-989, 2009.
DOI : 10.1038/26766

C. Ottmann, S. Marco, N. Jaspert, C. Marcon, N. Schauer et al., Structure of a 14-3-3 Coordinated Hexamer of the Plant Plasma Membrane H+-ATPase by Combining X-Ray Crystallography and Electron Cryomicroscopy, Molecular Cell, vol.25, issue.3, pp.427-440, 2007.
DOI : 10.1016/j.molcel.2006.12.017

A. Aitken, 14-3-3 and its possible role in co-ordinating multiple signalling pathways, Trends in Cell Biology, vol.6, issue.9, pp.341-347, 1996.
DOI : 10.1016/0962-8924(96)10029-5

J. C. Obenauer, L. C. Cantley, and M. B. Yaffe, Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs, Nucleic Acids Research, vol.31, issue.13, pp.3635-3641, 2003.
DOI : 10.1093/nar/gkg584

. Licenced-copy, Copying is not permitted, except with prior permission and as allowed by law

M. B. Yaffe, K. Rittinger, S. Volinia, P. R. Caron, A. Aitken et al., The Structural Basis for 14-3-3:Phosphopeptide Binding Specificity, Cell, vol.91, issue.7, pp.961-971, 1997.
DOI : 10.1016/S0092-8674(00)80487-0

G. Rena, A. R. Prescott, S. Guo, P. Cohen, and T. G. Unterman, Roles of the forkhead in rhabdomyosarcoma (FKHR) phosphorylation sites in regulating 14-3-3 binding, transactivation and nuclear targetting, Biochemical Journal, vol.354, issue.3, pp.605-612, 2001.
DOI : 10.1042/bj3540605

A. Wynshaw-boris and M. J. Gambello, LIS1 and dynein motor function in neuronal migration and development, Genes & Development, vol.15, issue.6, pp.639-651, 2001.
DOI : 10.1101/gad.886801

T. Obsil, R. Ghirlando, D. C. Klein, S. Ganguly, and F. Dyda, Crystal Structure of the 14-3-3??:Serotonin N-Acetyltransferase Complex, Cell, vol.105, issue.2, pp.257-267, 2001.
DOI : 10.1016/S0092-8674(01)00316-6

J. A. Ubersax, J. E. Ferrell, and . Jr, Mechanisms of specificity in protein phosphorylation, Nature Reviews Molecular Cell Biology, vol.298, issue.7, pp.530-541, 2007.
DOI : 10.1038/nrm2203

J. Y. Han, E. Y. Jeong, Y. S. Kim, G. S. Roh, H. J. Kim et al., C-jun N-terminal kinase regulates the interaction between 14-3-3 and Bad in ethanol-induced cell death, Journal of Neuroscience Research, vol.22, issue.14, pp.3221-3229, 2008.
DOI : 10.1002/jnr.21759

M. Salvi, S. Sarno, L. Cesaro, H. Nakamura, and L. A. Pinna, Extraordinary pleiotropy of protein kinase CK2 revealed by weblogo phosphoproteome analysis, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1793, issue.5, pp.847-859, 2009.
DOI : 10.1016/j.bbamcr.2009.01.013

R. Linding, L. J. Jensen, A. Pasculescu, M. Olhovsky, K. Colwill et al., NetworKIN: a resource for exploring cellular phosphorylation networks, Nucleic Acids Research, vol.36, issue.Database, pp.695-699, 2008.
DOI : 10.1093/nar/gkm902

G. Manning, D. B. Whyte, R. Martinez, T. Hunter, and S. Sudarsanam, The Protein Kinase Complement of the Human Genome, Science, vol.298, issue.5600, pp.1912-1934, 2002.
DOI : 10.1126/science.1075762

D. M. Martin, D. Miranda-saavedra, and G. J. Barton, Kinomer v. 1.0: a database of systematically classified eukaryotic protein kinases, Nucleic Acids Research, vol.37, issue.Database, pp.244-250, 2009.
DOI : 10.1093/nar/gkn834

J. E. Harthill, S. E. Meek, N. Morrice, M. W. Peggie, J. Borch et al., Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase ??5 in response to 2-deoxyglucose, The Plant Journal, vol.461, issue.2, pp.211-223, 2006.
DOI : 10.1111/j.1365-313X.2006.02780.x

A. Bronisz, S. M. Sharma, R. Hu, J. Godlewski, G. Tzivion et al., Microphthalmia-associated Transcription Factor Interactions with 14-3-3 Modulate Differentiation of Committed Myeloid Precursors, Molecular Biology of the Cell, vol.17, issue.9, pp.3897-3906, 2006.
DOI : 10.1091/mbc.E06-05-0470

M. L. Miller, L. J. Jensen, F. Diella, C. Jorgensen, M. Tinti et al., Linear Motif Atlas for Phosphorylation-Dependent Signaling, Science Signaling, vol.1, issue.35, pp.2-33, 2008.
DOI : 10.1126/scisignal.1159433

L. Bogre, L. Okresz, R. Henriques, and R. G. Anthony, Growth signalling pathways in Arabidopsis and the AGC protein kinases, Trends in Plant Science, vol.8, issue.9, pp.424-431, 2003.
DOI : 10.1016/S1360-1385(03)00188-2

A. Champion, M. Kreis, K. Mockaitis, A. Picaud, and Y. Henry, Arabidopsis kinome: after the casting, Functional & Integrative Genomics, vol.4, issue.3, pp.163-187, 2004.
DOI : 10.1007/s10142-003-0096-4

. Licenced-copy, Copying is not permitted, except with prior permission and as allowed by law, p.35

D. Miranda-saavedra and G. J. Barton, Classification and functional annotation of eukaryotic protein kinases, Proteins: Structure, Function, and Bioinformatics, vol.436, issue.Part 6, pp.893-914, 2007.
DOI : 10.1002/prot.21444

S. Basu, N. F. Totty, M. S. Irwin, M. Sudol, and J. Downward, Akt Phosphorylates the Yes-Associated Protein, YAP, to Induce Interaction with 14-3-3 and Attenuation of p73-Mediated Apoptosis, Molecular Cell, vol.11, issue.1, pp.11-23, 2003.
DOI : 10.1016/S1097-2765(02)00776-1

J. Dong, G. Feldmann, J. Huang, S. Wu, N. Zhang et al., Elucidation of a Universal Size-Control Mechanism in Drosophila and Mammals, Cell, vol.130, issue.6, pp.1120-1133, 2007.
DOI : 10.1016/j.cell.2007.07.019

B. Zhao, X. Wei, W. Li, R. S. Udan, Q. Yang et al., Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control, Genes & Development, vol.21, issue.21, pp.2747-2761, 2007.
DOI : 10.1101/gad.1602907

B. Coblitz, S. Shikano, M. Wu, S. B. Gabelli, L. M. Cockrell et al., C-terminal Recognition by 14-3-3 Proteins for Surface Expression of Membrane Receptors, Journal of Biological Chemistry, vol.280, issue.43, pp.36263-36272, 2005.
DOI : 10.1074/jbc.M507559200

B. Coblitz, M. Wu, S. Shikano, and M. Li, C-terminal binding: An expanded repertoire and function of 14-3-3 proteins, FEBS Letters, vol.274, issue.6, pp.1531-1535, 2006.
DOI : 10.1016/j.febslet.2006.02.014

D. Sliva, M. Gu, Y. X. Zhu, J. Chen, S. Tsai et al., 14-3-3?? interacts with the ??-chain of human interleukin 9 receptor, Biochemical Journal, vol.345, issue.3, pp.741-747, 2000.
DOI : 10.1042/bj3450741

I. Bermudez and M. Moroni, Phosphorylation and Function of ??4??2 Receptor, Journal of Molecular Neuroscience, vol.30, issue.1-2, pp.97-98, 2006.
DOI : 10.1385/JMN:30:1:97

J. Rong, S. Li, G. Sheng, M. Wu, B. Coblitz et al., 14-3-3 Protein Interacts with Huntingtin-associated Protein 1 and Regulates Its Trafficking, Journal of Biological Chemistry, vol.282, issue.7, pp.4748-4756, 2007.
DOI : 10.1074/jbc.M609057200

S. Ganguly, J. L. Weller, A. Ho, P. Chemineau, B. Malpaux et al., Melatonin synthesis: 14-3-3-dependent activation and inhibition of arylalkylamine N-acetyltransferase mediated by phosphoserine-205, Proceedings of the National Academy of Sciences, vol.102, issue.4, pp.1222-1227, 2005.
DOI : 10.1073/pnas.0406871102

H. Fu, J. Coburn, and R. J. Collier, The eukaryotic host factor that activates exoenzyme S of Pseudomonas aeruginosa is a member of the 14-3-3 protein family., Proceedings of the National Academy of Sciences, vol.90, issue.6, pp.2320-2324, 1993.
DOI : 10.1073/pnas.90.6.2320

H. Seimiya, H. Sawada, Y. Muramatsu, M. Shimizu, K. Ohko et al., Involvement of 14-3-3 proteins in nuclear localization of telomerase, The EMBO Journal, vol.19, issue.11, pp.2652-2661, 2000.
DOI : 10.1093/emboj/19.11.2652

. Licenced-copy, Copying is not permitted, except with prior permission and as allowed by law, p.50

A. Sumioka, S. Nagaishi, T. Yoshida, A. N. Lin, M. Miura et al., Role of 14-3-3?? in FE65-dependent Gene Transactivation Mediated by the Amyloid ??-Protein Precursor Cytoplasmic Fragment, Journal of Biological Chemistry, vol.280, issue.51, pp.42364-42374, 2005.
DOI : 10.1074/jbc.M504278200

X. Yang, W. H. Lee, F. Sobott, E. Papagrigoriou, C. V. Robinson et al., Structural basis for protein-protein interactions in the 14-3-3 protein family, Proceedings of the National Academy of Sciences, vol.103, issue.46, pp.17237-17242, 2006.
DOI : 10.1073/pnas.0605779103

D. M. Bustos and A. A. Iglesias, Intrinsic disorder is a key characteristic in partners that bind 14-3-3 proteins, Proteins: Structure, Function, and Bioinformatics, vol.273, issue.26, pp.35-42, 2006.
DOI : 10.1002/prot.20888

C. J. Oldfield, J. Meng, J. Y. Yang, M. Q. Yang, V. N. Uversky et al., Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners, BMC Genomics, vol.9, issue.Suppl 1, pp.1-54, 2008.
DOI : 10.1186/1471-2164-9-S1-S1

J. Silhan, P. Vacha, P. Strnadova, J. Vecer, P. Herman et al., 14-3-3 Protein Masks the DNA Binding Interface of Forkhead Transcription Factor FOXO4, Journal of Biological Chemistry, vol.284, issue.29, 2009.
DOI : 10.1074/jbc.M109.002725

S. Chen, J. Murphy, R. Toth, D. G. Campbell, N. A. Morrice et al., Complementary regulation of TBC1D1 and AS160 by growth factors, insulin and AMPK activators, Biochemical Journal, vol.409, issue.2, pp.449-459, 2008.
DOI : 10.1042/BJ20071114

URL : https://hal.archives-ouvertes.fr/hal-00478871

L. Demmel, M. Beck, C. Klose, A. L. Schlaitz, Y. Gloor et al., Nucleocytoplasmic Shuttling of the Golgi Phosphatidylinositol 4-Kinase Pik1 Is Regulated by 14-3-3 Proteins and Coordinates Golgi Function with Cell Growth, Molecular Biology of the Cell, vol.19, issue.3, pp.1046-1061, 2008.
DOI : 10.1091/mbc.E07-02-0134

M. B. Yaffe, How do 14-3-3 proteins work? - Gatekeeper phosphorylation and the molecular anvil hypothesis, FEBS Letters, vol.14, issue.1, pp.53-57, 2002.
DOI : 10.1016/S0014-5793(01)03288-4

Q. B. She, D. B. Solit, Q. Ye, K. E. O-'reilly, J. Lobo et al., The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells, Cancer Cell, vol.8, issue.4, pp.287-297, 2005.
DOI : 10.1016/j.ccr.2005.09.006

J. L. Watkins, K. T. Lewandowski, S. E. Meek, P. Storz, A. Toker et al., Phosphorylation of the Par-1 polarity kinase by protein kinase D regulates 14-3-3 binding and membrane association, Proceedings of the National Academy of Sciences, vol.105, issue.47, pp.18378-18383, 2008.
DOI : 10.1073/pnas.0809661105

S. Giacometti, L. Camoni, C. Albumi, S. Visconti, M. I. De-michelis et al., -ATPase, Plant Biology, vol.345, issue.4, pp.422-431, 2004.
DOI : 10.1093/emboj/cdg104

URL : https://hal.archives-ouvertes.fr/jpa-00212454

M. J. Waterman, E. S. Stavridi, J. L. Waterman, and T. D. Halazonetis, ATMdependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins, Nature Genetics, vol.19, issue.2, pp.175-178, 1998.
DOI : 10.1038/542

S. Winter, E. Simboeck, W. Fischle, G. Zupkovitz, I. Dohnal et al., 14-3-3 Proteins recognize a histone code at histone H3 and are required for transcriptional activation, The EMBO Journal, vol.309, issue.1, pp.88-99, 2008.
DOI : 10.1038/sj.emboj.7601954

D. A. Sorrell, A. M. Marchbank, D. A. Chrimes, J. R. Dickinson, H. J. Rogers et al., The Arabidopsis 14-3-3 protein, GF14?, binds to the Schizosaccharomyces pombe Cdc25 phosphatase and rescues checkpoint defects in the rad24? mutant, Planta, vol.218, issue.1, pp.50-57, 2003.
DOI : 10.1007/s00425-003-1083-7

. Licenced-copy, Copying is not permitted, except with prior permission and as allowed by law, p.65

A. Kulma, D. Villadsen, D. G. Campbell, S. E. Meek, J. E. Harthill et al., Phosphorylation and 14-3-3 binding of Arabidopsis 6- phosphofructo-2-kinase, Plant J, vol.37, issue.2, pp.6-654, 2004.

A. E. Mccart, D. Mahony, and J. A. Rothnagel, Alternatively Spliced Products of the Human Kinesin Light Chain 1 (KNS2) Gene, Traffic, vol.113, issue.8, pp.576-580, 2003.
DOI : 10.1034/j.1600-0854.2003.00113.x

R. Boutros, A. M. Bailey, S. H. Wilson, and J. A. Byrne, Alternative Splicing as a Mechanism for Regulating 14-3-3 Binding: Interactions between hD53 (TPD52L1) and 14-3-3 Proteins, Journal of Molecular Biology, vol.332, issue.3, pp.675-687, 2003.
DOI : 10.1016/S0022-2836(03)00944-6

K. Toyo-oka, A. Shionoya, M. J. Gambello, C. Cardoso, R. Leventer et al., 3-3epsilon is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller-Dieker syndrome, Nat Genet, vol.14, issue.34, pp.274-285, 2003.

D. Mori, Y. Yano, K. Toyo-oka, N. Yoshida, M. Yamada et al., NDEL1 Phosphorylation by Aurora-A Kinase Is Essential for Centrosomal Maturation, Separation, and TACC3 Recruitment, Molecular and Cellular Biology, vol.27, issue.1, pp.352-367, 2007.
DOI : 10.1128/MCB.00878-06

Y. Liang, W. Yu, Y. Li, L. Yu, Q. Zhang et al., Nudel Modulates Kinetochore Association and Function of Cytoplasmic Dynein in M Phase, Molecular Biology of the Cell, vol.18, issue.7, pp.2656-2666, 2007.
DOI : 10.1091/mbc.E06-04-0345

M. A. Hayashi, F. C. Portaro, M. F. Bastos, J. R. Guerreiro, V. Oliveira et al., Inhibition of NUDEL (nuclear distribution element-like)-oligopeptidase activity by disrupted-in-schizophrenia 1, Proceedings of the National Academy of Sciences, vol.102, issue.10, pp.3828-3833, 2005.
DOI : 10.1073/pnas.0500330102

W. Hennah, L. Tomppo, T. Hiekkalinna, O. M. Palo, H. Kilpinen et al., Families with the risk allele of DISC1 reveal a link between schizophrenia and another component of the same molecular pathway, NDE1, Human Molecular Genetics, vol.16, issue.5, pp.453-462, 2007.
DOI : 10.1093/hmg/ddl462

A. Kamiya, K. Kubo, T. Tomoda, M. Takaki, R. Youn et al., A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development, Nature Cell Biology, vol.44, issue.12, pp.1167-1178, 2005.
DOI : 10.1073/pnas.94.15.8196

H. J. Kim, H. J. Park, K. H. Jung, J. Y. Ban, J. Ra et al., Association study of polymorphisms between DISC1 and schizophrenia in a Korean population, Neuroscience Letters, vol.430, issue.1, pp.60-63, 2008.
DOI : 10.1016/j.neulet.2007.10.010

. Licenced-copy, Copying is not permitted, except with prior permission and as allowed by law, p.78

J. K. Millar, S. Christie, S. Anderson, D. Lawson, D. Hsiao-wei-loh et al., Genomic structure and localisation within a linkage hotspot of Disrupted In Schizophrenia 1, a gene disrupted by a translocation segregating with schizophrenia, Molecular Psychiatry, vol.6, issue.2, pp.173-178, 2001.
DOI : 10.1038/sj.mp.4000784

W. Song, W. Li, J. Feng, L. L. Heston, W. A. Scaringe et al., Identification of high risk DISC1 structural variants with a 2% attributable risk for schizophrenia, Biochemical and Biophysical Research Communications, vol.367, issue.3, pp.700-706, 2008.
DOI : 10.1016/j.bbrc.2007.12.117

D. Grover, R. Verma, F. S. Goes, P. L. Mahon, E. S. Gershon et al., Family-based association of YWHAH in psychotic bipolar disorder, Am J Med Genet B Neuropsychiatr Genet, vol.150, pp.977-983, 2009.

G. E. Crooks, G. Hon, J. M. Chandonia, and S. E. Brenner, WebLogo: A Sequence Logo Generator, Genome Research, vol.14, issue.6, pp.1188-1190, 2004.
DOI : 10.1101/gr.849004

T. D. Schneider and R. M. Stephens, Sequence logos: a new way to display consensus sequences, Nucleic Acids Research, vol.18, issue.20, pp.6097-6100, 1990.
DOI : 10.1093/nar/18.20.6097

J. E. Aslan, H. You, D. M. Williamson, J. Endig, R. T. Youker et al., Akt and 14-3-3 Control a PACS-2 Homeostatic Switch that Integrates Membrane Traffic with TRAIL-Induced Apoptosis, Molecular Cell, vol.34, issue.4, pp.497-509, 2009.
DOI : 10.1016/j.molcel.2009.04.011

. Licenced-copy, Copying is not permitted, except with prior permission and as allowed by law