
HAL Id: hal-00477597
https://hal.science/hal-00477597v3

Submitted on 13 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive mixtures of regressions: Improving predictive
inference when population has changed

Charles Bouveyron, Julien Jacques

To cite this version:
Charles Bouveyron, Julien Jacques. Adaptive mixtures of regressions: Improving predictive inference
when population has changed. Communications in Statistics - Simulation and Computation, 2014, 43
(10), pp.22. �10.1080/03610918.2012.758737�. �hal-00477597v3�

https://hal.science/hal-00477597v3
https://hal.archives-ouvertes.fr


Adaptive mixtures of regressions: Improving
predictive inference when population has changed

C. Bouveyron1 and J. Jacques2,3,4

1Laboratoire SAMM, EA4543, University Paris I Panthéon-Sorbonne, Paris, France
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Abstract

The present work investigates the estimation of regressionmixtures when population
has changed between the training and the prediction stages.Two approaches are pro-
posed: a parametric approach modelling the relationship between dependent variables of
both populations, and a Bayesian approach in which the priors on the prediction popu-
lation depend on the mixture regression parameters of the training population. The rele-
vance of both approaches is illustrated on simulations and on an environmental dataset.
Key words: Transfer learning; Mixture of regressions; Switching regression; EM algo-
rithm; Bayesian inference; MCMC algorithm.

1 Introduction

The mixture of regressions, introduced by [10] as the switching regression model, is a popular
regression model in order to model complex system. In particular, the switching regression
model is often used in Economics to model phenomena with different phases. This model
assumes that the dependent variableY ∈ R can be linked to a covariatex = (1,x1, ...,xp) ∈
R

p+1 by one ofK possible regression models:

Y = xtβk +σkε, k = 1, ...,K (1.1)

with prior probabilitiesπ1, . . . ,πK (with the classical constraint∑K
i=1πk = 1), whereε ∼

N (0,1), βk = (βk0, ...,βkp) ∈ {β1, . . . ,βK} is the regression parameter vector inR
p+1 and

σ2
k ∈ {σ2

1 , . . . ,σ2
K} is the residual variance. The conditional density distribution of Y givenx

is therefore:

p(y|x) =
K

∑
k=1

πkφ(y|xtβk,σ2
k ), (1.2)

whereφ(·|xtβk,σ2
k ) is the univariate Gaussian density parametrized by its meanxtβk and vari-

anceσ2
k . Among the works which focused on this model, we can emphasize the following
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Figure 1: Learning process of transfer learning for the regression mixture model.

ones which have contributed to the popularity of this model:[12] proposes a Bayesian infer-
ence for the model estimation, [30] studies the asymptotic theory of parameter estimators in
order to define hypothesis tests, and [14] considers variable selection for this specific regres-
sion model.

The present paper focuses on the problem of using a mixture regression model for pre-
diction when the modelled phenomenon has changed between the training stage, which has
led to the parameter estimation, and the prediction stage. More precisely, we assume that
model (1.1) has been estimated with a sample from a given training population, let us sayP,
(of size large enough to have a satisfying estimation quality), and we want to use it to predict
the dependent variableY for a new population, let us sayP∗, which could be different from the
training one. For instance, the difference between both populations can be due to a switch in
the covariate distribution or to a variation of the link between the covariates and the dependent
variable. The goal is then to transfer the knowledge from thetraining (source) population to
the prediction (target) population. This task is usually known astransfer learning(see [18] for
a complete survey), and can be summarized by Figure 1 in the case of the regression mixture
model.

We now give some application examples of transfer learning.In a biological context, [3]
and [13] proposed models for clustering male and female birds: the source population consists
of birds from a common species whereas the target populationis composed of birds from a
rarer species. Another application concerns the problem ofsentiment classification as consid-
ered by [4]. As the review data can be very different among several type of products, there is
a need to collect a large sample of labelled data for each product in order to train a specific
review-classification model per product. The use of transfer learning techniques allows to
adapt a sentiment classifier from one product to another one.In [5], the authors predict house
prices from house features for a city of the USA West Coast (San Jose, California) by adapt-
ing a regression model learned with data issued from anothercity stated on the East Coast
(Birmingham, Alabama). The use of a transfer learning modelallows to spare an additional
and expensive collect of training data for the target population (San Jose housing in this appli-
cation). [17] and [29] consider applications in text classification and WiFi localisation. More
examples can be found in [18].
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1.1 Related work

Transfer learning is a particularly active research field since the NIPS-95 workshop “Learn-
ing to Learn”, in which the need for machine learning methodsreusing previously learned
knowledge was exhibited. Contrary to previously cited works in the classification context
([3, 13]), in which the data of the target population can be unlabelled, the regression purpose
need to observe at least some couples(yi,xi) in the target population. In this case, we speak
of inductivetransfer learning. Readers interested in a comprehensive review can refer to [18].

Most of the methods allowing to treat such a setting are especially designed for estimating
simultaneously the parameters of both source and target populations (we speak ofmulti-task
learning), but can easily be adapted for transfer learning. They consider either a Bayesian or
a regularization framework. Typically, in the Bayesian approach, each task is assume to share
the same prior (see [15] for instance). In the regularization framework, parameters between
models for source and target population are assumed to be linked (see [9] in a SVM context
for instance).

In the regression context,Covariate Shiftis a specific transfer learning problem consider-
ing that the probability density of the covariates in the target population is different from the
one of the source population. However, the relationship between covariates and dependent
variable is assumed not to have changed ([23, 25, 26, 27, 28]). Thus, if the regression model
is exactly known, a change in the probability distribution of the explanatory variables is not
a problem. Unfortunately, this is never the case in practiceand the regression model esti-
mated with the training data could be very disappointing when applied to data with a different
probability distribution.

The originality of our work consists in introducing parametric models allowing to link the
source and target populations. A more conventional Bayesian approach is also investigated,
and comparison of both approaches are carried out on simulation and real data.

1.2 Problem formulation

Assuming that the target populationP∗, for which we want to predictY, is different from the
source populationP, the mixture regression model forP∗ can be written as follows:

Y∗ = x∗tβ ∗
k +σ∗

k ε∗, (1.3)

p(y∗|x∗) =
K∗

∑
k=1

π∗
k φ(y∗|x∗tβ ∗

k ,σ∗
k

2),

with ε∗ ∼N (0,1), β ∗
k ∈ {β ∗

1 , . . . ,β ∗
K∗} andσ∗

k ∈ {σ∗
1 , . . . ,σ∗

K∗}. Let us now precise the focus
of this paper by making the three following assumptions:

H1 : the couples of variables(Y,x) and(Y∗,x∗) are assumed to be the same but measured
on two different populations.

H2 : the sizen∗ of the observation sampleS∗ = (y∗i ,x
∗
i )i=1,n∗ of populationP∗ is assumed

to be small compared to the number of observations of the source populationP. Other-
wise, the mixture regression model could be estimated directly without using the source
population.
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H3 : as both populations have the same nature, each mixture is assumed to have the same
number of components (K∗ = K).

Under these assumptions, the goal is then to predictY∗ for some newx∗ by using both samples
S= (yi ,xi)i=1,n andS∗. The challenge consists therefore in exhibiting a link between both
populations.

1.3 Organization of the manuscript

The reminder of this work is organised as follows. Section 2 proposes a first solution to im-
prove the predictive inference on the target population by defining parametric models for the
link between mixture regression models of both populations. This approach has the advantage
to lead to interpretable results, which should help the practitioner in analysing the differences
between the source and target populations. An alternative Bayesian approach, most frequent
in transfer learning, is presented in Section 3. The link between regression models is then
formulated through prior densities on the target population. The advantage of this strategy is
its flexibility which can fit into different situations, if the prior densities are well chosen. In
Section 4, the performance of both the parametric and the Bayesian approaches is first illus-
trated on simulations. Then, the proposed strategies are compared to classical methods on an
environmental dataset. Section 5 finally proposes some concluding remarks and directions for
future works.

2 Parametric approach for adaptive mixture of regressions

This section presents a parametric approach which consistsin modelling the link between
training and test populations by a parametric relationshipbetween the regression parameters.

2.1 Parametric models to link the reference and test populations

Let us first introduce a latent variableZ∗ ∈ {0,1}K representing the belonging of observations
to theK mixture components,i.e. z∗ik = 1 indicates that thei-th observation(x∗i ,y

∗
i ) comes

from thek-th component andz∗ik = 0 otherwise. Conditionally to an observationx of the co-
variates, we would like to exhibit a distributional relationship between the dependent variables
of the same mixture component such thatY∗

|x,z∗ik=1 andψk(Y|x,zik=1) have the same probability

distribution, withψk a function fromR to R.
Let βk andβ ∗

k (1≤ k≤K) be respectively the parameters of the mixture regression models
in the source and the target populations (Equations (1.1) and (1.3)). We assume in this section
that the functionψk, exhibiting the link between the source and target populations, is such
that:

β ∗
k = Λkβk, whereΛk = diag(λk0,λk1, . . . ,λkp) (2.1)

σ∗
k is free,
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wherediag(λk0,λk1, . . . ,λkp) denotes the diagonal matrix containing(λk0,λk1, . . . ,λkp) on its
diagonal. The interest of introducing such a link lies in thereduction of the number of pa-
rameters to estimate for the mixture regression model forP∗. In the sequel, we go further
by introducing some constraints onΛk andσ∗

k in order to define a family of parsimonious
models, which includes many of the situations that may be encountered in practice:

• M1 assumes both populations are the same:Λk = Id is the identity matrix (σ∗
k = σk),

• M2 models assume the link between both populations is covariate and mixture compo-
nent independent:

– M2a: λk0 = 1, λk j = λ andσ∗
k = λσk ∀1≤ j ≤ p,

– M2b: λk0 = λ , λk j = 1 andσ∗
k = σk ∀1≤ j ≤ p,

– M2c: Λk = λ Id andσ∗
k = λσk,

– M2d: λk0 = λ0, λk j = λ1 andσ∗
k = λ1σk ∀1≤ j ≤ p,

• M3 models assume the link between both populations is covariate independent:

– M3a: λk0 = 1, λk j = λk andσ∗
k = λkσk ∀1≤ j ≤ p,

– M3b: λk0 = λk, λk j = 1 andσ∗
k = σk ∀1≤ j ≤ p,

– M3c: Λk = λkId andσ∗
k = λkσk,

– M3d: λk0 = λk0, λk j = λk1 andσ∗
k = λk1σk ∀1≤ j ≤ p,

• M4 models assume the link between both populations is mixture component indepen-
dent (σ∗

k free):

– M4a: λk0 = 1 andλk j = λ j ∀1≤ j ≤ p,

– M4b: Λk = Λ with Λ a diagonal matrix,

• M5 assumesΛk is unconstrained, which leads to estimate the mixture regression model
for P∗ by using onlyS∗ (σ∗

k free).

Let us remark that other transformation models could be defined, in particular by considering
that only the variance component is different between the source and target populations. Even
though, only the previous models are investigated in this paper, the practitioner can easily
introduced other models if needed, by following the strategy presented here. Moreover, the
mixing proportions are allowed to be the same in each population or to be different. In the lat-
ter case, they consequently have to be estimated using the sampleS∗. Corresponding notations
for the models are respectivelypM· when the mixing proportion ofP∗ have to be estimated
andM· when not. Table 1 gives the number of parameters to estimate for each model. If the
mixing proportions are different fromP to P∗, K−1 parameters to estimate must be added to
these values. The estimation of the modelsM2 to M4 are derived in the next subsection. Let
us also remark that by only assuming that the functionψk (defined at the beginning of this
section) isC 1, rather than assuming (2.1), [3] proves thatψk is necessarily affine, and then
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Model M1 M2a M2b M2c M2d M3a M3b M3c M3d M4a M4b M5

Param. 0 1 1 1 2 K K K 2K p+K p+K +1 K(p+2)

Table 1: Number of parameters to estimate for each model of the proposed family.

Y∗
|x,z∗ik=1 have the same probability distributionλk1 + λk2Y|x,zik=1, where(λk1,λk2) ∈ R

2. We

therefore obtain the following relationship between the model parameters ofP andP∗:

β ∗
k = (λk1+λk2βk0,λk2βk1, . . . ,λk2βkp)

t , (2.2)

σ∗
k = λk2σk. (2.3)

The modelM3d previously defined, which is the most general model among theM2 andM3

classes of models, is equivalent to the model defined by relations (2.2) and (2.3).M4-type
models allow to introduce more flexibility in the proposed model.

2.2 Parameter estimation

In the situation under review in this paper, the mixture of regressions is assumed to be known
(βk andσk will be estimated in practice from a sample of sufficient size) for the source popu-
lationP, and the goal is to estimate the mixture of regressions forP∗. This will be done in two
steps. In the first step, the link parametersΛk and the mixing proportionsπ∗

k are estimated
as well as the residual variancesσ∗2

k when necessary (modelsM4). In the second step, the
estimation of the mixture regression parametersβ ∗

k and the residual variancesσ∗2
k (for models

M2 andM3) are deduced by plug-in through equations (2.1) and (2.3). In the sequel, only the
situation where mixing proportions are different from those of populationP is considered.

The estimation of the link parameters is carried out by maximum likelihood using a miss-
ing data approachvia the EM algorithm [7]. This technique is certainly the most popular
approach for inference in mixtures of regressions. Conditionally to a sampleS∗ = (y∗,x∗) of
observations, wherey∗ = (y∗1, . . . ,y

∗
n) andx∗ = (x∗1, . . . ,x

∗
n), the log-likelihood of model (1.3)

is given by:

L(θ ;y∗,x∗) =
n∗

∑
i=1

ln

(

K

∑
k=1

π∗
k φ(y∗i |x

t
iΛkβk,σ∗2

k )

)

, (2.4)

with θ = (π∗
1, . . . ,π∗

K,Λ1, . . . ,ΛK,σ∗
1 , . . . ,σ∗

K), and the complete log-likelihood is:

Lc(θ ;y∗,x∗,z∗) =
n∗

∑
i=1

K

∑
k=1

z∗ik ln
(

π∗
k φ(y∗i |x

t
iΛkβk,σ∗2

k )
)

, (2.5)

wherez∗ = (z∗ik)i=1,n∗,k=1,K is the unobserved latent variable, introduced in Section 2,and
assumed to be distributed as a one order multinomialM (1,π∗

1, . . . ,π∗
K).
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The E step From a current valueθ (q) of the parameterθ , the E step of the EM algorithm
consists in computing the conditional expectation of the complete log-likelihood:

Q(θ ,θ (q)) = Eθ (q)[Lc(θ ;y∗,x∗,z∗)|y∗,x∗]

=
n∗

∑
i=1

K

∑
k=1

t(q)
ik

(

ln(π∗
k )+ ln(φ(y∗i |x

t
i Λkβk,σ∗2

k ))
)

, (2.6)

where:

t(q)
ik = E[z∗ik|y

∗,x∗] = P(z∗ik = 1|y∗,x∗) =
π∗

k
(q)φ(y∗i |x

∗t
i Λ(q)

k βk,σ∗2
k

(q)
)

∑K
l=1 π∗

l
(q)φ(y∗i |x

∗t
i Λ(q)

l βl ,σ∗2
l

(q)
)
, (2.7)

is the conditional probability for the observationi to belong to thek-th mixture component.

The M step The M step of the EM algorithm consists in choosing the valueθ (q+1) which
maximizes the conditional expectationQ computed in the E step:

θ (q+1) = argmax
θ∈Θ

Q(θ ;θ (q)), (2.8)

whereΘ is a parameter space depending on the model at hand. For the mixing proportions,
the maximum is as usual reached for:

π(q+1)
k =

1
n∗

n∗

∑
i=1

t(q)
ik . (2.9)

For the residual variances (modelsM4), we have:

σ∗2(q+1)
k =

1

∑n∗
i=1 t(q)

ik

n∗

∑
i=1

t(q)
ik (y∗i −x∗ti Λ(q)

k βk)
2. (2.10)

The reminder of this section details the maximisation of thelink parameters:

• for modelpM2a: λ (q+1) is the positive solution of the quadratic equation

n∗λ 2+λ
n∗

∑
i=1

K

∑
k=1

t(q)
ik (y∗i −βk0)x∗ti∼0βk∼0

σ2
k

−
n∗

∑
i=1

K

∑
k=1

t(q)
ik (y∗i −βk0)

2

σ2
k

= 0,

wherex∗i∼0 = (x∗i1, . . . ,x
∗
ip) is the vectorx∗i without its first componentx∗i0, and similarly

βk∼0 = (βk1, . . . ,βkp),

• for modelpM3a: λ (q+1)
k is the positive solution of the quadratic equation

n∗kλ 2
k +λk

n∗

∑
i=1

t(q)
ik (y∗i −βk0)x∗ti∼0βk∼0

σ2
k

−
n∗

∑
i=1

t(q)
ik (y∗i −βk0)

2

σ2
k

= 0,

wherex∗i∼0 = (x∗i1, . . . ,x
∗
ip) is the vectorx∗i without its first componentx∗i0, similarly

βk∼0 = (βk1, . . . ,βkp), andn∗k = ∑n∗
i=1 t(q)

ik ,
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• for modelpM2b: λ (q+1) =

(

n∗

∑
i=1

K

∑
k=1

t(q)
ik

σ2
k

βk0
2

)−1
n∗

∑
i=1

K

∑
k=1

t(q)
ik

σ2
k

(y∗i −x∗ti∼0βk∼0)βk0,

• for modelpM3b: λ (q+1)
k =

(

n∗

∑
i=1

t(q)
ik

σ2
k

βk0
2

)−1
n∗

∑
i=1

t(q)
ik

σ2
k

(y∗i −x∗ti∼0βk∼0)βk0,

• for modelpM2c: λ (q+1) is the positive solution of the quadratic equation

n∗λ 2+λ
n∗

∑
i=1

K

∑
k=1

t(q)
ik y∗i x∗ti βk

σ2
k

−
n∗

∑
i=1

K

∑
k=1

t(q)
ik y∗i

2

σ2
k

= 0,

• for modelpM3c: λ (q+1)
k is the positive solution of the quadratic equation

n∗kλ 2
k +λk

n∗

∑
i=1

t(q)
ik y∗i x∗ti βk

σ2
k

−
n∗

∑
i=1

t(q)
ik y∗i

2

σ2
k

= 0,

For the modelpM2d, as two interdependent scalar parametersλ0 andλ1 are considered, no an-
alytical formulae are available for the global maximum on both λ0 andλ1. In such a situation,
an easy way to carry out the maximization is to consider a descending algorithm in whichλ0
andλ1 are alternatively maximized. Using such a strategy incorporated in a EM algorithm is
very frequent and, in such a case, the algorithm is called a generalized EM algorithm (GEM,
[7]). Update formulae for these two parameters are consequently:

λ (q+1)
0 =

∑n∗
i=1∑K

k=1 t(q)
ik βk0(y∗i −λ (q+1)

1 x∗ti∼0βk∼0)σ−2
k

∑n∗
i=1 ∑K

k=1 t(q)
ik β 2

k0σ−2
k

,

andλ (q+1)
1 is the positive solution of the quadratic system:

n∗λ 2
1 +λ1

n∗

∑
i=1

K

∑
k=1

t(q)
ik

σ2
k

x∗ti∼0βk∼0(y
∗
i −λ (q+1)

0 βk0)−
n∗

∑
i=1

K

∑
k=1

t(q)
ik

σ2
k

(y∗i −λ (q+1)
0 βk0)

2 = 0.

For the modelpM3d, the same algorithm is considered with the following updateformulas:

λ (q+1)
k0 =

∑n∗
i=1 t(q)

ik (y∗i −λ (q+1)
k1 x∗ti∼0βk∼0)

∑n∗
i=1 t(q)

ik βk0

,

andλ (q+1)
k1 is the positive solution of the quadratic system:

n∗kλ 2
1 +λ1

n∗

∑
i=1

t(q)
ik

σ2
k

x∗ti∼0βk∼0(y
∗
i −λ (q+1)

k0 βk0)−
n∗

∑
i=1

t(q)
ik

σ2
k

(y∗i −λ (q+1)
k0 βk0)

2 = 0.

ModelsM4a andM4b have respectivelyp and p+ 1 scalar parameters plus the residual vari-
ance. A descending algorithm has to be used for alternatively maximizing the variances (by
(2.10)) and each scalar link parameter. Update formulas forthe link parameters are the fol-
lowing:
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• modelM4a, ∀1≤ J ≤ p:

λ (q+1)
J =

(

n

∑
i=1

K

∑
k=1

t(q)
ik

σ∗
k

2(x∗iJβkJ)
2

)−1
n

∑
i=1

K

∑
k=1

t(q)
ik

σ∗
k

2x∗tiJ βkJ

(

y∗i −βk0−
p

∑
j=1, j 6=J

λ (q+1)
j x∗i j βk j

)

,

• modelM4b, ∀0≤ J ≤ p:

λ (q+1)
J =

(

n

∑
i=1

K

∑
k=1

t(q)
ik

σ∗
k

2(x∗iJβkJ)
2

)−1
n

∑
i=1

K

∑
k=1

t(q)
ik

σ∗
k

2x∗iJβkJ

(

y∗i −
p

∑
j=0, j 6=J

λ (q+1)
j x∗i j βk j

)

.

with xi0 = 1 for all 1≤ i ≤ n.

The EM algorithm stops when the difference of the likelihoodvalue of two consecutive
steps is lower than a given thresholdε (typically ε = 10−6).

2.3 Convergence considerations

Since the parameter estimation is based on an EM algorithm which respects the classical
conditions of the EM theory [7], its convergence to a local maximum of the likelihood is guar-
anteed. Several strategies have been proposed in the literature to initialize the EM algorithm
in order to help the algorithm to reach the global optimum of the likelihood. A popular prac-
tice [2] executes the EM algorithm several times from a random initialization and keeps only
the set of parameters associated with the highest likelihood. In this specific work, initializing
the link parameter withΛk = Id could also be an interesting alternative since it corresponds to
P = P∗.

2.4 Model selection

In order to select the most appropriate model of transformation among the 24 transformation
models defined in Section 2, we propose to use two well known criteria. The reader interested
in a comparison of the respective performances of models selection criteria could refer to [11]
for instance. The first considered criterion is the PRESS criterion [1], also known as the
cross-validation criterion, which represents the mean squared prediction error computed on a
cross-validation scheme, formally defined by:

PRESS=
n∗

∑
i=1

(y∗i − ŷ∗(i))
2,

whereŷ∗(i) is the prediction ofy∗i obtained by the mixture regression model estimated without
using theith observation of the sampleS∗. This criterion is one of the most often used for
model selection in regression analysis, and we encourage its use when it is computationally
feasible. The second considered criterion is the Bayesian Information Criterion (BIC, [22]),
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which is a penalized likelihood criterion with a less computational cost. The BIC criterion is
defined by:

BIC = −2lnℓ+ν lnn∗,

whereℓ is the maximum log-likelihood value andν is the number of estimated parameters (see
Table 1). It consists in selecting the models leading to the highest likelihood while penalizing
models with a large number of parameters. Let us precise that, for both criteria, the most
adapted model is the one with the smallest criterion value.

3 Bayesian approach for adaptive mixture of regressions

The previous section has considered the modelling and the estimation of parametric adaptive
models for mixture of regressions with the classical frequentist point of view. This section
adopts a Bayesian approach to infer adaptive mixture of regressions and Gibbs sampling is
considered for the estimation of the posterior distribution.

3.1 A Bayesian view of the problem

The classical treatment of the mixture regression problem seeks a point estimate of the un-
known regression parameters. By contrast, the Bayesian approach [12, 21] characterizes
the uncertainty on parameters through a probability distribution, called a prior distribution.
Bayesian analysis combines the prior information on the parameters (carried out by the prior
distribution) with information on the current sample (through the likelihood function) to pro-
vide estimates of the parameters using the posterior distribution. In the context of adaptive
mixture of regressions, the Bayesian approach makes particularly sense since there is an ac-
tual prior on the model parameters of populationP∗. Indeed, even though source and target
populations differ, they are here assumed to have a strong link and it is therefore natural to
define the prior on parameters of populationP∗ according to the ones of populationP.

In the context of mixture of regressions, it is usual to assume the conditional indepen-
dence between the mixing parametersπ∗ and both component parametersβ ∗ = {β ∗

1 , ...β ∗
K}

andσ∗2 = {σ∗2
1 , ...,σ∗2

K }. The independence between(β ∗
k ,σ∗2

k ) and(β ∗
ℓ ,σ∗2

ℓ ) is as well as-
sumed for allk 6= ℓ, k, ℓ = 1, ...,K. For simplicity, only conjugate priors are considered in this
work and, since model parameters of the reference population P are assumed to be known,
prior distributions of the parameters of populationP∗ will depend on model parameters of the
populationP. We therefore propose to assume that, for allk = 1, ...,K, the prior distribution
for β ∗

k is a normal distribution centred inβk:

β ∗
k ∼ N (βk,σ∗2

k Ak),

whereAk is a (p+ 1)× (p+ 1) covariance matrix. The prior distribution ofσ∗2
k , for all

k = 1, ...,K, is assumed to be an inverse-gamma distribution:

σ∗2
k ∼ I G (γk,νk).

10



The prior distribution for parametersπ∗ = {π∗
1, ...,π∗

K} is assumed to be a Dirichlet distribu-
tion centred in the mixing proportions(π1, ...,πK) of populationP:

π∗ ∼ D(π1, ...,πK).

With such a modelling, the regression coefficientsβ ∗
k and the mixing proportionsπ∗ = {π∗

1, ...,π∗
K}

of populationP∗ are naturally linked to the ones of populationP. The variance termsσ∗2
k Ak

control how the regression coefficientsβ ∗
k differ from the ones of the reference populationP.

In the experiments presented in Section 4, the prior parametersνk, γk andAk, k = 1, ...,K,
were respectively set to 1, 2 and the identity matrix.

Finally, by combining the likelihood of the mixture of regressions model and the priors,
we end up with the joint posterior distribution:

p(θ∗|Y∗) ∝
n∗

∏
i=1

[

K

∑
k=1

π∗
k φ(y∗i |x

∗tβ ∗
k ,σ∗2

k )

]

p(π∗)
K

∏
k=1

[

p(β ∗
k |σ

∗2
k )p(σ∗2

k )
]

,

whereθ∗ = (π∗
k ,β ∗

k ,σ∗
k )k=1,K. However, since the posterior distributionp(θ∗|Y∗) takes into

account all possible partitions of the sample intoK groups, the maximization ofp(θ∗|Y∗) is
intractable even with moderately large sample size and Markov Chain Monte Carlo methods
have to be used.

3.2 Gibbs sampler for adaptive mixture of regressions

Markov Chain Monte Carlo methods allow to approximate a complicated distribution by using
samples drawn indirectly from this distribution. Among MCMC methods, the Gibbs sampler
is the most commonly used approach when dealing with mixturedistribution ([8]). In Gibbs
sampling, the vector parameterθ∗ is partitioned intosgroups of parameters{θ∗

1 , ...,θ∗
s} and a

Markov chain is generated by iteratively sampling from the conditional posterior distributions.
Once a Markov chain of lengthQ has been generated, sample values can be averaged on the
last sampling iterations to provide consistent estimates of model parameters. In the context
of inference for mixture distribution, the Gibbs sampler requires to add a latent variableZ∗ ∈
{0,1}K representing the allocation of observations to theK mixture components (introduced
in Section 2). Since the latent variableZ∗ is not observed,Z∗ can be viewed as unknown and
should be estimated along with the other model parameters. Consequently, given estimates
β̂ and π̂ of respectively regression parameters and mixing proportions of populationP and
starting from initial valuesπ∗(0), β ∗(0) andσ∗2(0), the Gibbs algorithm generates, at iteration
q, parameter values from the conditional posterior distributions:

Z∗(q) ∼ p(Z|Y∗, β̂ , π̂,π∗(q−1),β ∗(q−1),σ∗2(q−1)),

π∗(q) ∼ p(π∗|Y∗, β̂ , π̂,Z∗(q),β ∗(q−1),σ∗2(q−1)),

σ∗2(q)
k ∼ p(σ∗2

k |Y∗, β̂ , π̂,Z∗(q),π∗(q),β ∗(q−1)),

β ∗(q)
k ∼ p(β ∗

k |Y
∗, β̂ , π̂,Z∗(q),π∗(q),σ∗2(q−1)).

11



According to the priors given in the previous paragraph, theconditional posterior distribution
of Z∗ is a multinomial distribution:

z∗i |Y
∗, β̂ , π̂,π∗,β ∗,σ∗2 ∼ M (1, ti1, ..., tiK),

wheretik = π∗
k φ(y∗i |x

∗t
i β ∗

k ,σ∗2
k )/∑K

ℓ=1 π∗
ℓ φ(y∗i |x

∗t
i β ∗

ℓ ,σ∗2
ℓ ), and the conditional posterior distri-

bution ofπ∗ is a Dirichlet distribution:

π∗|Y∗, β̂ , π̂,Z∗,β ∗,σ∗2 ∼ D(π̂1+n∗1, ..., π̂K +n∗K),

with n∗k = ∑n
i=1z∗ik. Once the component belongings of each observation are known, the

observations of the same componentk can be gathered into the matricesx∗k andY∗
k , for all

k = 1, ...,K. With these notations, the conditional posterior distribution of σ∗2
k is an inverse

gamma:
σ∗2

k |Y∗, β̂ , π̂,Z∗,π∗,β ∗
k ∼ I G (γk +nk/2,νk +Sk/2),

whereSk = (Y∗
k −x∗tk β ∗

k )t(Y∗
k −x∗tk β ∗

k )+(β̂k−β ∗
k )t(Ak +(x∗tk x∗k)

−1)−1(β̂k−β ∗
k ), and the con-

ditional posterior distribution ofβ ∗
k is a normal distribution:

β ∗
k |Y

∗, β̂ , π̂,Z∗,π∗,σ∗2
k ∼ N (mk,∆k) ,

with

mk = (A−1
k +x∗tk x∗k)

−1(x∗tk Y∗
k +A−1

k β̂k),

∆k = σ∗2
k (x∗tk x∗k +A−1

k )−1.

Finally, consistent estimates of model parametersπ∗,β ∗ andσ∗2 are obtained by averaging on
the lastQ−q0 sampling iterations, whereq0 defines the number of iterations of the so called
“burning phase” of the Gibbs sampler.

3.3 The label switching problem

When simulating a Markov chain to estimate parameters of a mixture model, the label switch-
ing problem frequently arises and is due to the multimodality of the likelihood. Indeed, if
the prior distributions are symmetric, the posterior distribution inherits the multimodality of
the likelihood. In such a case, the Markov chain can move fromone mode to another and it
is difficult to deduce consistent estimators of model parameters. The earliest solution, pro-
posed by [20], consists in adding identifiability constraints on model parameters such as an
order relation in mixing proportions. Unfortunately, thisapproach does not work very well
as showed by [6]. By contrast, some authors like [6] and [24] propose to worka posteri-
ori on the generated Markov chain in order to reorganize it according to a specific criterion.
The Stephens’ procedure reorganizes the Markov chain by searching the correct permutations
of mixture component which minimizes a divergence criterion. The solutions proposed by
Celeuxet al. are in the same spirit and, among the different proposed criteria, they propose
in particular to reorganize the Markov chain using a sequential k-means algorithm. Both
the Stephens and Celeux’s approaches are efficient to deal with the label switching problem.
However, the sequentialk-means algorithm has the advantage to be less memory consuming
and, in the experiments presented in Section 4, this approach is used to overcome the label
switching problem.

12



−3 −2 −1 0 1 2 3

−
40

−
30

−
20

−
10

0
10

Population P

−3 −2 −1 0 1 2 3

−
40

−
30

−
20

−
10

0
10

Population P*

Figure 2: PopulationsP andP∗ used for the introductory example. Curves black (left) and red
(right) indicates respectively the actual mixture regression of populationsP andP∗.

4 Experimental results

This section proposes experiments on simulated and real data in order to highlight the main
features of the adaptive models proposed in the previous sections. After an introductory ex-
ample, the ability of BIC criterion to select the best model is investigated on simulation in a
second experiment. In a third experiment, the behaviour of adaptive mixtures of regressions
(parametric and Bayesian) is compared to the one of classical mixtures of regressions on sim-
ulated data. The last experiment will demonstrate the interest of using adaptive mixtures of
regressions on an illustrative real dataset, and where the size of the target population sample
will be artificially moved from small to larger sizes.

4.1 An introductory example

This first experiment aims to compare the basic behaviours ofadaptive mixtures of regressions
(parametric and Bayesian), hereafter referred to as AMR (respectively AMRp and AMRb),
and classical mixtures of regressions, referred to as MR. For this study, the reference pop-
ulation P is modelled by a 2 component mixture of quadratic polynomialregressions with
parametersβ1 = (3,0,−2), σ1 = 1, β2 = (−3,0,0.5) andσ2 = 0.75. The covariatex is uni-
formly distributed on [-3,3] and the sample size forP is n = 1 000.

The left panel of Figure 2 shows the mixture regression of populationP as well as some
observations simulated from this model. The mixture model of populationP∗ has then been
obtained from the previous model by multiplying all regression parameters of populationP
by a factor 3. It follows thatβ ∗

1 = (9,0,−6) andβ ∗
2 = (−9,0,1.5). Finally, 20 observations

of populationP∗ have been simulated using the latter model on[0,3], which therefore corre-
sponds to a censured model. The right panel of Figure 2 shows the actual mixture regression
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Figure 3: Results obtained for the introductory example with the Bayesian approach of adap-
tive mixture of regressions (AMRb). From left to right: mixing proportions over the MCMC
iterations, Gibbs sampling in the parameter space and some of the generated regression curves.
See text for details.

model of populationP∗ as well as the 20 simulated observations (red triangles). These 20 ob-
servations ofP∗ were used by the three studied regression methods to estimate the regression
model ofP∗ and to predict the value of 5000 validation observations ofP∗. The mean square
error (MSE), computed on the validation sample, has been chosen to evaluate the predicting
ability of each regressions method in this introductory example. Since mixture of regressions
providesK predictions (one prediction per mixture component), the MSE values reported in
the following experiments are, for each observation, the minimum of theK prediction errors.

Figure 3 illustrates the estimation procedure of the Bayesian approach on this toy dataset.
The MCMC procedure was made of 1 000 sampling iterations including a burning phase of
100 iterations. The left panel of Figure 3 shows the sampled proportions over the MCMC
iterations. As one can see, after the burning phase, the proportions of both mixture compo-
nents stabilize in the neighbourhood of 0.5 which is the actual value ofπ1 andπ2. The central
panel presents the sampled values for regression parameters β1 andβ2 in the parameter space
(restricted toβk1 andβk3 for k = 1,2 because bothβ12 andβ22 are both equal to 0). The blue
and green dashed lines indicate at the intersections the actual values of regression parameters.
It appears that the Bayesian approach succeeds in estimating the conditional distributions of
regression parameters. Finally, the right panel exhibits some of the 1 000 regression models
generated during the MCMC iterations which are then used to provide by averaging the final
estimated regression model ofP∗.

Figure 4 presents the results obtained for the considered example with the classical mix-
ture of regressions (MR), parametric adaptive mixture of regressions (AMRp) and Bayesian
adaptive mixture of regressions (AMRb). The MR method used only the 20 observations
sampled fromP∗ whereas AMR and AMRb combines the informations carried by these ob-
servations with the knowledge onP to build their estimation of the mixture regression model
of P∗. In order not to favour the adaptive approaches, the actual number of components and
dimension of the polynomial regression were also provided to the MR method. Nevertheless,
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Figure 4: Results obtained for the introductory example with classical mixture of regressions
(MR), parametric adaptive mixture of regressions (AMRp) and Bayesian adaptive mixture of
regressions (AMRb) methods. See text for details.

the MR method provides a poor estimate of the regression model and its mean square error
(MSE) value, computed on a independent validation set, is consequently high (3704.4). Con-
versely, the parametric (with the modelpM3c) and Bayesian approaches of AMR give good
estimations of theP∗ model (they should be compared to the red curves of Fig. 3). The asso-
ciated MSE values are naturally much lower than the one of theclassical MR method (26.4
for AMRp and 45.2 for AMRb). Nonetheless, the Bayesian approach performs less than the
parametric AMRp. This could be due to the fact that AMRb favours too much the prior (the
regression parameters ofP) in this situation with only few observations of the new population.
This introductory example has shown that adaptive regression models succeed in transferring
the knowledge of a reference population to a new population.

4.2 Model selection

In this second experiment, we investigate the ability of BICto select the best AMRp model, in
the same condition as for the previous experiment. For this,we carry out simulations accord-
ing to the different AMRp models and estimate a mixture of regressions on these simulated
data with usual mixture of regression (MR) on both populations (P andP∗) and with the ten
AMRp models (M2a to M4b). The experimental setup is as follows:

• as in the previous experiment, the reference populationP is modelled by a 2 component
mixture of quadratic polynomial regressions with parameters β1 = (3,0,−2), σ1 = 1
andβ2 = (−3,0,0.5), σ2 = 0.75. The sample size forP is n = 500.

• 10 scenarios have been used to define the mixture model ofP∗, corresponding to the
ten AMRp modelsM2a to M4b with the following link parameters (with the same no-
tation as in Section 2):λ = 2 for the modelsM2a, M2b andM2c; (λ0,λ1) = (4,2) for
M2d; (λ1,λ2) = (2,4) for M3a, M3b andM3c; (λ10,λ20,λ11,λ21) = (3,5,2,1/4) for M3d;
(λ1,λ2) = (4,2) for M3a; Λ = diag(3,2,3/2) for M4b. According to the resulting model
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model of estimated model selected
simulation MR onP M2a M2b M2c M2d M3a M3b M3c M3d M4a M4b MR onP∗ by BIC

M2a
36.03 3.02 17.96 17.67 26.89 3.14 11.75 13.10 3.53 3.93 8.78 580.03 3.81

0 81 1 6 4 7 0 1 0 0 0 0

M2b
10.11 311.14 2.92 109.50 10.23 19.82 2.82 54.52 2.90 9.45 3.59 296.25 4.00

0 0 65 5 9 0 20 0 0 1 0 0

M2c
23.40 8.47 22.48 29.53 3.30 15.51 18.38 3.33 3.54 13.31 5.88 486.19 4.06

0 4 0 69 4 1 0 21 0 1 0 0

M2d
45.54 7018.40 18.33 406.79 19.15 80.73 18.24 176.27 3.89 46.95 6.24 1143.96 56.22

0 0 0 22 48 2 0 5 8 10 4 1

M3a
52.047 16.33 16.71 970.56 183.00 3.56 18.27 44.07 4.23 25.67 37.07 679.00 10.10

0 31 0 1 1 57 0 0 1 9 0 0

M3b
33.36 3239.39 11.10 72.18 35.55 116.35 2.92 53.55 7.31 40.63 30.67 457.00 22.28

0 0 0 22 6 1 55 3 6 6 1 0

M3c
39.36 1954.60 30.36 63.68 22.81 80.83 24.39 3.75 4.76 55.99 51.95 813.34 33.60

0 0 0 35 3 1 0 46 1 9 4 1

M3d
71.45 21843.85 35.29 759.19 69.30 92.40 16.14 53.043.69 147.39 52.44 949.45 122.43

0 1 0 5 10 2 3 22 37 9 10 1

M4a
37.21 2.79 18.91 12.00 17.04 2.77 11.60 9.91 2.87 2.803 7.60 341.85 2.79

0 89 0 0 1 10 0 0 0 0 0 0

M4b
22.02 2821.82 7.29 149.97 6.62 49.62 6.93 89.78 6.17 53.503.50 637.25 9.44

0 0 16 2 37 0 2 1 10 2 30 0

Table 2: Average MSE value (top number) and number of BIC selection (bottom number)
for the 10 AMRp models, usual mixture of regression (MR) onP andP∗, for 10 scenarios of
simulation corresponding to each AMRp models.

for P∗, a dataset of sizen∗ = 20 is simulated. The simulation are repeated 100 times in
order to average the results.

• for each scenario, MR on both populations (P andP∗) and the ten AMRp modelsM2a

to M4b are estimated.

For each model of simulation and each estimated model, Table2 presents: the average MSE,
evaluated on a validation dataset of size 5 000 and averaged over the 100 simulations and the
number of times the estimated model has been selected by the BIC criterion. The last column
gives the average MSE for the model selected by BIC.
These experiments show that the asymptotic BIC criterion found relatively well the true model
(the one used for the simulations), even in this difficult situation in which the sample size for
P∗ is small (n∗ = 20). Let us notice that, since inP the second coefficient ofβ1 andβ2 is
0, the modelM4a is here equivalent toM2a which is logically selected by BIC since it is less
complex thanM4a. Moreover, the BIC criterion leads generally to choose models with lower
MSE than MR onP or P∗ (a bad model choice by BIC could nevertheless drastically degrades
the average MSE, as for instance for the simulations according toM2d or M3d). Finally, this
experiment confirms the good comportment of the EM algorithmfor the estimation of AMRp
models parameters, since MSE values are most of the time better for the model used for the
simulation than for MR.

4.3 Influence of the size ofS∗

This experiment focuses now on the influence of the number of observationsn∗ from the new
populationP∗ on the estimation quality of mixture regression models for the MR, AMRp and
AMRb methods. The experimental setup is the same as for the experiment of Section 4.1, ex-
cept that the number of observationsn∗ from the new populationP∗ varies from 6 to 200. For
each value ofn∗, the regression model ofP∗ has been estimated with the three studied methods
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Figure 5: Median logarithm of the MSE value according to the the size ofS∗ for the clas-
sical mixture of regressions (MR), parametric adaptive mixture of regressions (AMRp) and
Bayesian adaptive mixture of regressions (AMRb) methods.

and the associated MSE values have been computed again on a independent validation set of
5 000 observations. Finally, the experiment has been replicated 50 times in order to average
the results. Figure 5 shows the evolution of the median logarithm of the MSE value according
to the the size ofS∗ for the classical mixture of regressions (MR), parametric adaptive mix-
ture of regressions (AMRp) and Bayesian adaptive mixture ofregressions (AMRb) methods.
For the classical mixture of regressions, the multiple initialization strategy discussed in Sec-
tion 2.3 is used in order to avoid bad initializations of the EM algorithm. For the parametric
approach of the AMR method, the model used ispM3c. Associated boxplots are presented by
Figure 6 on a logarithmic scale.

On view of Figure 5, it can be first noticed that the performance of the classical MR
method is, as expected, sensitive to the the size ofS∗. Indeed, for small sample sizes, the
MR method provides poor estimates of the mixture regressionmodel of populationP∗ and
this consequently yields poor prediction performances (large MSE values). Again, as one can
expect, the model estimation and the prediction improve when the number of observations
n∗ from the new populationP∗ increases. More surprisingly, as it can be observed on the
left panel of Figure 6, the variance of the prediction performance of the MR method remains
large for sample sizes bigger than 100, even with the multiple initialization strategy. This
remind us that the fitting of a mixture regression model is always a difficult and sensitive
task. Conversely, the adaptive methods AMRp and AMRb which exploit their knowledge
on the reference population obtain on average good prediction results (low MSE values) and
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Figure 6: Boxplots of MSE values (on logarithmic scale) according to the the size ofS∗ for
the classical mixture of regressions (left), parametric adaptive mixture of regressions (centre)
and Bayesian adaptive mixture of regressions (right) methods.

this even for very small numbers of observationsn∗. In particular, the parametric approach
AMRp provides very stable prediction results and its variance decreases quickly whenn∗

increases. The Bayesian approach AMRb, even though it is much efficient and stable than
the classical MR method, appears to be slightly less efficient than the parametric approach
AMRp. To summarize, this study on simulations has shown thatadaptive regression models
greatly improve the prediction and reduce the predictor variance compared to the classical
mixture regression approach when the number of observations of the new population is small.

4.4 Illustration on real data: CO2 emissionsvs gross national product

In this last experiment, the link between CO2 emission and gross national product (GNP) of
various countries is investigated. The sources of the data are The official United Nations site
for the Millennium Development Goals Indicatorsand theWorld Development Indicators of
the World Bank. Figure 7 plots the CO2 emission per capitaversusthe logarithm of GNP per
capita for 111 countries, in 1980 (left) and 1999 (right). A mixture of second order polynomial
regressions seems to be particularly well adapted to fit these data and will be used in the sequel.
Let remark that regression model with heteroscedasticity could also be appropriated for such
data, but these kind of models are out of the topic of the present work. For the 1980’s data,
two groups of countries are easily distinguishable: a first minority group (about 25% of the
whole sample) is made of countries for which a grow in the GNP is linked to a high grow of
the CO2 emission, whereas the second group (about 75%) seems to havemore environmental
political orientations. As pointed out by [12], the study ofsuch data could be particularly
useful for countries with low GNP in order to clarify in whichdevelopment path they are
embarking. This country discrimination into two groups is more difficult to obtain on the
1999’s data: it seems that countries which had high CO2 emission in 1980 have adopted a
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Figure 7: Emission of CO2 per capitaversusGNP per capita in 1980 (left) and 1999 (right).

more environmental development than in the past, and a two-component mixture regression
model could be more difficult to exhibit.

In order to help this distinction, parametric adaptive mixture models are used to estimate
the mixture regression model on the 1999’s data. The ten AMRpmodels, with free component
proportionsπ∗

k , pM2a to pM4b, AMRb model, classical mixture of second order polynomial
regressions with two components (MR) and usual second orderpolynomial regression (UR)
are considered. Different sample size of the 1999’s data aretested: 30%, 50%, 70% and 100%
of theS∗ size (n∗ = 111). The experiments have been repeated 20 times in order toaverage
the results. Table 3 summarizes these results: MSE corresponds to the mean square error,
whereas PRESS and BIC are the model selection criteria introduced in Section 2.4. In this
application, the total number of available data in the 1999 population is not sufficiently large
to separate them into two training and test samples. For thisreason, MSE is computed on the
whole S∗ sample, even though a part of it has been used for the training(from 30% for the
first experiment to 100% for the last one). Consequently, MSEis a significant indicator of
predictive ability of the model when 30% and 50% of the whole dataset are used as training
set since 70% and 50% of the samples used to compute the MSE remain independent from
the training stage. However, MSE is a less significant indicator of predictive ability for the
two last experiments and the PRESS should be preferred in these situations as indicator of
predictive ability.

Table 3 first allows to remark that the 1999’s data are actually made of two components as
in the 1980’s data since both PRESS and MSE are better for MR (2components) than UR (1
component) for all sizesn∗ of S∗. This first result validates the assumption that both the refer-
ence populationP and the new populationP∗ have the same numberK = 2 components, and
consequently the use of adaptive mixture of regression makes sense for this data. Secondly,
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30% of the 1999’s data (n∗ = 33)
model BIC PRESS MSE

AMRp (pM2a) 13.09 3.38 3.40
AMRp (pM2b) 12.73 3.89 3.32
AMRp (pM2c) 12.79 5.48 3.68
AMRp (pM2d) 11.54 4.99 3.73
AMRp (pM3a) 12.14 4.20 3.76
AMRp (pM3b) 11.72 4.87 4.00
AMRp (pM3c) 11.50 5.09 3.86
AMRp (pM3d) 22.83 5.52 3.64
AMRp (pM4a) 18.72 5.15 4.01
AMRp (pM4b) 22.01 6.21 5.04

AMRb - (†) 5.99
UR 27.08 7.46 7.66
MR 32.89 5.54 5.11

50% of the 1999’s data (n∗ = 55)
model BIC PRESS MSE

AMRp (pM2a) 10.18 4.11 3.44
AMRp (pM2b) 13.54 3.73 3.37
AMRp (pM2c) 13.89 4.25 3.45
AMRp (pM2d) 22.35 4.38 4.80
AMRp (pM3a) 12.00 3.84 4.49
AMRp (pM3b) 12.00 4.47 3.86
AMRp (pM3c) 17.53 3.97 3.28
AMRp (pM3d) 25.39 4.77 3.67
AMRp (pM4a) 20.65 3.68 3.44
AMRp (pM4b) 24.92 5.57 4.19

AMRb - (†) 5.66
UR 20.87 7.95 7.21
MR 39.69 4.82 4.77

70% of the 1999’s data (n∗ = 77)
model BIC PRESS MSE

AMRp (pM2a) 14.76 3.65 3.35
AMRp (pM2b) 14.73 3.91 3.39
AMRp (pM2c) 14.53 4.49 3.53
AMRp (pM2d) 18.90 4.30 3.72
AMRp (pM3a) 18.84 4.33 3.85
AMRp (pM3b) 18.80 4.40 3.85
AMRp (pM3c) 18.81 4.41 3.26
AMRp (pM3d) 27.05 3.91 3.17
AMRp (pM4a) 22.29 5.25 4.00
AMRp (pM4b) 26.55 4.92 4.03

AMRb - (†) 5.99
UR 22.08 8.00 7.10
MR 43.91 5.06 3.33

(n∗ = 111)
model BIC PRESS MSE

AMRp (pM2a) 15.51 4.78 3.32
AMRp (pM2b) 15.44 3.81 3.37
AMRp (pM2c) 15.39 4.84 3.47
AMRp (pM2d) 20.05 4.45 3.59
AMRp (pM3a) 20.18 4.29 3.79
AMRp (pM3b) 20.03 4.38 3.77
AMRp (pM3c) 20.05 3.94 3.10
AMRp (pM3d) 29.37 4.08 3.34
AMRp (pM4a) 23.98 4.21 4.13
AMRp (pM4b) 28.58 5.21 4.52

AMRb - (†) 5.66
UR 23.62 7.53 6.99
MR 47.19 3.66 2.89

Table 3: MSE on the whole 1999’s sample, PRESS and BIC criterion for the 10 parametric
adaptive mixture models (AMRppM2a to pM4b), AMRb model, usual regression model (UR)
and classical regressions mixture model (MR), for 4 sizes ofthe 1999’s sample: 33, 55, 77
and 111 (whole sample). Lower BIC, PRESS and MSE values for each sample size are in
bold character.(†): Cross-validation on MCMC procedures is too computationally heavy to
be computed in a reasonable time.
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AMRp turns out to provide very satisfying predictions for all values ofn∗ and particularly
outperforms the other approaches whenn∗ is relatively small (less than 77 here). Indeed, both
BIC, PRESS and MSE testify that the models of AMRp provide better predictions than the
other studied methods whenn∗ is equal to 30%, 50% and 70% of the whole sample. Further-
more, it should be noticed that ARMp provide stable results according to variations onn∗. In
particular, the modelspM2 are those which appear the most efficient on this dataset and this
means that the link between both populationsP andP∗ is mixture component independent. On
the other hand, the Bayesian approach AMRb appears to provide results as stable as the ones
of AMRp but slightly less satisfying. The results of the Bayesian approach would probably
be better with a more specific choice of the priors.

This application illustrates well the interest of combining informations on both past (1980)
and present (1999) situations in order to analyse the link between CO2 emissions and gross
national product for several countries in 1999, especiallywhen the number of data for the
present situation is not sufficiently large. Moreover, the competition between the parametric
AMR models is also informative. Effectively, it seems that three models are particularly well
adapted to model the link between the 1980’s data and those of1999’s data:pM2a, pM2b and
pM2c. The specificity of these models is that they consider the same transformation for both
classes of countries, which means, conversely to what one might prima faciehave thought,
that all the countries have made an effort to reduce their CO2 emissions and not only those
which had the higher ones.

5 Conclusion

We proposed in this paper adaptive models for mixture of regressions in order to improve the
predictive inference when the studied population has changed between training and prediction
phases. The first class of models considers a parsimonious and parametric link between the
mixture of regressions of both populations, whereas the second approach adopts a Bayesian
point a view in which the populations are linked by the prior information imposed on the mix-
ture regression parameters. On both simulated and real data, models considering parametric
link turn out to be the most powerful: all the interest of suchadaptive methods consists in
their sparsity, which leads to significantly decrease the number of observations of the target
population required for the estimation. As the indispensable stage of data collecting is often
expensive and time consuming, there is a real interest to consider adaptive mixture of regres-
sions in practical applications. Moreover, as it has been showed in the illustration on real
data, the competition between the parametric link models provides informations on the link
between populations, which can be meaningful for the practitioner.

Regarding the further works, a first perspective concerns the Bayesian approach. In this
paper, the prior hyperparameters forσ∗2

k were simply fixed to values seeming experimentally
reasonable. The results of the Bayesian approach may be improved by working on the choice
of these hyperparameters. One generic way to do this is to make similar assumptions as
in the frequentist approach. For instance, the varianceσ∗2

k Ak of the regression parameters
β ∗

k could be assumed to be common between mixture components or to be equal toσ∗2
k Id.

The selection between the considered assumptions could then be done by choosing those
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maximizing the integrated likelihood [19]. A second working perspective is related to the
joint estimation of the models of both populationsP andP∗. Indeed, the reference regression
model being only estimated in practice, the quality of this estimation, depending on the size
n of the available sample, is directly responsible of the estimation quality of the mixture
regression model forP∗. In some situations (typically whenn is small compared to the model
complexity), it could be interesting to consider a full likelihood estimation which consists
in estimating simultaneously both mixture regression models. Such an approach has been
recently considered in [16] in the supervised classification context. It must be emphasized
that such a full likelihood estimation of both mixtures of regression must consider the same
estimation method (parametric or Bayesian) for both populations.
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