Accuracy Versus Time: A Case Study with Summation Algorithms
Philippe Langlois, Matthieu Martel, Laurent Thévenoux

To cite this version:

HAL Id: hal-00477511
https://hal.archives-ouvertes.fr/hal-00477511
Submitted on 29 Apr 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Accuracy Versus Time: A Case Study with Summation Algorithms

Philippe Langlois, Matthieu Martel and Laurent Thévenoux
Equipe de Recherche DALI
Université de Perpignan Via Domitia
52 Avenue Paul Alduy
66860 Perpignan Cedex
e-mail: {langlois, matthieu.martel, laurent.thevenoux}@univ-perp.fr

ABSTRACT
In this article, we focus on numerical algorithms for which, in practice, parallelism and accuracy do not cohabit well. In order to increase parallelism, expressions are reparsed implicitly using mathematical laws like associativity and this reduces the accuracy. Our approach consists in performing an exhaustive study: we generate all the algorithms equivalent to the original one and compatible with our relaxed time constraint. Next we compute the worst errors which may arise during their evaluation, for several relevant sets of data. Our main conclusion is that relaxing very slightly the time constraints by choosing algorithms whose critical paths are a bit longer than the optimal makes it possible to strongly optimize the accuracy. We extend these results to the case of bounded parallelism and to accurate sum algorithms that use compensation techniques.

1. INTRODUCTION
Symbolic-numeric algorithms have to manage the a priori conflicting numerical accuracy and computing time. Performances and accuracy of basic numerical algorithms for scientific computing have been widely studied, as for example the central problem of summing floating point values – see the numerous references in [5] or more recently in [11, 16, 15]. Parallelism is commonly used to speedup these implementations. However as already noticed by J. Demmel [2], in practice parallelism and accuracy do not cohabit well. To exploit the parallelism within an expression, this one is reparsed implicitly using mathematical laws like associativity. The new expression is then more balanced to benefit from the parallelism.

Two extreme algorithms compute s as
\[s = \sum_{i=1}^{N} a_i, \text{ with } a_i = \frac{1}{2^i}, \ 1 \leq i \leq N \] (1)

Two extreme algorithms compute s as
\[s_1 := \left(\ldots \left(\left(a_1 + a_2 \right) + a_3 \right) + \ldots + a_{N-1} \right) + a_N \] (2)
and, assuming \(N = 2^k \),
\[s_2 := \left(\ldots \left(\left(a_1 + a_2 \right) + (a_3 + a_4) \right) + \ldots + (a_{N-1} + a_N) \right) + \ldots \] (3)

Clearly, the sum \(s_1 \) is computed sequentially while \(s_2 \) corresponds to a reduction which can be computed in logarithmic time. However we have in double precision for \(N = 10 \),
\[s = 0.9990234375 \quad s_1 = 0.99902343 \quad s_2 = 0.99609375 \]
and it happens that \(s_1 \) is far more precise than \(s_2 \).

Our approach consists in performing an exhaustive study. First we generate all the algorithms equivalent to the original one and compatible with our relaxed time constraint. Then we compute the worst errors which may arise during their evaluation for several relevant sets of data. Our main conclusion is that relaxing very slightly the time constraints by choosing algorithms whose critical paths are a bit longer than the optimal one makes it possible to strongly optimize the accuracy. This matter of fact is illustrated using various datasets, most of them being ill-conditioned. We extend these results to the case of bounded parallelism and to compensated algorithms. For bounded parallelism we show that more accurate algorithms whose critical path
is not optimal can be executed in as many cycles as optimal algorithms, e.g., on VLIW architectures. Concerning compensation, we show that elaborated summation algorithms can be discovered automatically by inserting systematically compensations and then reparsing the resulting expression.

This article is organized as follows. Section 2 gives an overview of summation algorithms. Section 3 presents our main results concerning the time versus precision compromise. Section 4 describes how we generate exhaustively the summation algorithms of interest and Section 5 introduces further examples involving larger sums, accuracy versus bounded parallelism and compensated sums. Finally, some perspectives and concluding remarks are given in Section 6.

2. BACKGROUND

In floating-point arithmetic accuracy is a critical matter, as well for scientific computing than to critical embedded systems [9, 10, 3, 7, 6, 4]. Famous examples alas illustrate that bad accuracy can cause human damages and money loses. If accuracy is critical so is parallelism but usually these two domains are considered separately. While focusing on summation, this section compares the most well-known algorithms with respect to their accuracy and parallelism characteristics.

In next Subsection 2.1 we recall background material on summation algorithms [5, 11] and we explain how we measure the errors terms in Subsection 2.2.

2.1 Summation Algorithms

Summation in floating-point arithmetic is a very rich research domain. There are various algorithms that improve accuracy of a sum of two or more terms and similarly, there are many parallel summation algorithms.

2.1.1 Two Extreme Algorithms for Parallelism

![Diagram](https://via.placeholder.com/150)

\(O(\log(n)) \quad O(n) \)

Basically, there are two extreme algorithms with respect to parallelism properties to compute the sum of \((n+1)\) terms. The first following algorithm is fully sequential whereas the second one benefits from the maximum degree of parallelism.

- **Algorithm 1** is the extreme sequential algorithm. It computes a sum in \(O(n)\) operations successively summing the \(n+1\) floating-point numbers (see Equation 2).

- **Pairwise summation Algorithm 2** is the most parallel algorithm. It computes a sum in \(O(\log(n))\) successive stages (see Equation 3).

Mixing Algorithm 1 and Algorithm 2 gives many algorithms of parallelism degrees between those two extreme ones.

2.1.2 Merging Parallelism and Accuracy

It is well known that these two extreme algorithms does not verify the same worst case error bound [5]. Nevertheless to improve the accuracy of one computed sum, it is classic to sort the terms according to some of their characteristics (increasingly, decreasingly, negative or positive sort, etc.). Summation accuracy varies with the order of the inputs. Increase or decrease orders of the absolute values of the operands are the two first choices for the simplest Algorithm 1. If the inputs are both negative and positive, the decrease order is better, otherwise other orders are equivalent. If all the inputs are of the same sign, the increase order is more interesting than others [5]. More dynamic inserting methods consist to sort the inputs (in a given order), to sum the first two numbers and to insert the result within the inputs conserving the initial order. Such sorting is more difficult to implement while conserving the parallelism level of Algorithm 2.

2.1.3 More Accuracy with Compensation

A well known and efficient techniques to improve accuracy is compensation which uses following error-free transformations [11].

Algorithm 3 computes the sum of two floating-point number \(x = a \oplus b\) and the absolute error \(y\) due to the IEEE754 arithmetic [1].

2.2.4 TwoSum, Result and Absolute Error in Summation of Two Floating-Point Numbers (Introduced by Knuth)

Input: \(a\) and \(b\), two floating-point numbers

Output: \(x = a \oplus b\) and \(y\) the absolute error on \(x\)

\[
\begin{align*}
x &\gets a \oplus b \\
z &\gets x \oplus a \\
tmp1 &\gets x \oplus z \\
tmp2 &\gets a \oplus tmp1 \\
tmp1 &\gets b \oplus z \\
y &\gets tmp2 \oplus tmp1
\end{align*}
\]

When \(|a| \geq |b|\) next Algorithm 4 is faster than Algorithm
3. Of course it will be necessary to check this condition to apply it. The overcost of such practice on modern computing environments is not so clear [15, 8]. In both cases the key point is the error-free transformation $x + y = a + b$.

Algorithm 4 FastTwoSum, Result and Absolute Error in Summation of Two Floating-Point Numbers

Input: a and b two floating-point numbers such that $|a| \geq |b|

Output: $x = a \oplus b$ and y the absolute error on x

$x \leftarrow a \oplus b$

$\text{tmp} \leftarrow a \oplus bx$

$y \leftarrow \text{tmp} \oplus b$

To improve the accuracy of Algorithm 1, next VecSum Algorithm applies this error-free transformation. Then Algorithm 6 uses this error-free vector transformation and yields a twice more accurate summation algorithm [11]. Hence Sum2 computes every rounding error y and add it together before compensating the classic Sum computed result, i.e., Sum Algorithm applies twice, once to the $n-1$ summand and then to the n error terms, the compensated summation being the last addition between these two values.

Algorithm 5 VecSum, Error-Free Vector Transformation of $n + 1$ Floating-Point Numbers [11]

Input: p is (a vector of) $n + 1$ floating-point numbers

Output: p_0 is the approximate sum of p, $p(0 : n - 1)$ is (a vector of) the generated errors

for $i = 1$ to n

$[p_i, p_{i-1}] \leftarrow \text{VecSum}(p_i, p_{i-1})$

end for

These error-free transformations have been used differently within several other accurate summation algorithms. Previous Sum2 was also considered by [12]. A slight variation is the famous Kahan compensated summation: in Algorithm 7, every rounding error ϵ is added to the next summand (the compensating step) before adding it to the previous partial sum.

It exists many other algorithms for accurate summation that use these error-free transformations, as for example Priest double-compensated summation [13] or the recursive SumK algorithms of [11] or also the very fast AccSum and PreSum of [15]. We do not detail these more.

2.2 Measuring the Error Terms

Let x and y be two real numbers approximated by floating-point numbers \hat{x} and \hat{y} such that $x = \hat{x} + \epsilon_x$ and $y = \hat{y} + \epsilon_y$ for some error terms $\epsilon_x, \epsilon_y \in \mathbb{R}$. Let us consider the sum $S = x + y$. In floating-point arithmetic this sum is approximated by

$\hat{S} = \hat{x} \oplus \hat{y}$

Algorithm 7: SumComp, Compensated Summation of n Floating-Point Numbers (Kahan)

Input: p is (a vector of) $n + 1$ floating-point numbers

Output: s the sum of input numbers

$s \leftarrow p_0$

$s \leftarrow 0$

for $i = 1$ to n

$\text{tmp} \leftarrow s$

$y \leftarrow p_i \oplus e$

$s \leftarrow \text{tmp} \oplus y$

$\text{tmp2} \leftarrow \text{tmp} \oplus s$

$e \leftarrow \text{tmp2} \oplus y$

end for

where \oplus denotes the floating-point addition. We write the difference ϵ_S between S and \hat{S} as in [17],

$$
\epsilon_S = S - \hat{S} = \epsilon_x + \epsilon_y + \epsilon_+ ,
$$

(4)

where ϵ_+ denotes the roundoff error introduced by the operation $\hat{x} \oplus \hat{y}$ itself.

In the rest of this article, we use intervals \mathbf{x}, \mathbf{y} . . . instead of floating-point numbers \hat{x}, \hat{y} . . . as well as for the error terms ϵ_x, ϵ_y, . . . for the next two different reasons.

(i) Our long-term objective is to perform program transformations at compile-time [10] to improve the numerical accuracy of mathematical expressions. It comes out that our transformations have to improve the accuracy of any dataset or, at least, of a wide range of datasets. So we consider inputs belonging to intervals.

(ii) The error terms are real numbers, not necessarily representable by floating-point numbers as ϵ_S in Equation (4). We approximate them by intervals, using rounding modes towards outside.

An interval \mathbf{x} with related interval error ϵ_x denotes all the floating-point numbers $\hat{x} \in \mathbf{x}$ with a related error $\epsilon_x \in \epsilon_x$. This means that the pair (\mathbf{x}, ϵ_x) represents the set of exact results

$$
X = \{ x \in \mathbb{R} : x = \hat{x} + \epsilon_x, \hat{x} \in \mathbf{x}, \epsilon_x \in \epsilon_x \}.
$$

Let \mathbf{x} and \mathbf{y} be two sets of floating-point numbers with error terms belonging to the intervals $\epsilon_x \subseteq \mathbb{R}$ and $\epsilon_y \subseteq \mathbb{R}$. We have

$$
S = \mathbf{x} \oplus \mathbf{y}
$$

(5)

where \oplus is the sum of intervals with the same rounding mode than \oplus (generally to the nearest) and

$$
\epsilon_S = \epsilon_x \oplus \epsilon_y \oplus \epsilon_+ .
$$

(6)

where \oplus denotes the sum of intervals with rounding mode towards outside. In addition ϵ_+ denotes the roundoff error introduced by the operation $\hat{x} \oplus \hat{y}$. Let $ulp(x)$ denote the function which computes the unit in the last place of x [5], i.e., the weight of the least significant digit of x and let $\mathbb{S} = [\underline{S}, \overline{S}]$. We bound ϵ_+ by the interval $[-u, u]$ with

$$
u = \frac{1}{2} \max(ulp(\mathbb{S}), ulp(\mathbb{S})).
$$

Using the notations of equations (4), (5) and (6), it follows that for all $\hat{x} \in \mathbf{x}$, $\epsilon_x \in \epsilon_x$, $\hat{y} \in \mathbf{y}$, $\epsilon_y \in \epsilon_y$

$$
S \in \mathbb{S} \text{ and } \epsilon_S \in \epsilon_S.
$$
3. NUMERICAL ACCURACY OF NON-TIME-OPTIMAL ALGORITHMS

The aim of this section is to show how we can improve accuracy while relaxing the time constraints. In Subsection 3.1, we illustrate our approach using as an example a sum of random values. We generalize our results to some significant sets of data in Subsection 3.2.

3.1 The general approach and a first example

In order to evaluate the algorithms to compute one sum expression, associativity and distributivity are only needed hereafter. Basically, while in exact arithmetic all the algorithms are numerically equivalent, in floating-point arithmetic the story is not the same. Indeed, many things may arise like absorption, rounding errors, overflow, etc. and then floating-point algorithms return various different results.

One mathematical expression yields a huge amount of evaluation schemes. We propose to analyse this huge set of algorithms with respect to accuracy and parallelism. First we search the most accurate algorithms among all levels of parallelism, and then we search among them the ones with the best degrees of parallelism. We aim at finding the more interesting ratio between accuracy and parallelism.

In this section, we use random data defined as interval $[a_i, \pi_i]$. We measure the interval that represents the maximum error bound $[\epsilon, \pi]$ applying the previously described error model. Let $a_i = [a_i, \pi_i], 1 \leq i \leq n$. This means that for all $a_1 \in a_1, \ldots, a_n \in a_n$, the error on $\Sigma^n_i a_i$ belongs to $[\epsilon, \pi]$. We focus the maximum error which is defined as $\max(|\epsilon|, |\pi|)$.

Each dot of Figure 1 shows the absolute error of every algorithms, i.e., every parsing of the summing expression with six terms. X-axis represents the algorithms and Y-axis represents the maximal absolute error. It is not a surprise that errors are not uniformly distributed and that the errors belong to a small number of stages. Figure 2 shows the distribution of the errors for the different stages of a ten terms summation. The proportion of algorithms with very few small or very large errors is small. Most of the algorithms present an average accuracy between small and large errors. We guess that it will be difficult to find the best accurate algorithms (as well as the worst one), most having an average accuracy.

It exists $46,607,400$ different algorithms for an expression of ten terms. Among this huge set, many of them are sequential or almost sequential. So we propose to restrict the search to a certain level of parallelism. Let n be the number of additions and k a constant chosen arbitrarily e.g., her $k = 2$. We restrict our search of accurate algorithms within three included sets: algorithms having a computing tree of height smaller or equal to $\log(n) + 1$, $\log(n) + k$ and $k \times \log(n)$. Using these restrictions, there are $27,102,600$ algorithms of level $k \times \log(n)$, $13,041,000$ algorithms of level $\log(n) + k$ and $2,268,000$ algorithms of level $\log(n) + 1$.

Results are given in Figure 3 and in Table 1. We observe that the highest level of parallelism, the level $\log(n) + 1$, does not allow us to compute the most accurate results. Nevertheless if we use a less high but still raisonable level of parallelism, e.g., levels $O(\log(n) + k)$ or $O(k \log(n))$, we can compute accurate results.

The more the level of parallelism, the harder to find the more accurate algorithms among all of them. In Tables 2 and 3 we observe that the level $\log(n) + k$ presents a proportion of accurate algorithms (stages with small numbers) than the higher parallelism level $k \times \log(n)$. Moreover the most accurate algorithms within the first set are less accurate than the ones of the second set — see Figure 3.

![Figure 1: Maximum errors among each algorithms for a six terms summation.](image)

![Figure 2: Error repartition when summing ten terms.](image)

<table>
<thead>
<tr>
<th>Parallelism</th>
<th>Best Error</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>no parallelism</td>
<td>2.273767544323210e-13</td>
<td>0.006</td>
</tr>
<tr>
<td>$\log(n)$</td>
<td>4.54743508646421e-13</td>
<td>0.007</td>
</tr>
<tr>
<td>$\log(n) + k$</td>
<td>2.273767544323210e-13</td>
<td>0.006</td>
</tr>
<tr>
<td>$k \log(n)$</td>
<td>2.273767544323210e-13</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Table 1: Error value and average on level parallelism.

3.2 Larger experiments

We study a more representative sets of data using various kinds of values chosen as well-known error-prone problems,
Figure 3: Error repartition with three different degrees of parallelism.

Table 2: Accuracy stages at the parallelism level $O(\log(n) + k)$ (stages with small numbers are the left-
most maximum errors).

<table>
<thead>
<tr>
<th>Stage</th>
<th>Example of expression</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$(i + (f + g)) + ((c + d) + ((h + j) + (e + (a + b))))$</td>
<td>0.006</td>
</tr>
<tr>
<td>2</td>
<td>$(i + (f + g)) + (j + ((c + d) + (e + (a + b))))$</td>
<td>0.024</td>
</tr>
<tr>
<td>3</td>
<td>$(i + (f + g)) + (j + ((e + (a + h)) + (b + (c + d))))$</td>
<td>0.001</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>141</td>
<td>$(j + ((c + g) + (b + h))) + (e + (a + (d + (f + i))))$</td>
<td>0.001</td>
</tr>
<tr>
<td>142</td>
<td>$(j + (h + (g + (c + e)))) + (b + (a + (d + (f + i))))$</td>
<td>0.005</td>
</tr>
<tr>
<td>143</td>
<td>$(j + (h + (e + (c + g)))) + (b + (a + (d + (f + i))))$</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Table 3: Accuracy stages at the parallelism level $O(k \log(n))$ (stages with small numbers are the left-
most maximum errors).

<table>
<thead>
<tr>
<th>Stage</th>
<th>Example of expression</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$(i + (f + g)) + ((c + d) + ((h + j) + (e + (a + b))))$</td>
<td>0.008</td>
</tr>
<tr>
<td>2</td>
<td>$(i + (f + g)) + (j + ((c + d) + (h + (e + (a + b))))$</td>
<td>0.039</td>
</tr>
<tr>
<td>3</td>
<td>$(i + (f + g)) + (j + ((e + (a + h)) + (b + (c + d))))$</td>
<td>0.004</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>171</td>
<td>$(j + (g + (b + h))) + (e + (c + (a + (d + (f + i)))))$</td>
<td>0.007</td>
</tr>
<tr>
<td>172</td>
<td>$(j + (h + (e + g))) + (c + (b + (a + (d + (f + i))))))$</td>
<td>0.015</td>
</tr>
<tr>
<td>173</td>
<td>$(j + (h + (c + g))) + (e + (b + (a + (d + (f + i))))))$</td>
<td>0.001</td>
</tr>
</tbody>
</table>

The larger this number, the more ill-conditioned the sum-
mation, the less accurate the result.

Summation suffers from the two following problems.

- **Absorption** arises when adding a small and a large
 values. The smallest values are absorbed by the largest
 ones. In our context: $10^{16} \oplus 10^{-16} = 10^{16}$. In general
 absorption is not so dangerous while adding values of
 the same sign: its condition number equals roughly
 one. Nevertheless a large amount of small errors cu-
mulates for large summations — this was the case in
 the well known Patriot Missile failure [18].

- **Cancellation** arises when absorption appears within
 data with different sign. In this case, the condition
 number can be arbitrarily large. We will call such case
 as summation with ill-conditioned data. In our context
 an example is: $(10^{16} \oplus 10^{-16}) \oplus 10^{16} = 0$.

We introduce 9 datasets to generate different types of ab-
sorptions and cancellations. These two problems are clear to
with scalar values. So we first use intervals with small varia-
tions around such scalar values. Every dataset is composed
of ten samples that share the same numerical characteris-
tics. We recall that these experiments are limited to ten
summands. In the following, we say that a floating-point
value is a small, medium or large when it is, respectively, of
the order of 10^{-16}, 1 and 10^{16}. This is justified in double
precision IEEE754 arithmetic.

- **Dataset 1.** Positive sign, 20% of large values among
 small values. There are absorptions and accurate algo-
 rithms should first sum the smallest terms (increasing
 order).

- **Dataset 2.** Negative sign, 20% of large values among
 small values. Results should be the same as in Dataset
 1.

- **Dataset 3.** Positive sign, 20% of large values among
 small and medium values. Results should be algo-
 rithms which sum in increasing order.

- **Dataset 4.** Negative sign, 20% of large values among
 small and medium values. Results should be equivalent
to the results of Dataset 3.

i.e., ill-conditioned set of summands. The condition number
for computing $s = \sum_{i=1}^{N} x_i$, is defined as following,

$$cond(s) = \frac{\sum_{i=1}^{N} |x_i|}{|s|}.$$
• Dataset 5. Both signs, 20% of large values that cancel, among small values. The accurate algorithms should sum the two largest values first. In a more general case, the best algorithms should sum in decrease order of absolute values. It is a classic ill-conditioned summation.

• Dataset 6. Both signs, few small values and same proportion of large and medium values. Only large values cancel. The best algorithms should sum in decrease order of absolute values.

• Dataset 7. Both signs, few small values and same proportion of large and medium values. Large and medium values are ill-conditioned. Results should be the same than in Dataset 6.

• Dataset 8. Both signs, few small values and same proportion of large and medium values. Only medium values cancel. Results should be the same than in Dataset 6.

• Dataset 9. In order to simulate data encounter in embedded systems, this dataset is composed of intervals of absolute values. It is a classic ill-conditioned summation. For example, results of Dataset 1 show that if we limit the algorithms to all the algorithms of complexity $O(\log(n)+1)$ there are no algorithm with the best error. If the level of parallelism is not so good, for example $O(\log(n)+k)$ or $O(k\log(n))$ there are algorithms with the best errors.

Results in Figure 4 show that for Dataset 9, the proportion of optimal algorithms with the highest degree of parallelism is larger than the ones with less parallelism. In this case of well-conditioned summation, it seems that the more parallel, the easier to find an optimal algorithm.

4. GENERATION OF THE ALGORITHMS

In this section, we describe how our tool generates all the algorithms. Our program, written in C++, builds all the reparsing of an expression. In the case of summation, the combinatorial is huge, so it is very important to reduce the reparsing to the minimum. The combinatorial of summation is important, this was often studied but no general solution exists. For example CGPE [14] computes equivalent polynomial expressions but it is not exhaustive.

Intuitively, to generate all the expressions for a sum of n terms we process as follows.

- Step 1: Generate all the parsing using the associativity of summation ($(a+b)+c = a+(b+c)$). The number of parsing is given by the Catalan Number C_n:

$$C_n = \frac{(2n)!}{n!(n+1)!}$$

- Step 2: Generate all the permutations for all expression found in Step 1 using the commutativity of summation $(a+b = b+a)$. There is $n!$ ways to permute n terms in a sum.

So the total number of equivalent expressions for a n terms summation is

$$C_n \cdot n!.$$

Figure 5 shows this first combinatorial result. Our tool finds all the equivalent expressions of an expression but only generates the different equivalent expressions. For example, $a + (b+c)$ is equivalent to $a + (c+b)$ but it is not different because it corresponds to the same algorithm. In Subsection 4.1, we present how we generate the structurally different trees and, Subsection 4.2, how we generate the permutations.

Table 4 and Figure 5 represent the number of algorithms generated for n terms as n grows.
Terms	All expressions	Different expressions
5 | 1680 | 120
10 | 1.76432e+10 | 4.66074e+07
15 | 3.4973e+18 | 3.16928e+14
20 | 4.29958e+27 | 1.37333e+22

Table 4: Number of terms and expressions.

4.1 Exhaustive Generation of Structurally Different Trees

We represent one algorithm with one binary tree. Nodes are sum operators and leaves are values. We describe how to generate all structurally different trees. It is a recursive method defined as follows.

- We know that the number of terms is \(n \geq 1 \). An expression is composed of one term at least.
- A leaf \(x \) has only one representation, it is a tree of one term represented like this: \(\triangle \).
- Expression \(x_1 + x_2 \) is a tree of two terms \(\triangle \). It has the following structural representation.

\[
\begin{array}{c}
\triangle \\
/ \\
\triangle \\
\end{array}
\]

Then the number of structures for one term trivially reduces to one.

- Expression \(x_1 + x_2 \) is a tree of two terms \(\triangle \). It has the following structural representation.

\[
\begin{array}{c}
\triangle \\
/ \\
\triangle \\
\end{array}
\]

With two terms we can create only one tree. So again the number of structures for two terms equals 1.

Recursively, we apply the same rules. For a tree of \(n \) terms, we generate all the different structural trees for all the possible combinations of sub-trees, i.e., for all \(i \in [1, n-1] \), two sub-trees with, respectively, \(i \) and \((n-1) \) terms. Because summation is commutative, it is sufficient to generate these \((i; n-i) \)-sub-trees for all \(i \in [1, \lfloor n/2 \rfloor] \). This is represented as it follows.

\[
\forall i \in [1, \lfloor n/2 \rfloor].
\]

So, for \(n \) terms, we generate the following numbers of structurally different trees,

\[
S_{\text{struct}}(1) = S_{\text{struct}}(2) = 1,
\]

\[
S_{\text{struct}}(n) = \sum_{i=1}^{\lfloor n/2 \rfloor} S_{\text{struct}}(n-1) \cdot S_{\text{struct}}(i).
\]

4.2 Exhaustive Generation of Permutations

To generate only different permutations, the leaves are related to the tree structure. For example, we do not wish to have the following two permutations,

\[a + (d + (b + c)) \text{ and } a + ((c + b) + d). \]

Indeed these expressions have the same accuracy and the same degree of parallelism.

In order to generate all the permutations, we use a similar algorithm as in the previous subsection.

- Firstly, we know that for an expression of one term, we generate only one permutation. \(P_{\text{erm}}(1) = 1 \).
- Using our permutation restriction, it is sufficient to generate one permutation for an expression of two terms; so again \(P_{\text{erm}}(2) = 1 \).
- Permutations is related to the tree structure and we count it with the following recursive relation,

\[
P_{\text{erm}}(1) = 1,
\]

\[
P_{\text{erm}}(n) = \sum_{i=1}^{\lfloor n/2 \rfloor} C_n^i \cdot P_{\text{erm}}(n-1) \cdot P_{\text{erm}}(i)
\]

5. FURTHER EXAMPLES

In this section, we present results for larger or more sophisticated examples. Subsection 5.1 introduces a sum of twenty terms, Subsection 5.2 focuses on compensation and we discuss about bounded parallelism in the last Subsection 5.3.
5.1 An Example Over More Terms

We now consider a sum of 20 terms. We chose a dataset where all the values belong to the interval [0, 4, 1.6]. Again this is representative, for example, of what may happen in an embedded system when accumulating values provided by a sensor, like a sinusoidal signal.

Table 5: Proportion of optimal algorithms.

log(n) + 1	51.88
log(n) + k	19.75
k.log(n)	5.26
n	4.13

Table 5: Proportion of optimal algorithms.

We can see that the results in Table 5 are similar to the results of Dataset 9. We obtain the same repartition of optimal algorithms with ten or twenty terms. This confirms that the sum length does not govern the accuracy – at least while overflow does not appear.

In this case, we show that for a sum of identical intervals, the more parallelism, the easier to find an algorithm which preserves the maximum accuracy.

5.2 Compensated Summation

Now we present an example to illustrate one of the core motivation of this work. The question is the following. Starting from the simplest sum expression, are we able to automatically generate a compensated summation algorithm that improves its evaluation? Here we describe how to introduce one level of compensation as in the algorithms presented in Section 2.

To improve the accuracy of expression E, we compute an expression E_{cmp}.

For intervals X and Y, we introduce the function $C(X, Y)$ which computes the compensation of $X \oplus Y$ (see section 2.1).

For example, for three terms we have:

$E = (X \oplus Y) \oplus Z$

$E_{cmp} = \left[((X \oplus Y) \oplus C(X, Y)) \oplus Z \right] \oplus C(X + Y, Z)$

E_{cmp} is the expression we obtain automatically by systematically compensating the original sums. It could be generated by a compiler. To illustrate this, we present an example with a summation of five terms $(((a + b) + c) + d) + e)$. Terms are defined as follows,

$a = -9.5212224350e^{-18}$

$b = -2.4091577978999e^{-17}$

$c = 3.6620068286e^{+03}$

$d = -4.9241247828e^{+16}$

$e = 1.4245601293e^{+04}$

As before we can identify the two followings cases. The maximal accuracy which can be obtained is given by the algorithm $(((a + b) + c) + d) + e)$. It generates the absolute error $\Delta = 4.000000000000020472513$. We observe that this algorithm is Algorithm 1 at Section 2 with increase order.

The maximal accuracy given by the maximal level of parallelism is obtained by the algorithm $(a + c) + (b + e)) + d)$. In this case, the absolute error is $\delta_{nocomp} = 4.0000000000029558578$.

When applying compensation on this algorithm, we obtain the following algorithm:

$(f + (g + (h + i))) + (d + ((b + e) + (a + c)))$,

with:

$f = C(a, c) = -9.52122243500000e^{-18}$

$g = C(b, e) = -2.40915779789999e^{-17}$

$h = C(f, g) = -1.8189894035458e^{-12}$

$i = C(h, d) = 3.6099218000017$

Now we measure the improved absolute error $\delta_{comp} = 4.000000000000000000008881$. It appears that this algorithm found with the application of compensation is actually the Sum2 algorithm – Algorithm 6 at Section 2. This results illustrates that we can automatically find algorithms existing in the bibliography and that the transformation improves the accuracy.

5.3 Bounded Parallelism

Section 3 showed that in the case of maximum parallelism, maximum accuracy is not possible (or very difficult) to have. The fastest algorithms ($O(log(n) + 1)$ are rarely the most accurate but by relaxing the time constraint, it becomes possible to find an optimally accurate algorithm.

This subsection is motivated by the following fact. In processor architectures, parallelism is bounded. So it is possible to execute an algorithm less parallel in the same execution time as the fastest one (or in a very closed time). We show here two examples to illustrate this. Firstly we use a processor which executes two sums per cycle and secondly one which executes four sums per cycle.

For an expression of ten terms:

- 2 sums/cycle:

The execution of the fastest algorithm ($log(n) + 1$) of the expression does not provide the maximum accuracy. It takes five cycles to compute the expression as the next figure exhibits it.

Now we take another algorithm, with less parallelism but that provides the maximum accuracy (See Line 1, Table 2, Subsection 3.1). In bounded parallelism this algorithm takes the same time than the more parallel one as we show it hereafter.
• 4 sums/cycle:
 Again, execution of the fastest algorithm \((\log(n) + 1)\)
of this expression, do not have the maximum accuracy.
It takes four cycles to compute the expression.

We take two other algorithms, both with less parallelism but with the maximum accuracy. The first algorithm is described at Line 1, Table 2, Subsection 3.1. It takes one more cycle than the most parallel one.

The second algorithm is in \(k \log(n)\); it corresponds to Line 2, Table 3, Subsection 3.1. This one takes two more cycles than the most parallel one.

This confirms our claim that in current architectures, we can improve accuracy without slowing too much the execution.

6. CONCLUSION AND PERSPECTIVES

We have presented our first steps towards the development of a tool that aims to automatically improve the accuracy of numerical expressions evaluated in floating point arithmetic. Since we target to embed such tool within compiler, introducing more accuracy should not jeopardize the improvement of running-time performances provided by the optimization steps. This motivates to study the simultaneous improvement of accuracy and timing. Of course we exhibit that a trade-off is necessary to generate optimal transformed algorithms. We validated the presented tool with summation algorithms; these are simple but significant problems in our application scope. We have shown that this trade-off can be automatically reached, and the corresponding algorithm generated, for data belonging to intervals – and not only scalars. These intervals included ill-conditioned summations. In the last section, we have shown that we can automatically generates more accurate algorithms that use compensation techniques. Compared to the fastest algorithms, the overcost of these automatically generated more accurate algorithms may be reasonable in practice. Our main conclusion is that relaxing very slightly the time constraints by choosing algorithms whose critical paths are a bit longer than the optimal makes it possible to strongly optimize the accuracy.

Next step needs to increase the complexity of the case study both performing more operations and different ones. One of the main problem to tackle is the combinatory of the possible transformations. Brute force transformation should be replaced using more sophisticated transformations as, e.g., the error-free ones we introduced to recover the compensated algorithms. Another point to explore is how to develop significant datasets corresponding to any data intervals provided by the user of the expression to transform. A further step will be to transform any expression up to a prescribed accuracy and to formally certified it. Such facility is for example necessary to apply such tool for symbolic-numeric algorithms. In this scope, this project plans to use static analysis and abstract interpretation as in [10].

7. REFERENCES

