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Abstract

This paper discusses different approaches for integrating biological knowledge in gene ex-

pression analysis. Indeed we are interested in the fifth step of microarray analysis proce-

dure which focuses on knowledge discovery via interpretation of the microarray results. We

present a state of the art of methods for processing this step and we propose a classification

in three facets: prior or knowledge-based, standard or expression-based and co-clustering.

First we discuss briefly the purpose and usefulness of our classification. Then, following sec-

tions give an insight into each facet. We summarize each section with a comparison between

remarkable approaches.

Keywords: data mining, knowledge discovery, bioinformatics, microarray, biological sources

of information, gene expression, integration.

1 Introduction

Nowadays, one of the main challenges in gene expression technologies is to highlight the

main co-expressed1 and co-annotated2 gene groups using at least one of the different sources

of biological information [1]. In other words, the issue is the interpretation of microarray

results via integration of gene expression profiles with corresponding biological gene anno-

tations extracted from biological databases.

Analyzing microarray data consists in five steps: protocol and image analysis, statistical

data treatment, gene selection, gene classification and knowledge discovery via data inter-

pretation [2]. We can see in Figure 1 the goal of the fifth analysis step devoted to interpre-

tation, which is the integration between two domains, the numeric one represented by the

gene expression profiles and the knowledge one represented by gene annotations issued from

different sources of biological information.

At the beginning of gene expression technologies, researches were focused on the numeric3

side. So, there have been reported ([3, 4, 5, 6, 7, 8]) a variety of data analysis approaches

which identify groups of co-expressed genes based only on expression profiles without taking

into account biological knowledge. A common characteristic of purely numerical approaches

is that they determine gene groups (or clusters) of potential interest. However, they leave

to the expert the task of discovering and interpreting biological similarities hidden within

these groups. These methods are useful, because they guide the analysis of the co-expressed

gene groups. Nevertheless, their results are often incomplete, because they do not include

biological considerations based on prior biologists knowledge.

1Co-expressed gene group: group of genes with a common expression profile.
2Co-annotated gene group: group of genes with the same annotation. A gene annotation is a piece of biological

information related to the gene that can be relational, syntactical, functional, etc.
3We understand by numeric part the analysis of the gene expression measures only, disregarding the biological

annotations.
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Figure 1: Interpretation of microarray results via integration of gene expression profiles with

corresponding sources of biological information

In order to process the interpretation step in an automatic or semi-automatic way, the bioin-

formatics community is faced to an ever-increasingly volume of sources of biological infor-

mation on gene annotations. We have classified them into the following six sources of bio-

logical information: molecular databases (GenBank, Embl, Unigene, etc.); semantic sources

as thesaurus, ontologies, taxonomies or semantic networks (UMLS, GO, Taxonomy, etc.);

experience databases (GEO, Arrayexpress, etc.); bibliographic databases (Medline, Biosis,

etc.); Gene/protein related specific sources (ONIM, KEGG, etc.); and minimal microarray

information as seen in 1. Exploiting these different sources of biological information is quite

a complex task so scientists developed several tools for manipulating them or integrate them

into more complex databases [9], [10].

This paper presents a complete survey of the different approaches for automatic integration

of biological knowledge with gene expression data. A first discussion of these methods is

presented by Chuaqui in [11]. Here we present an original classification of the different

microarray analysis interpretation approaches.

The interpretation step may be defined as the result of the integration between gene expres-

sion profiles analysis with corresponding gene annotations. This integration process consists

in grouping together co-expressed and co-annotated genes. Based on this definition, three

research axes may be distinguished: the prior or knowledge-based axis, the standard or

expression-based axis and the co-clustering axis. Our classification emphasizes the weight

of the integration process scheduling on the final results [12, 13, 14, 15].

Indeed the main criteria underlying the classification we propose is the scheduling of

phases which alternatively consider gene measures or gene annotations. In prior or knowledge-

based approaches, first the co-annotated gene groups are built and then the gene expression

profiles are integrated. In standard or expression-based approaches, first co-expressed gene

groups are built and then gene annotations are integrated. Finally, co-clustering approaches

integrate co-expressed and co-annotated gene groups at the same time.
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This paper is organized in the following way: each section fully explains the corresponding

interpretation axis, giving an insight and a comparison of their remarkable approaches. Then,

we develop a discussion among the three interpretation axis.

2 Prior or Knowledge-Based Axis

Prior or knowledge-based approaches are based on biological knowledge from the sources of

biological information (see Figure 1). Therefore, first they build co-annotated gene groups

sharing the same biological annotations. Then, they integrate the expression profiles informa-

tion for each of the genes classified into co-annotated groups, highlighting those ones which

are co-expressed. Later on, the statistical significance of co-annotated and co-expressed gene

groups is tested. We give a detail description of this three-step methodology: co-annotated

gene groups composition, gene expression profiles integration and significant co-annotated

and co-expressed gene groups selection.

2.1 Prior or Knowledge-based Methodology

1. Co-Annotated Gene Groups Composition There exist several ways to build co-annotated

gene groups. We present here one structured way of building them. First, we need to choose

among different sources of biological information. Each kind of information is stored in a

specific format (xml, sql, etc. ) and has intrinsic characteristics. In each case, the analy-

sis process needs to deal with each biological source format. Another issue is to choose a

nomenclature for each gene identity that has to be coherent with the sources of information

and thereafter with the expression data. Next, all the annotations of each gene are to be col-

lected in one or more sources of information. Finally, we gather in a subset of genes that

share the same annotation. Thus, we obtain all the co-annotated gene groups as shown in

Figure 2.

2. Gene Expression Profiles Integration There are different ways to integrate gene ex-

pression profiles with previously built co-annotated gene groups. Here we present one current

way to do it. First, expression profiles measures are taken for each gene. Then, a variability

measure, as fold change or t − statistic or f − score [16] is used to build a sorted list of

gene-ranks based on expression profiles. Finally, this measure is incorporated gene by gene

into the co-annotated groups. Thus, we obtain co-annotated gene groups with the expression

profiles information within as shown in Figure 2.

3. Selection of the Significant Co-Annotated and Co-Expressed Gene Groups At this

stage all co-annotated and co-expressed gene groups are built. The next step is to reveal

which of these groups or subgroups are statistically significant. To tackle this issue the most

frequent technique is the statistical hypothesis testing. Here, we present the four steps for

statistical hypothesis testing:

a) Formulate the null hypothesis, H0,

H0 : Commonly, that the genes that are co-annotated and co-expressed were expressed

together as the result of pure chance. versus the alternative hypothesis, H1,

H1 : Commonly, that the co-expressed and co-annotated gene groups are found to-

gether because of a biological effect combined with a component of chance variation.

b) Identify a test statistic: The test is based on a probability distribution that will be used

to assess the truth of the null hypothesis.
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Figure 2: Gene expression profiles integration into previously co-annotated groups

c) Compute the p − value: The p − value is the probability that a test statistic at least

as significant as the one observed would be obtained assuming that the null hypothesis

was true.

d) Compare the p − value: This consists in comparing the p − value to an acceptable

significance value α. If p − value ≤ α we can consider that the co-annotated and

co-expressed gene group is gathered by a biological effect and thus is statistically sig-

nificant. Consequently, the null hypothesis is ruled out, and the alternative hypothesis

is valid.

At the end of the four-step methodology explained before, the prior approaches present the

interpretation results as significant co-expressed and co-annotated groups of genes (see third

step of Figure 2). The next section will present some of the most remarkable approaches and

methods of the prior or knowledge-based axis.

2.2 Remarkable Prior or Knowledge-based Approaches

We present here four representative approaches: GSEA [17], iGA [18], PAGE [19] and

CGGA [20]. In the following we describe each of them and emphasize some parameters

particularly: the source of biological information, the profiles expression measure, the ex-

pression variability measure, the hypothesis testing parameters and details (type of test, test

statistic, distribution, corrections etc.).

1. Gene Set Enrichment Analysis, GSEA

This approach [17] proposes a statistical method designed to detect coordinated changes

in expression profiles of pre-defined groups of co-annotated genes. This method is born from
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the need of interpreting metabolic pathways results, where a group of genes is supposed to

move together along the pathway.

In the first step, it builds a priori defined gene sets using specific sources of information

which are the NetAFFX and GenMapp metabolic pathways databases.

In the second step, it takes the Signal to Noise Ratio (SNR) to measure the expression

profiles of each gene within the co-annotated group. Then it builds a sorted list of genes for

each of the co-annotated groups.

Third, it uses a non-parametric statistic: enrichment score, ES, (based in a Kolmogorov-

Smirnoff normalized statistic) for hypothesis testing. It takes as null hypothesis:

H0 : The rank ordering of genes is random with regard of the sample.

Then, it assesses the statistical significance of the maximal ES by running a set of permu-

tations among the samples. Finally, it compares the max ES with a threshold α, obtaining

the significant co-expressed and co-annotated gene groups.

2. Parametric Analysis of Gene Set Enrichment, PAGE

This approach [19] detects co-expressed genes within a priori co-annotated groups of genes

like GSEA, but it implements a parametric method.

In first step, it builds a priori defined gene sets from Gene Ontology (GO)4, NetAFFX 5

and GenMapp 6 metabolic databases.

In second step, it takes the fold change to measure the expression profiles of each gene

within the co-annotated group. Then, it builds a z−score from the corresponding fold change

of the two comparative groups (normal versus non normal) as variability expression measure.

Third, it uses the z − score as parametric test statistic. Then, it uses the central limit

theorem [21] to argue that when the sampling size of a co-annotated group is large enough, it

would have a normal distribution. Using the null hypothesis:

H0 : The z − score within the groups has a standard normal distribution.

Thus, if the size of the co-annotated gene groups is not big enough to reach normality, then

it would be significantly co-expressed.

3. Iterative Group Analysis, iGA

This approach [18] finds co-expressed gene groups within a priori functionally enriched

groups, sharing the same functional annotation.

In a first step, it builds a priori functionally enriched groups of genes from Gene Ontology

(GO) or other sources of biological information.

In a second step, it uses the fold change gene expression measure to build a complete

sorted list of genes. Then, it generates a reduced sorted list specific to the functionally en-

riched group.

In a third step, it calculates iteratively the probability of change for each functionally en-

riched group (based in the cumulative hypergeometric distribution). It states the null hypoth-

esis:

H0 : The top x genes are associated by chance within the functionally

enriched group.

Then, it assesses the statistical significance of each group comparing the probability of

change p − value against a user-determined α value.

4. Co-expressed Gene Group Analysis, CGGA

This approach [20] automatically finds co-expressed and co-annotated gene groups.

4http://www.geneontology.org
5http://www.affymetrix.com/analysis
6http://www.genmapp.org
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In a first step, it builds a priori defined gene groups from a source of biological information

for instance Gene Ontology (GO) and KEGG 7.

In a second step, it uses the fold change as a gene expression measure. Then, it composes

the f−score from the corresponding gene’s fold change. Using the f−score on each gene

it builds a sorted list of gene ranks. Then, it generates a reduced list of gene ranks specific to

the co-annotated enriched group.

In a third step, it states the null hypothesis:

H0 : x genes from a co-annotated gene group (or subgroup) are co-

expressed by chance.

A hypergeometric distribution and p − value calculated from the cumulative distribution

is assumed. This p − value is compared against α to reveal all the significant co-expressed

and co-annotated gene groups, including all the possible subgroups.

2.3 Comparison between Prior or Knowledge-based Approaches

Table I presents the brief summary of the four prior approaches described in last section. For

each approach the four following parameters are presented: sources of biological informa-

tion used, expression profile measure, variability expression measure and hypothesis testing

details (test statistic, distribution and particular characteristics).

First of all, the four approaches are concerned by metabolic pathways within biological

processes, but they use different sources of information: iGA, PAGE and CGGA uses Gene

Ontology and GSEA uses manual metabolic annotations, GENMAPP and NetAffx. CGGA

is the only one which uses KEGG database combined with Gene Ontology.

For expression profiles parameters, GSEA is the only one which choice is the SNR measure

while the others opted for the fold change measure. PAGE and CGGA use respectively

z−score and f−score variability measures to detect the changes in gene expression profiles.

For hypothesis testing, GSEA is the only one which uses a non parametric method based on

a maximal ES statistic and sampling to calculate the p−value. In the contrary, PAGE (normal

distribution), CGGA (hypergeometric distribution) and iGA (hypergeometric distribution)

chose a parametric approach. iGA chose a hypothesis proof based in the most over-expressed

or under-expressed genes (in the rank list) of a co-annotated group, while CGGA searches

all the possible co-expressed subgroups within a co-annotated group (the internal sub-group

position in the group does not matter).

3 Standard or Expression-based Approach

This axis is called standard because it follows the more frequent procedure for microarray

data analysis, which consists of five steps: image analysis, statistical data treatment, genes

selection, genes classification and results interpretation via biological knowledge integration.

This axis has been used since the beginning of microarray technology with encouraging in-

terpretation results [4], [5] and [3]. Thereafter, it has been used as the reference methodology

in microarray data analysis. Expression-based approaches start by building gene groups or

clusters of genes sharing similar expression profiles. Then, they integrate the biological an-

notations of each gene contained inside the expression cluster, building co-expressed and

co-annotated subsets of genes. Later on, the statistical significance of co-expressed and co-

annotated gene groups is tested. In the following section, we explain in detail this three-step

methodology: gene expression profiles classification, biological annotations integration and

significant co-expressed and co-annotated gene groups selection.

7http://www.genome.jp/kegg
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Approach Biological

Source of

Information

Expression

Profile

Measure

Variability

Expression

Measure

Hypothesis Testing Details

GSEA

(Mootha et al.

2003)

Manual

Annotations,

NetAffx and

GENMAPP

SNR (Signal

to Noise Ra-

tio)

Mean Ex-

pression

Difference

One-tailed test. Test sta-

tistic: Maximal ES. Non-

parametric distribution.

iGA

(Breitling et al.

2004)

GO Fold Change Fold

Change

One-tailed test. Modi-

fied Fisher’s exact statis-

tic: The most over or Un-

der expressed Genes in a

group. Hypergeometric dis-

tribution.

PAGE

(Kim et al.

2005)

GO Fold Change z-score One-tailed test. z-score sta-

tistic. Normal distribution.

CGGA

(Martinez et al.

2006)

GO: (MP,

BP, CC) and

KEGG

Fold Change F-score One-tailed test. Modi-

fied Fisher’s exact statistic:

All over or under expressed

genes in a group. Hyperge-

ometric distribution. Bino-

mial distribution for N large.

Bonferroni Correction.

TABLE I

COMPARISON BETWEEN FOUR KNOWLEDGE-BASED INTEGRATION APPROACHES

3.1 Standard or Expression-based Methodology

1. Gene Expression Profiles Classification There exist several methods for classifying

gene expression profiles from cleaned microarray data, i.e. data matrix of thousands of genes

measured in tens of biological conditions. Various supervised methods and non supervised

methods tackled the gene classification issue. Between the most common methods, we can

mention: hierarchical clustering, k-means, Diana, Agnes, Fanny [22], model-based clustering

[23] support vector machines SVM, self organizing maps (SOM), and even association rules

(see more details in [24]).

The target of these methods is to classify genes into clusters sharing similar gene expres-

sion profiles as shown in the first step of Figure 3.

2. Biological Annotations Integration Once clusters of genes are built by similar expres-

sion levels, each gene annotation is extracted from sources of biological information. As

in prior axis, this step deal with different formats of information. A list of annotations is

composed for each gene, and then all the annotations are integrated into the clusters of genes

(previously built by co-expression profiles). Thus, subsets of co-annotated and co-expressed

gene groups are built within each cluster. Figure 3 illustrates this process: three clusters of

similar expression profiles are first built, and then all the individual gene annotations are col-

lected to be incorporated in each cluster. For example in the first under-expressed green group

we have found three subsets of co-annotated genes. These subsets are respiratory complex:

Gene E and Gene D, gluconeogenesis: Gene G and Y and tricarboxylic acid cycle Gene E and

Gene T. We can observe intersections of genes within the under-expressed cluster because of

the different annotations that each gene may have. Thus, we obtain all the co-annotated gene

groups.

3. Selection of the Significant Co-Annotated and Co-Expressed Gene Groups At this

stage all the co-expressed and co-annotated gene groups are built and the issue is to reveal
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Figure 3: Interpretation of microarray results via integration of gene expression profiles with

corresponding sources of biological information
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which of these groups or the possible subgroups are statistically significant. The most current

technique in use is the statistical hypothesis testing (see Figure 3).

Afterward, this full three-step methodology the expression-based approaches present the

interpretation results as significant co-expressed and co-annotated groups of genes.

The next section presents some of the most representative approaches and methods of the

expression-based axis. Since these approaches are quite numerous, we have classified them

according their main source of biological information. Thus, we have the following clas-

sification: minimal information approaches, ontology approaches and bibliographic source

approaches.

3.2 Expression-based Semantic Approaches

Expression-based semantic approaches integrate fundamentally semantic annotations (con-

tained in ontologies, thesaurus, semantic networks etc.) into co-expressed gene groups.

Nowadays, semantic sources of biological information i.e. structured and controlled vocabu-

laries are one of the best available sources of information to analyze microarray data in order

to discover meaningful rules and patterns [1].

Actually, expression-based semantic approaches are widely exploited. In this section we

present seven among them: FunSpec [25], OntoExpress [26], Quality Tool [27], EASE [28],

THEA [29], Graph Theoretic Modeling [12] and GENERATOR [30]. Each approach uses

Gene Ontology (GO) as source of biological annotation, sometimes combined with another

gene/protein related specific sources as MIPS, KEGG, Pfam, Smart, etc. or molecular data-

base as Embl, SwissProt8, etc.

During last years, GO has been chosen preferably over other sources of information, be-

cause of its non ambiguous and comprehensible structure. That is the reason of the recent

explosion of many more expression-based GO approaches. Among these approaches, we can

cite the integration tools which integrate gene expression data with GO as GoMiner [31],

FatiGO [32], Gostat [33], GoToolbox [34], GFINDer [35], CLENCH [36], BINGO [37], etc.

This up to date GO compendium 9 gives more integration methods, GO searching tools, GO

browsing tools and related GO tools.

In the next section, we describe seven remarkable expression-based semantic solutions.

3.3 Remarkable Expression-based Semantic Approaches

1. FunSpec: web-based cluster interpreter

This approach [25] proposes a statistical evaluation of groups of co-expressed genes and

proteins with respect to existing annotations.

It takes as input clusters of genes previously built by similarity in expression. Then it

searches for all gene and protein annotations in four biological sources of information: Gene

Ontology (GO), Munich Information Center for Protein Sequences (MIPS)10, Nucleotide se-

quence database (EMBL)11, Protein families of alignments and HMMs (Pfam)12. It builds

all the subsets of co-annotated and co-expressed gene and protein groups within each cluster.

It makes the selection of the significant subsets (really functionally enriched) via hypothesis

testing. It states the null hypothesis:

H0 : A functionally enriched group of genes is associated by chance

within the cluster of co-expressed genes.

8http://www.ebi.uniprot.org
9http://www.geneontology.org/GO.tools.shtml

10http://mips.gsf.de
11http://www.ebi.ac.uk/embl
12http://www.sanger.ac.uk/Software/Pfam
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This one-tailed hypothesis is solved on the basis of an hypergeometric distribution and

using a p − value calculated from the cumulative distribution as in Fisher’s exact test [38].

A Bonferroni correction is applied to compensate for multiple testing. Finally, it assesses the

statistical significance of each group comparing the p − value against a user-determined α

value (more details in [39]).

2. Onto-Express: Global functional profiling of gene expression

This approach [26] proposes several statistical evaluations of co-expressed gene groups

with respect to GO existing annotations. It takes as input clusters of genes previously built

by similarity in expression. In a second step, it takes all the existing GO annotations included

in three ontologies, molecular function, cellular component and biological process. Then, it

builds all the subsets of co-annotated and co-expressed gene groups within each cluster.

In a third step, it makes the selection of the significant subsets rejecting the null hypothesis:

H0 : A GO annotated group of genes is associated by chance within the

cluster of co-expressed genes.

This one-tailed hypothesis is solved using a probability distribution and using a p− value

calculated from the cumulative distribution. Finally, it assesses the statistical significance

of each group comparing the p − value against a user-determined α value. Onto-Express

gives the following test options: binomial distribution [21] (when the number of genes is

very large), Fisher’s exact test [40] (when the number of genes is not too important), and χ2

test for equality of proportions [41].

3. Quality Tool: judging the quality of gene expression-based clustering methods

This approach [27] proposes a measure for testing the quality of clusters of gene expression

profiles based on mutual information between cluster membership and known gene annota-

tions. In a first step, it takes clusters of co-expressed genes. In a second step, it takes all the

existing GO annotations included in the three ontologies: molecular function, cellular com-

ponent and biological process. Then, it builds a wide matrix of GO attributes for all genes

containing 1 if the gene matches the attribute and 0 if not. It builds a contingency table for

each cluster-attribute pair, from which it computes cluster-attribute entropy and mutual infor-

mation [42]. In a third step, it compares this measure with clusters grouped by chance from

the same microarray experiments, to check if they are better than random clusters.

This approach uses the same one-tailed hypothesis as seen before (Onto-Express and Fun-

Spec), but it supposes a normal distribution and uses z − score statistic for calculations.

Finally, it obtains co-expressed and co-annotated significants groups of genes.

4. Identifying biological themes within lists of genes

This approach [28] provides a friendly interface for quick annotation of genes within

a cluster, giving a selection method for co-expressed and co-annotate gene groups. In a

first step, it takes clusters of co-expressed genes (previously made by classification algo-

rithms). In a second step it takes the available gene annotations from GO, KEGG, Swiss-

Prot, PFAM, SMART. Then, it builds all the subsets of co-annotated and co-expressed gene

groups within each cluster. In a third step, it shows the statistically significant co-expressed

and co-annotated gene groups.

This approach uses the same one tailed hypothesis testing assumptions: null hypothesis,

hypergeometric distribution, fisher’s exact test, p− value and α as used in Onto-Express and

FunSpec. The only difference is the use of an alternative statistic named ease−score, which

is a conservative adjustment that weights statistical significance in favor of co-annotated

groups supported by more genes.

5. THEA: Tools for high-throughput experiments analysis

This approach [29] proposes a set of tools designed for manipulating microarray results ob-

tained by hierarchical clustering trees. It integrates gene annotations from biological sources

of information and evaluates co-expressed and co-annotated groups of genes.
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It takes as input clusters of genes obtained by a hierarchical clustering algorithm. Then, it

queries a database in order to obtain all the possible gene annotations from the ontologies in

GO on biological process, molecular function and cellular component. Then, it shows all the

possible subsets of co-annotated and co-expressed gene groups within each cluster. It displays

graphically the statistical evaluation of the co-expressed and co-annotated gene groups. This

approach uses the same one tailed hypothesis: H0, Fisher’s exact test, p− value and α set of

values as used in Onto-Express and FunSpec.

6. Graph-theoretic modeling

This approach [12] extracts common GO annotations of the genes within a cluster of co-

expressed genes through the modified structure of gene ontology called GO tree.

In a first step, it takes as input clusters of co-expressed genes obtained with any clustering

technique. In a second step, it annotates all genes in a cluster with GO terms, taking into

account the hierarchical nature of GO. It proposes a quantitative measure for estimating how

well gene clusters of expression profiles are gathered together along with known GO cate-

gories. This measure is based in a graphical distance between nodes in the directed acyclic

graph (DAG) of GO. In a third step, it compares this quantitative measure with the same

measure taken from random clusters to see if it is better or not. Thus, it obtains co-expressed

and co-annotated significants groups of genes.

7. GENERATOR: Theme discovery from gene lists for identification and viewing of multi-

ple functional groups

This approach [30] takes co-expressed gene groups and it splits them into homogeneous

co-annotated significant groups within each group.

In a first step, it takes co-expressed gene groups. In a second step, it takes all GO annota-

tions (studying each GO ontology separately) for each gene group. Then, it runs a clustering

algorithm based in a Non-negative Matrix Factorization (NMF) to create a k-means (begins

with k=2) partition of co-annotated groups within each gene group. This process is repeated,

applying k-means algorithm (increasing each time the number of k clusters) and building a

non-nested hierarchical clustering tree. At each step, it tests for significant co-expressed and

co-annotated groups. For this purpose, it uses one-sided test hypothesis with the same as-

sumptions: null hypothesis: H0, hypergeometric distribution, fisher’s exact test, p − value

and α as used in Onto-Express.

3.4 Expression-based Bibliographic Approach

Nowadays bibliographic databases represent one of the richest update sources of biological

information. This type of information, however, is under-exploited by researchers because of

the highly unstructured free-format characteristics of the published information and because

of its overwhelming volume. The main challenges coming up with bibliographic databases

integration are to manage interactions with textual sources (abstracts, articles etc.) and to re-

solve syntactical problems that appears in biological language like synonyms or ambiguities.

At the moment, some text mining methods and tools have been developed for manipulate this

kind of biological textual information. Among these methods we can mention Suiseki [43]

which focuses on the extraction and visualization of protein interactions, MedMinder [44]

takes advantage of GeneCards13 as a knowledge source and offers gene information related

to specific keywords, XplorMed [45] which presents specified gene-information through user

interaction, EDGAR [46] which extracts information about drugs and genes relevant to cancer

from the biomedical literature, GIS [47] which retrieves and analyzes gene-related informa-

tion from PubMed14 abstracts. These methods are useful as stand-alone applications but they

do not integrate gene expression profiles.

13http://www.genecards.org
14http://www.pubmed.gov
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Approach Biological

Source of

Information

Hypothesis-

testing Type and

Statistics

Hypothesis-

testing Dis-

tribution and

details

Distinctive

Characteristic

FunSpec

(Robinson et

al. 2002)

GO, MIPS,

EMBL and

Pfam

One-tailed test

Fisher’s exact

statistic

Hypergeome-

tric Bonferroni

Correction

Online integration of 4 dif-

ferent sources of biologi-

cal information

OntoExpress

(Draghici et

al. 2002)

GO (MP, BP

and CC)

One-tailed test

Fisher’s exact

statistic χ2

statistic

Binomial Hy-

pergeometric

χ2

Choice of 3 different sta-

tistical methods

Quality Tool

(Gibbons et

al. 2002)

GO (MP, BP

and CC)

One-tailed test z-

score

Normal Measure based in cluster-

attribute Entropy and mu-

tual information

EASE (Ho-

sack et al.

2003)

GO, KEGG,

Pfam, Smart,

and Swis-

sProt

One-tailed test

Fisher’s exact

statistic

Hypergeo-

metric Ease

correction

Friendly interface for

quick gene annotation

THEA

(Pasquier et

al. 2004)

GO (MP, BP

and CC)

One-tailed test

Fisher’s exact

statistic

Hypergeome-

tric Binomial

Bonferroni

Correction

Friendly interface for

quick annotation and

cluster’s analysis

Graph

Theoretic

Modeling

(Sung 2004)

GO (MP, BP

and CC)

One-tailed test

Average PD

statistic

Non-

Parametric

Graphical method who

proposes an Average

statistic for cluster’s

significance

GENE-

RATOR

(Pehkonen et

al. 2005)

GO (MP, BP

and CC)

One-tailed test

Fisher’s exact

statistic

Hypergeome-

tric

Non-negative matrix

factorization to create

k-means partition. Results

presented as a non-nested

hierarchical tree

Annotation-

Tool (Masys

et al. 2001)

Medline

(abstracts),

Mesh (key-

words),

UMLS

One-tailed

test Estimated

likelihood Vs.

Observed likeli-

hood

Semi-

Parametric:

Empirical

Likelihood

Hierarchical groups of co-

annotated groups within

co-expressed clusters

TABLE II

EXPRESSION-BASED APPROACHES
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We define expression-based bibliographic approaches as methods that integrates at least

one of the bibliographic databases (Medline, Biosis, MeSH, etc.) annotations into co-expressed

gene groups. Only a small number of approaches have integrated this kind of biological infor-

mation into co-expressed gene groups. Masys et al. [48] proposed to use keyword hierarchies

to interpret gene expression patterns for integrating bibliographic databases.

In a first step, his method proposes to take as input clusters of genes grouped by similarity

in expression (previously built by any of the supervised or non supervised methods). Sec-

ond, it searches for gene indexing terms contained in some PubMed articles. Then, it trans-

lates these indexing terms to MeSH15 “keywords” terms. Later, it combines the UMLS16

knowledge, the enzyme code nomenclature and MeSH terms to build hierarchical groups

of genes classified by annotation. Third, it makes the selection of the significant groups of

co-annotated genes in each co-expressed cluster. For this purpose, it states:

H0 : Keyword would appear at or above the observed frequency by chance

in a group of keywords of the same size within the cluster of co-expressed

genes.

This hypothesis test is solved by comparing the observed versus the expected frequency

of each keyword retrieved in association with a set of genes and a p − value estimate of

the likelihood under the null hypothesis. Finally, it obtains co-expressed and co-annotated

significant groups of genes.

3.5 Comparison between several Expression-based Approaches

Table II presents a brief summary of eight expression-based approaches. The comparison

is based on four characteristics: the source of biological information, the hypothesis-testing

type and statistics, the hypothesis-testing distribution and a distinctive characteristic.

All the approaches appear in chronological order, the first one integrates bibliographic

sources of information i.e. Medline abstracts and the seven others integrate semantic sources

of information principally GO, sometimes combined with another gene/protein related spe-

cific sources as MIPS, KEGG, Pfam, Smart, etc. or molecular database as Embl, SwissProt,

etc.

Concerning selecting co-expressed and co-annotated gene groups all the approaches have

chosen a one-tailed test. FunSpec, OntoExpress, EASE, THEA and Generator have opted

for Fisher’s exact statistic, and their statistical evaluation methods have small variations.

FunSpec, THEA, EASE, Generator have used the typical fisher’s test with hypergeometric

distribution. The first two of these have chosen bonferroni correction against multi-testing

problem and EASE has used an ease-score correction against the over-representation weight

given in bigger gene groups by Fisher’s test. Only two approaches Graph Theoretic Model-

ing and AnnotationTool have chose non-parametric and semi-parametric statistical evaluation

models respectively.

The last column in Table II contains an important distinctive feature. For example GEN-

ERATOR uses a particular method based on k−means that builds a non-nested hierarchical

tree, as final result.

4 Co-Clustering Axis

From the beginning of gene expression technologies, clustering algorithms were focused on

grouping gene expression profiles with biological conditions [16]. Sources of biological in-

formation and well structured ontologies as GO and KEGG particularly, are constantly grow-

15http://www.nlm.nih.gov/mesh
16http://umlsks.nlm.nih.gov
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ing in quantity and quality and have opened the interpretation challenge of grouping hetero-

geneous data as numeric gene expression profiles and textual gene annotations. Co-clustering

approaches focus their effort to answer this challenge. Each co-clustering approach has its

specific parameters: biological source of information, clustering method and integration al-

gorithm. They generally follow a three-step methodology described in the following.

New co-clustering integration approaches are currently one of the interpretation challenges

in gene expression technologies. At the moment, few co-clustering approaches have been

reported since the principal barrier is the difficulty to build clustering methods fitting hetero-

geneous sources of information. Among the co-clustering approaches we can cite Co-Cluster

[15] and Bicluster [14] described in subsection remarkable co-clustering methods.

4.1 Co-Clustering Methodology

In a first step, they state two different measures: one measure to manipulate gene expression

profiles and the other one for gene annotations in an independent manner.

In a second step, they apply an integration criterion (merging function, graphical function

etc.) within the co-clustering algorithm for building the co-expressed and co-annotated gene

groups simultaneously.

They select the significant co-expressed and co-annotated gene groups. In the last step,

most recent solutions [49], [50], [51], [52], [53], [54] and [55] test the quality of the final

clusters.

4.2 Remarkable Co-Clustering Methods

1. Co-cluster: Co-clustering of biological networks and gene expression data

This approach [15] constructs a merging distance function which combines information

from gene expression data and metabolic networks, computing a joint clustering of co-expressed

genes and vertices (annotations from KEGG database) of the network.

In a first step, it computes two distances: a network distance obtained from the proximity

of enzymes in the metabolic pathway network beneath undirected graph form, and a gene

expression distance obtained from Pearson correlation coefficients of expression matrix [56].

In a second step, it builds a merging function that consists in a mapping that relates genes

to enzymes nodes in the undirected graph. Then, it applies hierarchical average linkage

clustering algorithm using the merged (enzyme-gene) distance.

Finally, it evaluates the significant co-expressed and co-annotated clusters using the silhou-

ette coefficient [57]. This quality cluster method determines the number of optimal clusters

in a hierarchical dendrogram.

2. Bi-cluster: Gene Ontology friendly bi-clustering of expression profiles

This approach [58] directly incorporates Gene Ontology information into the gene expres-

sion clustering process, using Smart Hierarchical Tendency Preserving clustering algorithm

(SHTP). HTP is a bi-clustering algorithm capable of discovering gene expression patterns

embedded in only a subset of conditions. It becomes “Smart” when it integrates the GO

functional annotations.

In a first step, it calculates two trees, the Tendency Preserving (TP) Cluster tree obtained

from gene expression matrix (rank measures) and the Gene Ontology tree decomposition

obtained from GO gene annotations.

In a second step, it builds a hierarchical structure by mapping the TP cluster tree onto GO

Hierarchy.

While applying HTP clustering algorithm, the GO annotations tree is useful for two pur-

poses: assessing functional enrichments of a cluster (using one-tailed Fisher’s test as shown

in OntoExpress) and selecting the subset of conditions critical to a function category (build-

ing the α threshold). Finally, the subset of co-expressed genes contained in the subset of the
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Approach Biological

Source of

Information

Gene Expression

Profiles Measure

and Gene Matrix

Distance

Co-clustering

Details

Co-expressed

and

Co-annotated

gene group

Selection Details

Co-Cluster

(Hanisch et

al. 2003)

KEGG Fold Change Pearson

Correlation distance

Hierarchical Av-

erage Linkage

Silhouette

Coefficient

GO Bi-

clustering

(Liu J. et al.

2004)

GO: (MP,

BP, CC) and

KEGG

Fold Change Rank be-

tween conditions

SHTP: Smart

Hierarchical Ten-

dency preserving

One-tailed

Fisher’s test

Alfa threshold

construction

TABLE III

CO-CLUSTERING INTEGRATION APPROACHES

GO annotations tree becomes the selected significant group of co-annotated and co-expressed

genes by tendency.

4.3 Comparison between Co-clustering Approaches

Table III presents a brief summary of the two co-clustering approaches explained in last sub-

section. It is based on four parameters: source of biological information, expression profile

measure, co-clustering details, and co-expressed and co-annotated gene groups selection de-

tails as seen in Table III.

Both approaches select well-structured ontologies: KEGG database in Co-Cluster and GO

for Bi-Cluster. These ontologies have a graph-based representation that allows the clustering

algorithm to integrate gene expression profiles with gene database annotations.

For manipulating gene expression measures, both methods use fold change expression

measures. Nevertheless, co-cluster chooses Pearson’s correlation coefficient as gene to gene

distance and bi-cluster chooses a gene tendency measure based in the gene-rank between

biological conditions.

Concerning to co-clustering details, both co-cluster and bi-cluster have chosen a hierarchi-

cal clustering method. However, co-cluster has opted for typical hierarchical average linkage

algorithm and bi-cluster has developed the Smart Hierarchical Tendency preserving (SHTP)

algorithm.

Related to gene group selection, co-cluster uses the silhouette coefficient for determining

the quality of the clusters built (selecting the significant ones). In the other hand, bi-cluster

states for a selection in two different stages.

First it uses standard one-tailed Fisher’s test for calculate the p−value for the co-annotated

and co-expressed gene groups and then it builds a particular α threshold for each of them.

Finally, as seen in the previous approaches, it compares p − value against α to select or not

the co-expressed and co-annotated gene group.

5 Discussion

The bioinformatics community has developed many approaches to tackle the interpretation

microarray challenge, we classify them in three different interpretation axes: prior, standard

and co-clustering. The important intrinsic characteristics of each axis have been developed

before.

Standard or expression-based approaches give importance to gene expression profiles.

However, microarray history has revealed intrinsic errors in microarray measures and proto-
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cols that increase during the whole microarray analysis process. Thus, the expression-based

interpretation results can be severely biased [13], [14].

On the other hand prior or knowledge-based approaches give importance to biological

knowledge. Nevertheless, all sources of biological information fix many integration con-

straints: the database format or structure, the weak quantity of annotated genes or the avail-

ability of maintaining up to date and well revised annotations for instance. Consequently, the

knowledge-based interpretation results can be poor or somewhat quite small in relation to the

whole studied biological process.

Co-clustering approaches represent the best compromise in terms of integration, giving the

same weight to expression profiles and biological knowledge. But, they have to deal with

the algorithmic issue of integrating these two elements at the same time. However, they are

often forced to give more weight to one of these elements. In the last section above, we have

seen two examples: co-cluster algorithm gives more weight to knowledge, and expression

profiles were used to guide the clustering analysis while hand bi-cluster algorithm gives more

weight to tendency in expression profiles and GO annotations are used to guide the clustering

analysis.

Indeed, the improvement of microarray data quality, microarray process analysis and the

completion of biological information sources should make the interpretations results more

independent on the interpretation axis.

As long as there is not enough reliability on these main elements, the choice of the inter-

pretation approach remains of crucial importance for the final interpretation results.
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