E. Greggio, S. Jain, A. Kingsbury, R. Bandopadhyay, P. Lewis et al., Kinase activity is required for the toxic effects of mutant LRRK2/dardarin, Neurobiology of Disease, vol.23, issue.2, pp.329-341, 2006.
DOI : 10.1016/j.nbd.2006.04.001

P. Cohen and A. Knebel, KESTREL: a powerful method for identifying the physiological substrates of protein kinases, Biochemical Journal, vol.393, issue.1, pp.1-6, 2006.
DOI : 10.1042/BJ20051545

Y. Durocher, S. Perret, and A. Kamen, High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells, Nucleic Acids Research, vol.30, issue.2, pp.9-16, 2002.
DOI : 10.1093/nar/30.2.e9

D. G. Campbell and N. A. Morrice, Identification of Protein Phosphorylation Sites by a Combination of Mass Spectrometry and Solid Phase Edman Sequencing, J. Biomol. Techn, vol.13, pp.121-132, 2002.

S. Troiani, M. Uggeri, J. Moll, A. Isacchi, H. M. Kalisz et al., Searching for Biomarkers of Aurora-A Kinase Activity:?? Identification of in Vitro Substrates through a Modified KESTREL Approach, Journal of Proteome Research, vol.4, issue.4, pp.1296-1303, 2005.
DOI : 10.1021/pr050018e

A. Bretscher, K. Edwards, and R. G. Fehon, ERM proteins and merlin: integrators at the cell cortex, Nature Reviews Molecular Cell Biology, vol.12, issue.8, pp.586-599, 2002.
DOI : 10.1038/nrm882

C. Polesello and F. Payre, Small is beautiful: what flies tell us about ERM protein function in development, Trends in Cell Biology, vol.14, issue.6, pp.294-302, 2004.
DOI : 10.1016/j.tcb.2004.04.003

URL : https://hal.archives-ouvertes.fr/hal-00169884

R. Gary and A. Bretscher, Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site., Molecular Biology of the Cell, vol.6, issue.8, pp.1061-1075, 1995.
DOI : 10.1091/mbc.6.8.1061

K. Pestonjamasp, M. R. Amieva, C. P. Strassel, W. M. Nauseef, H. Furthmayr et al., Moesin, ezrin, and p205 are actin-binding proteins associated with neutrophil plasma membranes., Molecular Biology of the Cell, vol.6, issue.3, pp.247-259, 1995.
DOI : 10.1091/mbc.6.3.247

O. Turunen, T. Wahlstrom, and A. Vaheri, Ezrin has a COOH-terminal actin-binding site that is conserved in the ezrin protein family, The Journal of Cell Biology, vol.126, issue.6, pp.1445-1453, 1994.
DOI : 10.1083/jcb.126.6.1445

M. A. Pearson, D. Reczek, A. Bretscher, and P. A. Karplus, Structure of the ERM Protein Moesin Reveals the FERM Domain Fold Masked by an Extended Actin Binding Tail Domain, Cell, vol.101, issue.3, pp.259-270, 2000.
DOI : 10.1016/S0092-8674(00)80836-3

L. Huang, T. Y. Wong, R. C. Lin, and H. Furthmayr, Replacement of Threonine 558, a Critical Site of Phosphorylation of Moesin in Vivo, with Aspartate Activates F-actin Binding of Moesin: REGULATION BY CONFORMATIONAL CHANGE, Journal of Biological Chemistry, vol.274, issue.18, pp.12803-12810, 1999.
DOI : 10.1074/jbc.274.18.12803

F. Nakamura, L. Huang, K. Pestonjamasp, E. J. Luna, and H. Furthmayr, Regulation of F-Actin Binding to Platelet Moesin In Vitro by Both Phosphorylation of Threonine 558 and Polyphosphatidylinositides, Molecular Biology of the Cell, vol.10, issue.8, pp.2669-2685, 1999.
DOI : 10.1091/mbc.10.8.2669

T. Matsui, M. Maeda, Y. Doi, S. Yonemura, M. Amano et al., Rho-Kinase Phosphorylates COOH-terminal Threonines of Ezrin/Radixin/Moesin (ERM) Proteins and Regulates Their Head-to-Tail Association, The Journal of Cell Biology, vol.268, issue.3, pp.647-657, 1998.
DOI : 10.1083/jcb.120.2.437

N. Oshiro, Y. Fukata, and K. Kaibuchi, Phosphorylation of Moesin by Rho-associated Kinase (Rho-kinase) Plays a Crucial Role in the Formation of Microvilli-like Structures, Journal of Biological Chemistry, vol.273, issue.52, pp.34663-34666, 1998.
DOI : 10.1074/jbc.273.52.34663

T. Quang, C. Gautreau, A. Arpin, M. Treisman, and R. , Ezrin function is required for ROCK-mediated fibroblast transformation by the Net and Dbl oncogenes, The EMBO Journal, vol.19, issue.17, pp.4565-4576, 2000.
DOI : 10.1093/emboj/19.17.4565

G. Paglini, P. Kunda, S. Quiroga, K. Kosik, and A. Caceres, Suppression of Radixin and Moesin Alters Growth Cone Morphology, Motility, and Process Formation In Primary Cultured Neurons, The Journal of Cell Biology, vol.107, issue.2, pp.443-455, 1998.
DOI : 10.1002/(SICI)1097-0169(1997)37:1<54::AID-CM6>3.0.CO;2-H

D. Macleod, J. Dowman, R. Hammond, T. Leete, K. Inoue et al., The Familial Parkinsonism Gene LRRK2 Regulates Neurite Process Morphology, Neuron, vol.52, issue.4, pp.587-593, 2006.
DOI : 10.1016/j.neuron.2006.10.008

A. I. Mcclatchey and M. Giovannini, Membrane organization and tumorigenesis--the NF2 tumor suppressor, Merlin, Genes & Development, vol.19, issue.19, pp.2265-2277, 2005.
DOI : 10.1101/gad.1335605

J. Boudeau, D. Miranda-saavedra, G. J. Barton, and D. R. Alessi, Emerging roles of pseudokinases, Trends in Cell Biology, vol.16, issue.9, pp.443-452, 2006.
DOI : 10.1016/j.tcb.2006.07.003

A. B. West, D. J. Moore, C. Choi, S. A. Andrabi, X. Li et al., Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity, Human Molecular Genetics, vol.16, issue.2, pp.223-232, 2007.
DOI : 10.1093/hmg/ddl471

C. J. Gloeckner, N. Kinkl, A. Schumacher, R. J. Braun, E. O-'neill et al., The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity, Human Molecular Genetics, vol.15, issue.2, pp.223-232, 2006.
DOI : 10.1093/hmg/ddi439

M. J. Farrer, J. T. Stone, C. H. Lin, J. C. Dachsel, M. M. Hulihan et al., Lrrk2 G2385R is an ancestral risk factor for Parkinson's disease in Asia, Parkinsonism & Related Disorders, vol.13, issue.2, 2007.
DOI : 10.1016/j.parkreldis.2006.12.001