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Abstract

The present work investigates the estimation of regressiatures when population
has changed between the training and the prediction stags.approaches are pro-
posed: a parametric approach modelling the relationshipdsn dependent variables of
both populations, and a Bayesian approach in which thegdarthe prediction popu-
lation depend on the mixture regression parameters of éiv@rig population. The rele-
vance of both approaches is illustrated on simulations amhcenvironmental dataset.
Key words: Transfer learning; Mixture of regressions; Switchingressgion; EM algo-
rithm; Bayesian inference; MCMC algorithm.

Introduction

The mixture of regressions, introduced by [10] as the swighegression model, is a popular
regression model in order to model complex system. In pddicthe switching regression
model is often used in Economics to model phenomena witler@ifft phases. This model
assumes that the dependent variable R can be linked to a covariate= (1,Xy,...,Xp) €
RP+1 by one ofK possible regression models:

Y =X B+ oke, k=1,...K (1.1)

with prior probabilitiesm, ..., mk (with the classical constrainziK:lra( = 1), whereeg ~
A(0,1), B« = (Bro,---» Bkp) € {Bu,---,Bx} is the regression parameter vectorRR™! and
o? € {02,...,02} is the residual variance. The conditional density distidouof Y givenx
is therefore:

~

pYIX) = S TRO(YIX By, 02), (1.2)
k=1

whereq(-|x B, akz) is the univariate Gaussian density parametrized by its riggarand vari-
anceakz. Among the works which focused on this model, we can emphabie following
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Figure 1: Learning process of transfer learning for theasgion mixture model.

ones which have contributed to the popularity of this mof&] proposes a Bayesian infer-
ence for the model estimation, [30] studies the asymptbgoty of parameter estimators in
order to define hypothesis tests, and [14] considers varsdikection for this specific regres-
sion model.

The present paper focuses on the problem of using a mixtgression model for pre-
diction when the modelled phenomenon has changed betweednathing stage, which has
led to the parameter estimation, and the prediction stagetreMrecisely, we assume that
model (1.1) has been estimated with a sample from a givemigapopulation, let us saf,
(of size large enough to have a satisfying estimation gakind we want to use it to predict
the dependent variab¥efor a new population, let us s&7, which could be different from the
training one. For instance, the difference between botluladpns can be due to a switch in
the covariate distribution or to a variation of the link beem the covariates and the dependent
variable. The goal is then to transfer the knowledge fronmtithi@ing (source) population to
the prediction (target) population. This task is usuallpwn astransfer learning'see [18] for
a complete survey), and can be summarized by Figure 1 in #eeafadhe regression mixture
model.

We now give some application examples of transfer learning biological context, [3]
and [13] proposed models for clustering male and femalesbtite source population consists
of birds from a common species whereas the target populetioomposed of birds from a
rarer species. Another application concerns the problesemiiment classification as consid-
ered by [4]. As the review data can be very different amongisd\type of products, there is
a need to collect a large sample of labelled data for eachuptod order to train a specific
review-classification model per product. The use of trankfarning techniques allows to
adapt a sentiment classifier from one product to anotherlarig], the authors predict house
prices from house features for a city of the USA West Coast (l®se, California) by adapt-
ing a regression model learned with data issued from aneihestated on the East Coast
(Birmingham, Alabama). The use of a transfer learning madleivs to spare an additional
and expensive collect of training data for the target papuig San Jose housing in this appli-
cation). [17] and [29] consider applications in text cléisation and WiFi localisation. More
examples can be found in [18].



1.1 Related work

Transfer learning is a particularly active research fieftsithe NIPS-95 workshop “Learn-
ing to Learn”, in which the need for machine learning methelssing previously learned
knowledge was exhibited. Contrary to previously cited vgonk the classification context
([3, 13]), in which the data of the target population can bkabelled, the regression purpose
need to observe at least some couplgsx) in the target population. In this case, we speak
of inductivetransfer learning. Readers interested in a compreheresn@&wv can refer to [18].

Most of the methods allowing to treat such a setting are eslbedesigned for estimating
simultaneously the parameters of both source and targetlgiogns (we speak ahulti-task
learning), but can easily be adapted for transfer learning. Theyidengither a Bayesian or
a regularization framework. Typically, in the Bayesian iggeh, each task is assume to share
the same prior (see [15] for instance). In the regulariratiamework, parameters between
models for source and target population are assumed to kedligsee [9] in a SVM context
for instance).

In the regression contextovariate Shifis a specific transfer learning problem consider-
ing that the probability density of the covariates in thgé&tpopulation is different from the
one of the source population. However, the relationshipveeh covariates and dependent
variable is assumed not to have changed ([23, 25, 26, 27, PBi)s, if the regression model
is exactly known, a change in the probability distributidritee explanatory variables is not
a problem. Unfortunately, this is never the case in praciicg the regression model esti-
mated with the training data could be very disappointingmdugplied to data with a different
probability distribution.

The originality of our work consists in introducing paramemodels allowing to link the
source and target populations. A more conventional Bagespproach is also investigated,
and comparison of both approaches are carried out on siwukatd real data.

1.2 Problem formulation

Assuming that the target populati®, for which we want to predicY, is different from the
source populatioP, the mixture regression model fBi can be written as follows:

Y* = X*IBQ‘+0|;‘£*, (1.3)
o
P IX) = 3 oy X By, 0k%),
k=1

with e* ~ .47(0,1), B € {B7..., B~} andoy € {07, ...,0K.}. Letus now precise the focus
of this paper by making the three following assumptions:

H; : the couples of variable@,x) and(Y*,x*) are assumed to be the same but measured
on two different populations.

H, : the sizen® of the observation sampl = (y;",x")i—1n of populationP* is assumed
to be small compared to the number of observations of theesquopulatiorP. Other-
wise, the mixture regression model could be estimatedttireithout using the source
population.



Hs : as both populations have the same nature, each mixtursusnasl to have the same
number of component&( = K).

Under these assumptions, the goal is then to pr&diédr some new* by using both samples
S= (¥i,X)i=1,n andS". The challenge consists therefore in exhibiting a link leEsw both
populations.

1.3 Organization of the manuscript

The reminder of this work is organised as follows. Sectiondppses a first solution to im-
prove the predictive inference on the target populationdfynthg parametric models for the
link between mixture regression models of both populatidimss approach has the advantage
to lead to interpretable results, which should help thetgracer in analysing the differences
between the source and target populations. An alternaye®an approach, most frequent
in transfer learning, is presented in Section 3. The linkvMeen regression models is then
formulated through prior densities on the target poputatithe advantage of this strategy is
its flexibility which can fit into different situations, if ghprior densities are well chosen. In
Section 4, the performance of both the parametric and the®ay approaches is first illus-
trated on simulations. Then, the proposed strategies anpaed to classical methods on an
environmental dataset. Section 5 finally proposes somdwding remarks and directions for
future works.

2 Parametric approach for adaptive mixture of regressions

This section presents a parametric approach which congistedelling the link between
training and test populations by a parametric relationbbigveen the regression parameters.

2.1 Parametric models to link the reference and test populabns

Let us first introduce a latent varialié € {0, 1}K representing the belonging of observations
to the K mixture components,e. 7, = 1 indicates that théth observation(x’,y;) comes
from thek-th component and} = 0 otherwise. Conditionally to an observatiriof the co-
variates, we would like to exhibit a distributional relatghip between the dependent variables
of the same mixture component such ﬂf@%k:l and L/Jk(Y‘X,ak:l) have the same probability
distribution, withyy a function fromR to R.

Let B« andB; (1 < k<K) be respectively the parameters of the mixture regressaieis
in the source and the target populations (Equations (1djBB)). We assume in this section
that the functionyx, exhibiting the link between the source and target poputatiis such
that:

B; = /\kBka where/A, = diag()\ko,)\k]_, . ,)\kp) (2.1)
Oy is free,



wherediag(Ako, Axt, - - -, Akp) denotes the diagonal matrix containifo, Akt - - - , Akp) 0N its
diagonal. The interest of introducing such a link lies in taduction of the number of pa-
rameters to estimate for the mixture regression modePforIn the sequel, we go further
by introducing some constraints @ and gy in order to define a family of parsimonious
models, which includes many of the situations that may be@mered in practice:

* M; assumes both populations are the safe= |q is the identity matrix §; = o),

* M> models assume the link between both populations is coeaaiad mixture compo-
nent independent:
— Mgl Ag=1,Aj=A andoy = Aok V1< j<np,
— My Ag=A, Aqj=1landoy =0k V1< |<p,
— My Ay = Alg andoy = A gy,
— Mag: Ao = Ao, Aj = Arandoy = A0k V1< <p,

M3 models assume the link between both populations is coeadrnidependent:

— Mza: Awg =1, Akj = Ak andoy = Akax V1< | <p,

— Mgy Awo = Ak, Aj=1andoy = ok V1< j<np,

— Mz Ax = Aclg and oy = A0k,

— Mag: Ao = Akos Akj = Akt and oy = Aok V1< j<p,

Mz models assume the link between both populations is mixtomgponent indepen-
dent oy free):

— Myg: Ag=1 and)\kj =Aj Vi< j<p,
— Mgp: Ak = A with A a diagonal matrix,

Ms assumesg\, is unconstrained, which leads to estimate the mixture ssgva model
for P* by using onlyS* (g free).

Let us remark that other transformation models could be défim particular by considering
that only the variance component is different between tlhiecgoand target populations. Even
though, only the previous models are investigated in thgepathe practitioner can easily
introduced other models if needed, by following the strategesented here. Moreover, the
mixing proportions are allowed to be the same in each pojpulat to be different. In the lat-
ter case, they consequently have to be estimated usingrti@ess. Corresponding notations
for the models are respectivepM. when the mixing proportion oP* have to be estimated
andM. when not. Table 1 gives the number of parameters to estiroatath model. If the
mixing proportions are different frorA to P*, K — 1 parameters to estimate must be added to
these values. The estimation of the moddisto M, are derived in the next subsection. Let
us also remark that by only assuming that the functjgr(defined at the beginning of this
section) is¢’1, rather than assuming (2.1), [3] proves tijgtis necessarily affine, and then
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Model M; My My My Mg Mszg Mz, Mz Mzg Mgy Map Ms
Param. O 1 1 1 2 K K K 2K p+K p+K+1 K(p+2)

Table 1: Number of parameters to estimate for each modekgbtbposed family.

Y‘;?k:l have the same probability distributiony + AkaY)y 7, —1, Where(Ax, Akz) € R2. We
therefore obtain the following relationship between thedeigparameters d? andP*:

Bi = (M +MeBros AaBits - - - AkaBip)' s (2.2)
0; = Ak20k. (2.3)

The modelMsqy previously defined, which is the most general model amondvthandMs
classes of models, is equivalent to the model defined byisag(2.2) and (2.3) My-type
models allow to introduce more flexibility in the proposeddab

2.2 Parameter estimation

In the situation under review in this paper, the mixture giressions is assumed to be known
(B« and oy will be estimated in practice from a sample of sufficient sipe the source popu-
lation P, and the goal is to estimate the mixture of regressionBfoil his will be done in two
steps. In the first step, the link parameté&gsand the mixing proportiong; are estimated
as well as the residual varianc:eﬁ2 when necessary (modelld,). In the second step, the
estimation of the mixture regression paramefgrand the residual varianceﬁ2 (for models
M, andM3) are deduced by plug-in through equations (2.1) and (23thé sequel, only the
situation where mixing proportions are different from tead populatiorP is considered.

The estimation of the link parameters is carried out by maxmtikelihood using a miss-
ing data approachkia the EM algorithm [7]. This technique is certainly the mospplar
approach for inference in mixtures of regressions. Comaidily to a sampl&" = (y*,x*) of
observations, wherg® = (y;,...,Y;;) andx* = (Xj,...,%,), the log-likelihood of model (1.3)
is given by:

K
L(6:y",x") Z'” (2 TR @Y XAk UEZ)> , (2.4)
K=1
with 6 = (m, ..., 1%, A\1,...,\k, 07, ...,0x), and the complete log-likelihood is:

Lc<e;y*,x*,z*>=_;zikln %0y AB 0)) (2.5)

wherez* = (7} )i—1n- k=1k IS the unobserved latent variable, introduced in Sectioan,
assumed to be distributed as a one order multinomfdl, 11}, . . ., 7§ ).



The E step From a current valué@ of the paramete®, the E step of the EM algorithm
consists in computing the conditional expectation of theglete log-likelihood:

Q(6.6'9) = EgualLe(8y" X", 2")ly" X

ti (In(5) +In(@(y XA, 9¢2))) (2.6)
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is the conditional probability for the observatioto belong to the-th mixture component.

t = E[zly",x"] = P(Z = Lly*,x") = 2.7)

The M step The M step of the EM algorithm consists in choosing the va#l{fe>) which
maximizes the conditional expectatiQhcomputed in the E step:

0@V — argmaxQ(6;6(9), (2.8)
6co

where©® is a parameter space depending on the model at hand. For xiegmroportions,
the maximum is as usual reached for:

*

4 — —* t\9, (2.9)

For the residual variances (mod&fg), we have:

oy 2 — thu( (v =AY B2 (2.10)
1t|k !

The reminder of this section details the maximisation ofiithle parameters:

« for modelpM,g: A (@1 is the positive solution of the quadratic equation

(q n* K t(q) . 2
*)\2+/\Zl ti (O B"O) Koo lelk(yl*a—ZBkO):Q
k=1 k=1 k

wherex_o = (X7, .., Xp) is the vectorq without its first component,, and similarly

Br~o= (Bk,-- ~,[3kp)

(a+1)
k

» for modelpMsg: A is the positive solution of the quadratic equation

N n* t(q) * 2
= Ok
wherex’ o = (xil,...,xip) is the vectorxi* without its first componenk;,, similarly
Beo = (Ba: - Bep), andr = 31 9,
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n* Kt(

n* K q
for modelpMyy: A (@D = (Z - Bo ) Z\ZLKZW %" 0Bk~0) Bro,

k— 1 Ok

@+1) n* t_(koi) X n* t(kCi)
for modelpMay: AT = le—zﬁko o =X 0Bi~0) Beos
i=1 Ok of

for modelpMyc: A (@D is the positive solution of the quadratic equation

*t B n* K ti(kq)yi*z

Q2 o

is the positive solution of the quadratic equation

n* t(q) gkt n* t( a),
MAE + Ak Zi'k y(,*;z(, i 'kay'
i= k i= k

For the modepM,q, as two interdependent scalar parameAgrandA; are considered, no an-
alytical formulae are available for the global maximum othbxy andA;. In such a situation,
an easy way to carry out the maximization is to consider aateing algorithm in whiciig
andA; are alternatively maximized. Using such a strategy incaieal in a EM algorithm is
very frequent and, in such a case, the algorithm is callechargézed EM algorithm (GEM,
[7]). Update formulae for these two parameters are consﬂiyue

*)\2_|_AZ |k yl

A|£q+1)

for modelpMa:

=0,

PYCIEI i 1Zk—1tik Bko(y. .NOBkNO)
0
m it Bkoak
andA; (@) s the positive solution of the quadratic system:

n* K +(0)

*Almzlz bt oo~ AT - 33 eyt - A" VB =

k
For the modepMzgq, the same algorithm is considered with the following updatmulas:
1
Alat) STt (v~ AT % oBico)

K = ;
i:ltik BkO

and)ilff“) is the positive solution of the quadratic system:

n* t(Q) 1 n* (q 1
A2+ A1 Y %t oBeo(yr — AT Bro) — (W MgV Bo)? =0.
ModelsM43 andMgy, have respectivelp andp+ 1 scalar parameters plus the residual vari-
ance. A descending algorithm has to be used for alterngtimakimizing the variances (by
(2.10)) and each scalar link parameter. Update formulathitink parameters are the fol-
lowing:



* modelMya, V1< J < p:

B K
Aoty _ ( d k_(x ) L
J i;k; o2 (%3Bk3) ZZ

* modelMyy,, VO < J < p:

o () 255

with Xigp=1forall 1<i<n.

p
JtBkJ<W—Bko— > )\qHXuBkj),

j=1,]4

D (A1)
Xu Bxs (Yf > A ) :

j=0,]7#J

The EM algorithm stops when the difference of the likeliha@due of two consecutive
steps is lower than a given threshaldtypically ¢ = 1075).

2.3 Convergence considerations

Since the parameter estimation is based on an EM algorithrohwiespects the classical
conditions of the EM theory [7], its convergence to a locakimaum of the likelihood is guar-
anteed. Several strategies have been proposed in thedresta initialize the EM algorithm
in order to help the algorithm to reach the global optimumhef likelihood. A popular prac-
tice [2] executes the EM algorithm several times from a randutialization and keeps only
the set of parameters associated with the highest likatihtrothis specific work, initializing
the link parameter witi\ = |4 could also be an interesting alternative since it corredpon
P =P

2.4 Model selection

In order to select the most appropriate model of transfaonamong the 24 transformation
models defined in Section 2, we propose to use two well knower@a. The reader interested
in a comparison of the respective performances of modedsiseh criteria could refer to [11]
for instance. The first considered criterion is the PRES&ron [1], also known as the
cross-validation criterion, which represents the meamsslprediction error computed on a
cross-validation scheme, formally defined by:

PRESS- _iZ(yr —¥i)?,

Wherey(*i) is the prediction of/" obtained by the mixture regression model estimated without
using theith observation of the sampt&. This criterion is one of the most often used for
model selection in regression analysis, and we encouragesé when it is computationally
feasible. The second considered criterion is the Bayesitmrhation Criterion (BIC, [22]),



which is a penalized likelihood criterion with a less congiignal cost. The BIC criterion is
defined by:

BIC = —2In{+vInn®,

where/ is the maximum log-likelihood value andis the number of estimated parameters (see
Table 1). It consists in selecting the models leading to thkdst likelihood while penalizing
models with a large number of parameters. Let us precise fibraboth criteria, the most
adapted model is the one with the smallest criterion value.

3 Bayesian approach for adaptive mixture of regressions

The previous section has considered the modelling and theatin of parametric adaptive
models for mixture of regressions with the classical freqise point of view. This section
adopts a Bayesian approach to infer adaptive mixture oessgns and Gibbs sampling is
considered for the estimation of the posterior distribitio

3.1 A Bayesian view of the problem

The classical treatment of the mixture regression probleeks a point estimate of the un-
known regression parameters. By contrast, the Bayesiaroagp [12, 21] characterizes
the uncertainty on parameters through a probability distion, called a prior distribution.
Bayesian analysis combines the prior information on tharpaters (carried out by the prior
distribution) with information on the current sample (thgh the likelihood function) to pro-
vide estimates of the parameters using the posterior loligton. In the context of adaptive
mixture of regressions, the Bayesian approach makes piartic sense since there is an ac-
tual prior on the model parameters of populati®n Indeed, even though source and target
populations differ, they are here assumed to have a strokghd it is therefore natural to
define the prior on parameters of populat®naccording to the ones of populatién

In the context of mixture of regressions, it is usual to assuhe conditional indepen-
dence between the mixing parametarsand both component paramet@s= {f;,...5<}
ando*? = {0;?,...,0;%}. The independence betweéB, 0;2) and (B}, 0;?) is as well as-
sumed for alk # ¢, k, ¢ = 1, ..., K. For simplicity, only conjugate priors are considered i3 th
work and, since model parameters of the reference popuolBt@re assumed to be known,
prior distributions of the parameters of populatlinwill depend on model parameters of the
populationP. We therefore propose to assume that, fokaH 1,...,K, the prior distribution
for B¢ is a normal distribution centred By:

B ~ A (Be, 0 A,

whereAy is a (p+ 1) x (p+ 1) covariance matrix. The prior distribution @2, for all
k=1,...,K, is assumed to be an inverse-gamma distribution:

Gljz ~ jg(”(? Vk)'
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The prior distribution for parameters' = {r,..., 7§ } is assumed to be a Dirichlet distribu-
tion centred in the mixing proportiori$a, ..., i ) of populationP:

m~2(m,..,Tk).

With such a modelling, the regression coefficigBfsand the mixing proportions* = {11, ..., 7§ }
of populationP* are naturally linked to the ones of populatiBn The variance termsljzAk
control how the regression coefficierfi$ differ from the ones of the reference populati®n
In the experiments presented in Section 4, the prior paemsigt, y andAg, k= 1,....K,
were respectively set to 1, 2 and the identity matrix.

Finally, by combining the likelihood of the mixture of regsons model and the priors,
we end up with the joint posterior distribution:

Nk K K
PO YO | > meolyix*Be, ok ﬂ P(B 1o P(0?)]
1|1 K—

where8* = (157, B¢, 0y )k=1.k. However, since the posterior distributipo*|Y*) takes into
account all possible partitions of the sample iKtgroups, the maximization gi(6*|Y*) is
intractable even with moderately large sample size and Ma@hain Monte Carlo methods
have to be used.

3.2 Gibbs sampler for adaptive mixture of regressions

Markov Chain Monte Carlo methods allow to approximate a darated distribution by using
samples drawn indirectly from this distribution. Among MCMnethods, the Gibbs sampler
is the most commonly used approach when dealing with mixdigteibution ([8]). In Gibbs
sampling, the vector paramei@t is partitioned intes groups of parametef®d;, ..., 65} and a
Markov chain is generated by iteratively sampling from tbeditional posterior distributions.
Once a Markov chain of lengi@ has been generated, sample values can be averaged on the
last sampling iterations to provide consistent estimatesadel parameters. In the context
of inference for mixture distribution, the Gibbs sampleguies to add a latent variabl& <
{0,1}K representing the allocation of observations tokhmixture components (introduced
in Section 2). Since the latent varialdé is not observed/* can be viewed as unknown and
should be estimated along with the other model parametesgsétjuently, given estimates
B and 7t of respectively regression parameters and mixing propastof populatiorP and
starting from initial valuest*(©, g*(9 andg*29, the Gibbs algorithm generates, at iteration
g, parameter values from the conditional posterior distidns:

Z|Y*, B, fi, (@Y gra-1) ge2a-1))
7Y, B, 71,250, gHaD) gr2a-1)),
G;Z‘Y*,f;, i Z*(q), n*(Q)’B*(q_l)),
BEY*, B, fr, 25 (@ g+2a-1)y,

Z*(q) ~ p
n*(q) ~ p
Oy ~ P
BE(Q) ~ p

A~~~ I/~ I/~

11



According to the priors given in the previous paragraph cthreditional posterior distribution
of Z* is a multinomial distribution:

ZﬂY*aBa ﬁ? n*aﬁ*7 0*2 ~ %(]wtil? "'7tiK)7

wherety = 15 @(y X8, 0¢2) ) s K T oy X B}, 0;?), and the conditional posterior distri-
bution of rt* is a Dirichlet distribution:

r[*‘Y*7B7 ﬁ7z*7ﬁ*70*2 ~ @(ﬁl+n>{7“'7 flk—i—n?()?

with n; = 5, Z,. Once the component belongings of each observation are rknthe
observations of the same compon&ntan be gathered into the matriogsandY,’, for all
k=1,...,K. With these notations, the conditional posterior disttidu of 0;2 IS an inverse
gamma: )

al;kz‘Y*7B7 ﬁaz*7 77*7/3; ~ fg(M(+ nk/2, Vk+s</2)7
whereS = (Y7 =X B (Ye =X Be) + (Be— Be) A+ (%) 1) (B« — By), and the con-
ditional posterior distribution of; is a normal distribution:

BUY* B Z T, 0f% ~ A (M ).
with
Me = (A0 06 + A B,
N = G HAL L
Finally, consistent estimates of model parametgrg* ando*? are obtained by averaging on

the lastQ — qo sampling iterations, wheg, defines the number of iterations of the so called
“burning phase” of the Gibbs sampler.

3.3 The label switching problem

When simulating a Markov chain to estimate parameters ofkéuma model, the label switch-
ing problem frequently arises and is due to the multimogalitthe likelihood. Indeed, if
the prior distributions are symmetric, the posterior distiion inherits the multimodality of
the likelihood. In such a case, the Markov chain can move foo mode to another and it
is difficult to deduce consistent estimators of model patarse The earliest solution, pro-
posed by [20], consists in adding identifiability consttaion model parameters such as an
order relation in mixing proportions. Unfortunately, tl@pproach does not work very well
as showed by [6]. By contrast, some authors like [6] and [24ppse to worka posteri-

ori on the generated Markov chain in order to reorganize it aogrto a specific criterion.
The Stephens’ procedure reorganizes the Markov chain loglsag the correct permutations
of mixture component which minimizes a divergence criteridhe solutions proposed by
Celeuxet al. are in the same spirit and, among the different proposeeri@jtthey propose
in particular to reorganize the Markov chain using a seqakktmeans algorithm. Both
the Stephens and Celeux’s approaches are efficient to diéethei label switching problem.
However, the sequenti&tmeans algorithm has the advantage to be less memory camgumi
and, in the experiments presented in Section 4, this apprgagsed to overcome the label
switching problem.

12
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Figure 2: PopulationB andP* used for the introductory example. Curves black (left) adl r
(right) indicates respectively the actual mixture regi@ssf populations® andP*.

4 Experimental results

This section proposes experiments on simulated and realidarder to highlight the main
features of the adaptive models proposed in the previousasc After an introductory ex-
ample, the ability of BIC criterion to select the best modehvestigated on simulation in a
second experiment. In a third experiment, the behavioudaptve mixtures of regressions
(parametric and Bayesian) is compared to the one of cldssigtures of regressions on sim-
ulated data. The last experiment will demonstrate the estesf using adaptive mixtures of
regressions on an illustrative real dataset, and whereizbeo§the target population sample
will be artificially moved from small to larger sizes.

4.1 Anintroductory example

This first experiment aims to compare the basic behaviousdaptive mixtures of regressions
(parametric and Bayesian), hereafter referred to as AMBogetively AMRp and AMRD),
and classical mixtures of regressions, referred to as MR1His study, the reference pop-
ulation P is modelled by a 2 component mixture of quadratic polynomegressions with
parameterg; = (3,0,—2), 01 =1, B = (—3,0,0.5) and o, = 0.75. The covariate is uni-
formly distributed on [-3,3] and the sample size BPis n =1 000.

The left panel of Figure 2 shows the mixture regression olupatpn P as well as some
observations simulated from this model. The mixture modgopulationP* has then been
obtained from the previous model by multiplying all regieasparameters of populatidd
by a factor 3. It follows thap3; = (9,0,—6) andf; = (—9,0,1.5). Finally, 20 observations
of populationP* have been simulated using the latter mode[®®], which therefore corre-
sponds to a censured model. The right panel of Figure 2 sHmadtual mixture regression
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Figure 3. Results obtained for the introductory exampléhe Bayesian approach of adap-
tive mixture of regressions (AMRDb). From left to right: mmg proportions over the MCMC
iterations, Gibbs sampling in the parameter space and sbiine generated regression curves.
See text for detalils.

model of populatiorP* as well as the 20 simulated observations (red trianglegs@ R0 ob-
servations oP* were used by the three studied regression methods to estihgategression
model ofP* and to predict the value of 5000 validation observation8*ofThe mean square
error (MSE), computed on the validation sample, has beeserthto evaluate the predicting
ability of each regressions method in this introductoryregke. Since mixture of regressions
provideskK predictions (one prediction per mixture component), theBW&lues reported in
the following experiments are, for each observation, themmim of theK prediction errors.

Figure 3 illustrates the estimation procedure of the Bareapproach on this toy dataset.
The MCMC procedure was made of 1 000 sampling iterationsighioly a burning phase of
100 iterations. The left panel of Figure 3 shows the sampteggrtions over the MCMC
iterations. As one can see, after the burning phase, thegrops of both mixture compo-
nents stabilize in the neighbourhood of 0.5 which is thealatalue ofrs, andr. The central
panel presents the sampled values for regression paraetend 3, in the parameter space
(restricted tgB«; and B3 for k = 1,2 because botfi1» and 32, are both equal to 0). The blue
and green dashed lines indicate at the intersections thelaetiues of regression parameters.
It appears that the Bayesian approach succeeds in estinhérconditional distributions of
regression parameters. Finally, the right panel exhiloitsesof the 1 000 regression models
generated during the MCMC iterations which are then useddwige by averaging the final
estimated regression modelef.

Figure 4 presents the results obtained for the considerachghe with the classical mix-
ture of regressions (MR), parametric adaptive mixture gfessions (AMRp) and Bayesian
adaptive mixture of regressions (AMRb). The MR method uselg the 20 observations
sampled fromP* whereas AMR and AMRb combines the informations carried @géhob-
servations with the knowledge d¢hto build their estimation of the mixture regression model
of P*. In order not to favour the adaptive approaches, the actwaber of components and
dimension of the polynomial regression were also provideti¢ MR method. Nevertheless,
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Figure 4: Results obtained for the introductory exampléwiaissical mixture of regressions
(MR), parametric adaptive mixture of regressions (AMRpJ &ayesian adaptive mixture of
regressions (AMRDb) methods. See text for details.

the MR method provides a poor estimate of the regression haodkits mean square error
(MSE) value, computed on a independent validation set,nseguently high (3704). Con-
versely, the parametric (with the modaMs;) and Bayesian approaches of AMR give good
estimations of th&* model (they should be compared to the red curves of Fig. 3.a8s0-
ciated MSE values are naturally much lower than the one otldsical MR method (28

for AMRp and 452 for AMRD). Nonetheless, the Bayesian approach perforsstlean the
parametric AMRp. This could be due to the fact that AMRD fagoiwo much the prior (the
regression parameters®yin this situation with only few observations of the new plaion.
This introductory example has shown that adaptive regyassiodels succeed in transferring
the knowledge of a reference population to a new population.

4.2 Model selection

In this second experiment, we investigate the ability of BiGelect the best AMRp model, in
the same condition as for the previous experiment. Forwes;arry out simulations accord-
ing to the different AMRp models and estimate a mixture ofresgions on these simulated
data with usual mixture of regression (MR) on both populai¢ andP*) and with the ten
AMRp models V25 to Myp). The experimental setup is as follows:

 asin the previous experiment, the reference popul&ismmodelled by a 2 component
mixture of quadratic polynomial regressions with paramsefe = (3,0,—2), 03 =1
andp,; = (—3,0,0.5), 2 = 0.75. The sample size fé? is n = 500.

» 10 scenarios have been used to define the mixture mod&l,aforresponding to the
ten AMRp modeldVip; to My, with the following link parameters (with the same no-
tation as in Section 2)A = 2 for the modeldMz,, Moy andMyc; (Ao, A1) = (4,2) for
MZd; (A]_,Az) = (2, 4) for Mag, Mgb andMgc; (/\10,/\20,A11,A21) = (3, 5, 2, 1/4) for Mgd;
(A1,A2) = (4,2) for Maa; A = diag(3,2,3/2) for Mg,. According to the resulting model
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model of estimated model selected
simulation MR onP Mog M3a Mzp Mz Mzqg Mya Map MR on P* by BIC
v 36.03 26.89 3.14 1175 1310 353 3.93 8.78 580.03 3.81
2 0 4 7 0 1 0 0 0 0
M 10.11 10.23 19.82 2.82 54.52 2.90 9.45 3.59 296.25 4.00
2 0 9 0 20 0 0 1 0 0
M 23.40 3.30 1551  18.38 3.33 354 1331 5.88 486.14  4.06
2 0 4 1 0 21 0 1 0 0
M 45.54 19.15 | 80.73 1824 17627 3.89  46.95 6.24 114396 56.22
2d 0 48 2 0 5 8 10 4 1
M 52.047 16.33 1671 9705 18300 3.56 1827 4407 423 2567  37.07 679.00| 10.10
3a 0 31 0 1 1 57 0 0 1 9 0 0
M 33.36 323939 1110  72.18 3555  116.35 2.92 | 53.55 731 4063  30.67 457.00 | 22.28
30 0 0 0 22 6 1 55 3 6 6 1 0
M 39.36 195460  30.36  63.68 22.81 80.83 2439 3.75 476 5599  51.95 813.34 | 33.60
3¢ 0 0 0 35 3 1 0 46 1 9 4 1
M 71.45 21843.85 3529  759.19  69.30 9240  16.I4 534369 | 14739 5244 949.45 | 122.43
3d 0 1 0 5 10 2 3 22 37 9 10 1
M 37.21 2.79 1891  12.00 17.04 277 11.60 9.9 2872803 | 7.60 341.85 2.79
4 0 89 0 0 1 10 0 0 0 0 0 0
M 22.02 2821.82 729  149.97 6.62 49.62 6.93 89.78 6.17  53503.50 637.25 9.44
4b 0 0 16 2 37 0 2 1 10 2 30 0

Table 2: Average MSE value (top number) and number of BICcsele (bottom number)
for the 10 AMRp models, usual mixture of regression (MR)PoandP*, for 10 scenarios of
simulation corresponding to each AMRp models.

for P*, a dataset of size* = 20 is simulated. The simulation are repeated 100 times in
order to average the results.

» for each scenario, MR on both populatiosand P*) and the ten AMRp modelsio,
to My, are estimated.

For each model of simulation and each estimated model, Taptesents: the average MSE,
evaluated on a validation dataset of size 5 000 and averagedhe 100 simulations and the
number of times the estimated model has been selected by@heriBerion. The last column
gives the average MSE for the model selected by BIC.

These experiments show that the asymptotic BIC criteriondrelatively well the true model
(the one used for the simulations), even in this difficuliaiton in which the sample size for
P* is small f* = 20). Let us notice that, since i the second coefficient ¢§; and 3, is

0, the modeMy, is here equivalent t¥,, which is logically selected by BIC since it is less
complex tharMy,. Moreover, the BIC criterion leads generally to choose nwdgth lower
MSE than MR orP or P* (a bad model choice by BIC could nevertheless drasticatiyattes
the average MSE, as for instance for the simulations acegrdiM,q or M3g). Finally, this
experiment confirms the good comportment of the EM algoritthinthe estimation of AMRp
models parameters, since MSE values are most of the timer bettthe model used for the

simulation than for MR.

4.3 Influence of the size of5*

This experiment focuses now on the influence of the numbebséwation* from the new
populationP* on the estimation quality of mixture regression modelstfierMR, AMRp and
AMRD methods. The experimental setup is the same as for pheriexent of Section 4.1, ex-
cept that the number of observatiamsfrom the new populatioR* varies from 6 to 200. For
each value of*, the regression model & has been estimated with the three studied methods

16



— Mixture of reg.
---- AMR (parametric)
AMR (Bayesian)

50 100 150 200

Size of S*

Figure 5: Median logarithm of the MSE value according to the size ofS" for the clas-
sical mixture of regressions (MR), parametric adaptivetarix of regressions (AMRp) and
Bayesian adaptive mixture of regressions (AMRb) methods.

and the associated MSE values have been computed again depeident validation set of
5 000 observations. Finally, the experiment has been @gplic50 times in order to average
the results. Figure 5 shows the evolution of the median ltgarof the MSE value according
to the the size of* for the classical mixture of regressions (MR), parametdapive mix-
ture of regressions (AMRp) and Bayesian adaptive mixturegfessions (AMRDb) methods.
For the classical mixture of regressions, the multiplgah#ation strategy discussed in Sec-
tion 2.3 is used in order to avoid bad initializations of the Blgorithm. For the parametric
approach of the AMR method, the model use@hds.. Associated boxplots are presented by
Figure 6 on a logarithmic scale.

On view of Figure 5, it can be first noticed that the perfornean€ the classical MR
method is, as expected, sensitive to the the siz8 oflndeed, for small sample sizes, the
MR method provides poor estimates of the mixture regressiodel of populatiorP* and
this consequently yields poor prediction performancag@®SE values). Again, as one can
expect, the model estimation and the prediction improvenwthe number of observations
n* from the new populatio®* increases. More surprisingly, as it can be observed on the
left panel of Figure 6, the variance of the prediction perfance of the MR method remains
large for sample sizes bigger than 100, even with the maeltiptialization strategy. This
remind us that the fitting of a mixture regression model isagisva difficult and sensitive
task. Conversely, the adaptive methods AMRp and AMRb whigblagt their knowledge
on the reference population obtain on average good predicgisults (low MSE values) and
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Figure 6: Boxplots of MSE values (on logarithmic scale) adow to the the size o%* for
the classical mixture of regressions (left), parametrapdidle mixture of regressions (centre)
and Bayesian adaptive mixture of regressions (right) nostho

this even for very small numbers of observatiaris In particular, the parametric approach
AMRp provides very stable prediction results and its vazedecreases quickly wheri
increases. The Bayesian approach AMRD, even though it idrefiicient and stable than
the classical MR method, appears to be slightly less effidigan the parametric approach
AMRp. To summarize, this study on simulations has shownddaptive regression models
greatly improve the prediction and reduce the predictoravae compared to the classical
mixture regression approach when the number of obsengatibiiie new population is small.

4.4 lllustration on real data: CO, emissionsvs gross national product

In this last experiment, the link between €@mission and gross national product (GNP) of
various countries is investigated. The sources of the datd@lee official United Nations site
for the Millennium Development Goals Indicat@sd theWorld Development Indicators of
the World Bank Figure 7 plots the C®emission per capitaersusthe logarithm of GNP per
capita for 111 countries, in 1980 (left) and 1999 (right). Atuare of second order polynomial
regressions seems to be particularly well adapted to fiethata and will be used in the sequel.
Let remark that regression model with heteroscedastiotyccalso be appropriated for such
data, but these kind of models are out of the topic of the pteserk. For the 1980’s data,
two groups of countries are easily distinguishable: a finstomty group (about 25% of the
whole sample) is made of countries for which a grow in the G&llhked to a high grow of
the CQ emission, whereas the second group (about 75%) seems toroagesnvironmental
political orientations. As pointed out by [12], the studysafch data could be particularly
useful for countries with low GNP in order to clarify in whicevelopment path they are
embarking. This country discrimination into two groups ismn difficult to obtain on the
1999's data: it seems that countries which had high @@ission in 1980 have adopted a
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Figure 7: Emission of C®per capitaversusGNP per capita in 1980 (left) and 1999 (right).

more environmental development than in the past, and a orgeonent mixture regression
model could be more difficult to exhibit.

In order to help this distinction, parametric adaptive migtmodels are used to estimate
the mixture regression model on the 1999’s data. The ten AMBgels, with free component
proportionsrt;, pMpa to pMg,, AMRb model, classical mixture of second order polynomial
regressions with two components (MR) and usual second @agnomial regression (UR)
are considered. Different sample size of the 1999's datteated: 30%, 50%, 70% and 100%
of the S size fi* = 111). The experiments have been repeated 20 times in or@eetage
the results. Table 3 summarizes these results: MSE comdspo the mean square error,
whereas PRESS and BIC are the model selection criteriadintex in Section 2.4. In this
application, the total number of available data in the 1988upation is not sufficiently large
to separate them into two training and test samples. Forghson, MSE is computed on the
whole S sample, even though a part of it has been used for the tra{froign 30% for the
first experiment to 100% for the last one). Consequently, NkS& significant indicator of
predictive ability of the model when 30% and 50% of the wha¢adet are used as training
set since 70% and 50% of the samples used to compute the MSknremdependent from
the training stage. However, MSE is a less significant irtdicaf predictive ability for the
two last experiments and the PRESS should be preferred se thieuations as indicator of
predictive ability.

Table 3 first allows to remark that the 1999’s data are agtuadlde of two components as
in the 1980’s data since both PRESS and MSE are better for Mir{tbonents) than UR (1
component) for all sizes® of S*. This first result validates the assumption that both therref
ence populatio® and the new populatioR* have the same numbKr= 2 components, and
consequently the use of adaptive mixture of regression sisdéese for this data. Secondly,
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30% of the 1999's datan{ = 33) 50% of the 1999’s datan{ = 55)

model BIC PRESS| MSE model BIC PRESS| MSE
AMRp (pM2a) | 13.09 3.38 | 3.40 AMRp (pM,) | 10.18 4.11 | 3.44
AMRp (pMga,) | 12.73  3.89 | 3.32 AMRp (pMy2,) | 13.54  3.73 | 3.37
AMRp (pMg) | 12.79  5.48 | 3.68 AMRp (pMy) | 13.89  4.25 | 3.45
AMRp (pMyg) | 11.54  4.99 | 3.73 AMRp (pMyg) | 22.35  4.38 | 4.80
AMRp (pMsa) | 12.14  4.20 | 3.76 AMRp (pMsa) | 12.00 3.84 | 4.49
AMRp (pMs3y) | 11.72  4.87 | 4.00 AMRp (pMsp) | 12.00  4.47 | 3.86
AMRp (pMs) | 11.50 5.09 | 3.86 AMRp (pMs) | 17.53  3.97 | 3.28
AMRp (pMsg) | 22.83  5.52 | 3.64 AMRp (pMsq) | 25.39  4.77 | 3.67
AMRp (pMgy) | 18.72  5.15 | 4.01 AMRp (pMg,) | 20.65 3.68 | 3.44
AMRp (pMg,) | 22.01  6.21 | 5.04 AMRp (pMgy) | 24.92 557 | 4.19
AMRb - (t) | 5.99 AMRb - (t) | 5.66
UR 27.08 7.46 | 7.66 UR 20.87 7.95 | 7.21
MR 32.89 554 | 5.11 MR 39.69 4.82 | 4.77
70% of the 1999’s datan{ = 77) (n*=111)
model BIC PRESS| MSE model BIC PRESS| MSE
AMRp (pM2a) | 14.76 3.65 | 3.35 AMRp (pM2,) | 1551  4.78 | 3.32
AMRp (pMga,) | 1473 3.91 | 3.39 AMRp (pMy2,) | 15.44  3.81 | 3.37
AMRp (pMy) | 14.53 4.49 | 3.53 AMRp (pMy) | 15.39 4.84 | 3.47
AMRp (pMpg) | 18.90  4.30 | 3.72 AMRp (pMyg) | 20.05  4.45 | 3.59
AMRp (pMs,) | 18.84  4.33 | 3.85 AMRp (pMsa) | 20.18  4.29 | 3.79
AMRp (pMs3y) | 18.80  4.40 | 3.85 AMRp (pMsp) | 20.03  4.38 | 3.77
AMRp (pMs) | 18.81  4.41 | 3.26 AMRp (pMs) | 20.05  3.94 | 3.10
AMRp (pMsg) | 27.05  3.91 | 3.17 AMRp (pMsg) | 29.37  4.08 | 3.34
AMRp (pMga) | 22.29  5.25 | 4.00 AMRp (pMgy) | 23.98  4.21 | 4.13
AMRp (pMg) | 26.55  4.92 | 4.03 AMRp (pMgp) | 28.58 521 | 4.52
AMRb - (t) | 5.99 AMRb - (t) | 5.66
UR 22.08 8.00 | 7.10 UR 2362 7.53 | 6.99
MR 4391 5.06 | 3.33 MR 47.19 3.66 | 2.89

Table 3: MSE on the whole 1999’s sample, PRESS and BIC aitdor the 10 parametric
adaptive mixture models (AMRpMy, to pMgy), AMRDb model, usual regression model (UR)
and classical regressions mixture model (MR), for 4 sizeth®f1999’s sample: 33, 55, 77
and 111 (whole sample). Lower BIC, PRESS and MSE values fdn sample size are in
bold character(t): Cross-validation on MCMC procedures is too computatilgra¢avy to
be computed in a reasonable time.
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AMRp turns out to provide very satisfying predictions fol @hlues ofn* and particularly
outperforms the other approaches whérs relatively small (less than 77 here). Indeed, both
BIC, PRESS and MSE testify that the models of AMRp providadsgiredictions than the
other studied methods wher is equal to 30%, 50% and 70% of the whole sample. Further-
more, it should be noticed that ARMp provide stable resudtoading to variations on*. In
particular, the modelpM, are those which appear the most efficient on this datasetresd t
means that the link between both populati®r@dP* is mixture component independent. On
the other hand, the Bayesian approach AMRb appears to groegiilts as stable as the ones
of AMRp but slightly less satisfying. The results of the Bsiga approach would probably
be better with a more specific choice of the priors.

This application illustrates well the interest of combiinformations on both past (1980)
and present (1999) situations in order to analyse the limkéd@n CQ emissions and gross
national product for several countries in 1999, especialiyen the number of data for the
present situation is not sufficiently large. Moreover, tbenpetition between the parametric
AMR models is also informative. Effectively, it seems tHatgte models are particularly well
adapted to model the link between the 1980’s data and thak@38's data;pMz,, pMyy and
pMx.. The specificity of these models is that they consider theesaamsformation for both
classes of countries, which means, conversely to what oghatiprima faciehave thought,
that all the countries have made an effort to reduce theis @0issions and not only those
which had the higher ones.

5 Conclusion

We proposed in this paper adaptive models for mixture ofaggjons in order to improve the
predictive inference when the studied population has cbabgtween training and prediction
phases. The first class of models considers a parsimoni@upaametric link between the
mixture of regressions of both populations, whereas thergkapproach adopts a Bayesian
point a view in which the populations are linked by the pridormation imposed on the mix-
ture regression parameters. On both simulated and reglrdatiels considering parametric
link turn out to be the most powerful: all the interest of sadaptive methods consists in
their sparsity, which leads to significantly decrease thaler of observations of the target
population required for the estimation. As the indispetesatage of data collecting is often
expensive and time consuming, there is a real interest tsidenadaptive mixture of regres-
sions in practical applications. Moreover, as it has beawsld in the illustration on real
data, the competition between the parametric link modeadgiges informations on the link
between populations, which can be meaningful for the prangr.

Regarding the further works, a first perspective conceradBtyesian approach. In this
paper, the prior hyperparameters ﬁ;iz were simply fixed to values seeming experimentally
reasonable. The results of the Bayesian approach may bewsgbby working on the choice
of these hyperparameters. One generic way to do this is tee meekilar assumptions as
in the frequentist approach. For instance, the varianjc%!\k of the regression parameters
B¢ could be assumed to be common between mixture componendsber équal toa;zld.
The selection between the considered assumptions coutdbtelone by choosing those
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maximizing the integrated likelihood [19]. A second worgiperspective is related to the
joint estimation of the models of both populatidagandP*. Indeed, the reference regression
model being only estimated in practice, the quality of tleBreation, depending on the size
n of the available sample, is directly responsible of thenestion quality of the mixture
regression model fdP*. In some situations (typically whamis small compared to the model
complexity), it could be interesting to consider a full likeod estimation which consists
in estimating simultaneously both mixture regression ned&uch an approach has been
recently considered in [16] in the supervised classificationtext. It must be emphasized
that such a full likelihood estimation of both mixtures ofression must consider the same
estimation method (parametric or Bayesian) for both pdpris.
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