J. Ninomiya-tsuji, K. Kishimoto, A. Hiyama, J. Inoue, Z. Cao et al., The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway, Nature, vol.398, pp.252-256, 1999.

J. Lee, L. Mira-arbibe, and R. J. Ulevitch, TAK1 regulates multiple protein kinase cascades activated by bacterial lipopolysaccharide, J Leukoc Biol, vol.68, pp.909-915, 2000.

C. Wang, L. Deng, M. Hong, G. R. Akkaraju, J. Inoue et al., TAK1 is a ubiquitin-dependent kinase of MKK and IKK, Nature, vol.412, issue.6844, pp.346-351, 2001.
DOI : 10.1038/35085597

Q. Huang, J. Yang, Y. Lin, C. Walker, J. Cheng et al., Differential regulation of interleukin 1 receptor and Toll-like receptor signaling by MEKK3, Nature Immunology, vol.5, issue.1, pp.98-103, 2004.
DOI : 10.1038/ni1014

E. Omori, K. Matsumoto, H. Sanjo, S. Sato, S. Akira et al., TAK1 Is a Master Regulator of Epidermal Homeostasis Involving Skin Inflammation and Apoptosis, Journal of Biological Chemistry, vol.281, issue.28, 2006.
DOI : 10.1074/jbc.M603384200

S. Sato, H. Sanjo, K. Takeda, J. Ninomiya-tsuji, M. Yamamoto et al., Essential function for the kinase TAK1 in innate and adaptive immune responses, Nature Immunology, vol.165, issue.11, 2005.
DOI : 10.1093/intimm/dxf046

S. H. Conner, G. Kular, M. Peggie, S. Shepherd, A. W. Schuttelkopf et al., TAK1-binding protein 1 is a pseudophosphatase, Biochemical Journal, vol.399, issue.3, pp.427-434, 2006.
DOI : 10.1042/BJ20061077

URL : https://hal.archives-ouvertes.fr/hal-00478633

H. Shibuya, K. Yamaguchi, K. Shirakabe, A. Tonegawa, Y. Gotoh et al., TAB1: An Activator of the TAK1 MAPKKK in TGF-beta Signal Transduction, Science, vol.272, issue.5265, pp.1179-1182, 1996.
DOI : 10.1126/science.272.5265.1179

T. Ishitani, G. Takaesu, J. Ninomiya-tsuji, H. Shibuya, R. B. Gaynor et al., Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling, The EMBO Journal, vol.7, issue.23, pp.6277-6288, 2003.
DOI : 10.1093/emboj/cdg605

P. C. Cheung, A. R. Nebreda, and P. Cohen, TAB3, a new binding partner of the protein kinase TAK1, Biochemical Journal, vol.378, issue.1, pp.27-34, 2004.
DOI : 10.1042/bj20031794

P. C. Cheung, D. G. Campbell, A. R. Nebreda, and P. Cohen, Feedback control of the protein kinase TAK1 by SAPK2a/p38??, The EMBO Journal, vol.22, issue.21, pp.5793-5805, 2003.
DOI : 10.1093/emboj/cdg552

A. Cuenda, J. Rouse, Y. N. Doza, R. Meier, P. Cohen et al., SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1, FEBS Lett, vol.364, pp.229-233, 1995.

Y. Wang, R. Singh, J. H. Lefkowitch, R. M. Rigoli, and M. J. Czaja, Tumor necrosis factor-induced toxic liver injury results from JNK2-dependent S t a g e 2 ( a ), Biochemical Journal Immediate Publication, 2006.

. Licenced-copy, Copying is not permitted, except with prior permission and as allowed by law. activation of caspase-8 and the mitochondrial death pathway, J Biol Chem, vol.281, pp.15258-15267

J. S. Sebolt-leopold, D. T. Dudley, R. Herrera, K. Van-becelaere, A. Wiland et al., Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo, Nature Medicine, vol.5, issue.7, pp.810-816, 1999.
DOI : 10.1038/10533

N. Shpiro and R. Marquez, Improved Experimental Procedure for the Synthesis of the Potent MEK Inhibitor PD184352, Synthetic Communications, vol.39, issue.17, p.2265, 2005.
DOI : 10.1016/j.tetlet.2004.04.164

C. Pargellis, L. Tong, L. Churchill, P. F. Cirillo, T. Gilmore et al., Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site, Nature Structural Biology, vol.9, issue.4, pp.268-272, 2002.
DOI : 10.1038/nsb770

J. Regan, S. Breitfelder, P. Cirillo, T. Gilmore, A. G. Graham et al., Pyrazole Urea-Based Inhibitors of p38 MAP Kinase:?? From Lead Compound to Clinical Candidate, Journal of Medicinal Chemistry, vol.45, issue.14, pp.2994-3008, 2002.
DOI : 10.1021/jm020057r

G. R. Wiggin, A. Soloaga, J. M. Foster, V. Murray-tait, P. Cohen et al., MSK1 and MSK2 Are Required for the Mitogen- and Stress-Induced Phosphorylation of CREB and ATF1 in Fibroblasts, Molecular and Cellular Biology, vol.22, issue.8, pp.2871-2881, 2002.
DOI : 10.1128/MCB.22.8.2871-2881.2002

A. Kotlyarov, A. Neininger, C. Schubert, R. Eckert, C. Birchmeier et al., MAPKAP kinase 2 is essential for LPS-induced TNF-alpha biosynthesis, Nat Cell Biol, vol.1, pp.94-97, 1999.

C. Tournier, P. Hess, D. D. Yang, J. Xu, T. K. Turner et al., Requirement of JNK for Stress- Induced Activation of the Cytochrome c-Mediated Death Pathway, Science, vol.288, issue.5467, pp.870-874, 2000.
DOI : 10.1126/science.288.5467.870

J. Bain, L. Cummings, M. Elliot, N. Shpiro, J. Hastie et al., The selectivity of protein kinase inhibitors: a further update, Biochemical Journal, vol.408, issue.3, 2007.
DOI : 10.1042/BJ20070797

URL : https://hal.archives-ouvertes.fr/hal-00478827

S. P. Davies, H. Reddy, M. Caivano, and P. Cohen, Specificity and mechanism of action of some commonly used protein kinase inhibitors, Biochemical Journal, vol.351, issue.1, pp.95-105, 2000.
DOI : 10.1042/bj3510095

Y. Kuma, G. Sabio, J. Bain, N. Shpiro, R. Marquez et al., BIRB796 Inhibits All p38 MAPK Isoforms in Vitro and in Vivo, Journal of Biological Chemistry, vol.280, issue.20, pp.19472-19479, 2005.
DOI : 10.1074/jbc.M414221200

D. Stokoe, B. Caudwell, P. T. Cohen, and P. Cohen, The substrate specificity and structure of mitogen-activated protein (MAP) kinase-activated protein kinase-2, Biochemical Journal, vol.296, issue.3, pp.843-849, 1993.
DOI : 10.1042/bj2960843

N. Ronkina, A. Kotlyarov, O. Dittrich-breiholz, M. Kracht, E. Hitti et al., The Mitogen-Activated Protein Kinase (MAPK)-Activated Protein Kinases MK2 and MK3 Cooperate in Stimulation of Tumor Necrosis Factor Biosynthesis and Stabilization of p38 MAPK, Molecular and Cellular Biology, vol.27, issue.1, pp.170-181, 2007.
DOI : 10.1128/MCB.01456-06

K. Kishimoto, K. Matsumoto, and J. Ninomiya-tsuji, TAK1 Mitogen-activated Protein Kinase Kinase Kinase Is Activated by Autophosphorylation within Its Activation Loop, Journal of Biological Chemistry, vol.275, issue.10, pp.7359-7364, 2000.
DOI : 10.1074/jbc.275.10.7359

. Licenced-copy, Copying is not permitted, except with prior permission and as allowed by law, p.28

J. Yang, Y. Lin, Z. Guo, J. Cheng, J. Huang et al., The essential role of MEKK3 in TNF-induced NFkappaB activation, Nature Immunology, vol.2, issue.7, pp.620-624, 2001.
DOI : 10.1038/89769

B. Ge, H. Gram, D. Padova, F. Huang, B. New et al., MAPKK-Independent Activation of p38alpha Mediated by TAB1-Dependent Autophosphorylation of p38alpha, Science, vol.295, issue.5558, pp.1291-1294, 2002.
DOI : 10.1126/science.1067289

Y. Komatsu, H. Shibuya, N. Takeda, J. Ninomiya-tsuji, T. Yasui et al., Targeted disruption of the Tab1 gene causes embryonic lethality and defects in cardiovascular and lung morphogenesis, Mechanisms of Development, vol.119, issue.2, pp.239-249, 2002.
DOI : 10.1016/S0925-4773(02)00391-X

H. Sakurai, H. Miyoshi, J. Mizukami, and T. Sugita, Phosphorylation-dependent activation of TAK1 mitogen-activated protein kinase kinase kinase by TAB1, FEBS Letters, vol.93, issue.2-3, pp.141-145, 2000.
DOI : 10.1016/S0014-5793(00)01588-X

K. Ono, T. Ohtomo, S. Sato, Y. Sugamata, M. Suzuki et al., An Evolutionarily Conserved Motif in the TAB1 C-terminal Region Is Necessary for Interaction with and Activation of TAK1 MAPKKK, Journal of Biological Chemistry, vol.276, issue.26, pp.24396-24400, 2001.
DOI : 10.1074/jbc.M102631200

H. Sakurai, A. Nishi, N. Sato, J. Mizukami, H. Miyoshi et al., TAK1???TAB1 fusion protein: a novel constitutively active mitogen-activated protein kinase kinase kinase that stimulates AP-1 and NF-??B signaling pathways, Biochemical and Biophysical Research Communications, vol.297, issue.5, pp.1277-1281, 2002.
DOI : 10.1016/S0006-291X(02)02379-3

K. Brown, S. C. Vial, N. Dedi, J. M. Long, N. J. Dunster et al., Structural Basis for the Interaction of TAK1 Kinase with its Activating Protein TAB1, Journal of Molecular Biology, vol.354, issue.5, pp.1013-1020, 2005.
DOI : 10.1016/j.jmb.2005.09.098

M. Bertelsen and A. Sanfridson, TAB1 modulates IL-1?? mediated cytokine secretion but is dispensable for TAK1 activation, Cellular Signalling, vol.19, issue.3, pp.646-657, 2007.
DOI : 10.1016/j.cellsig.2006.08.017

M. Blonska, P. B. Shambharkar, M. Kobayashi, D. Zhang, H. Sakurai et al., TAK1 Is Recruited to the Tumor Necrosis Factor-?? (TNF-??) Receptor 1 Complex in a Receptor-interacting Protein (RIP)-dependent Manner and Cooperates with MEKK3 Leading to NF-??B Activation, Journal of Biological Chemistry, vol.280, issue.52, pp.43056-43063, 2005.
DOI : 10.1074/jbc.M507807200

A. Matsuzawa, K. Saegusa, T. Noguchi, C. Sadamitsu, H. Nishitoh et al., ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity, Nature Immunology, vol.167, issue.6, pp.587-592, 2005.
DOI : 10.1074/jbc.M209264200

J. C. Lee, J. T. Laydon, P. C. Mcdonnell, T. F. Gallagher, S. Kumar et al., A protein kinase involved in the regulation of inflammatory cytokine biosynthesis, Nature, vol.82, issue.6508, pp.739-746, 1994.
DOI : 10.1038/nbt1188-1321

C. D. Dumitru, J. D. Ceci, C. Tsatsanis, D. Kontoyiannis, K. Stamatakis et al., TNF-?? Induction by LPS Is Regulated Posttranscriptionally via a Tpl2/ERK-Dependent Pathway, Cell, vol.103, issue.7, pp.1071-1083, 2000.
DOI : 10.1016/S0092-8674(00)00210-5

D. Kontoyiannis, G. Boulougouris, M. Manoloukos, M. Armaka, M. Apostolaki et al., Genetic Dissection of the Cellular Pathways and Signaling Mechanisms in Modeled Tumor Necrosis Factor???induced Crohn's-like Inflammatory Bowel Disease, The Journal of Experimental Medicine, vol.15, issue.12, pp.1563-1574, 2002.
DOI : 10.1128/JVI.76.9.4567-4579.2002

. Licenced-copy, Copying is not permitted, except with prior permission and as allowed by law, p.41

S. Rousseau, M. Papoutsopoulou, A. Symons, D. Cooke, A. Garra et al., Tpl-2-mediated activation of ERK1 and ERK2 regulates the processing of pre-TNF? in LPS-stimulated macrophages, J Cell Sci, p.42, 2007.

A. Neininger, D. Kontoyiannis, A. Kotlyarov, R. Winzen, R. Eckert et al., MK2 Targets AU-rich Elements and Regulates Biosynthesis of Tumor Necrosis Factor and Interleukin-6 Independently at Different Post-transcriptional Levels, Journal of Biological Chemistry, vol.277, issue.5, 2002.
DOI : 10.1074/jbc.C100685200

B. L. Williamson, J. Marchese, and N. A. Morrice, Automated Identification and Quantification of Protein Phosphorylation Sites by LC/MS on a Hybrid Triple Quadrupole Linear Ion Trap Mass Spectrometer, Molecular & Cellular Proteomics, vol.5, issue.2, pp.337-346, 2006.
DOI : 10.1074/mcp.M500210-MCP200

R. Chenna, H. Sugawara, T. Koike, R. Lopez, T. J. Gibson et al., Multiple sequence alignment with the Clustal series of programs, Nucleic Acids Research, vol.31, issue.13, pp.3497-3500, 2003.
DOI : 10.1093/nar/gkg500

. Licenced-copy, Copying is not permitted, except with prior permission and as allowed by law