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Abstract

The Fuzzy C-Means (FCM) algorithm is a widely used and flexible approach to auto-
mated image segmentation, especially in the field of brain tissue segmentation from 3D
MRI, where it addresses the problem of partial volume effects. In order to improve its
robustness to classical image deterioration, namely noise and bias field artifacts, which
arise in the MRI acquisition process, we propose to integrate into the FCM segmentation
methodology concepts inspired by the Non-Local (NL) framework, initially defined and
considered in the context of image restoration. The key algorithmic contributions of this
article are the definition of an NL data term and an NL regularisation term to efficiently
handle intensity inhomogeneities and noise in the data. The resulting new energy formu-
lation is then built into an NL/FCM brain tissue segmentation algorithm. Experiments
performed on both synthetic and real MRI data, leading to the classification of brain
tissues into grey-matter, white matter and cerebrospinal fluid, indicate a significant im-
provement in performance in the case of higher noise levels, when compared to a range
of standard algorithms.

1 Introduction

Magnetic Resonance Imaging (MRI) is one of the most common ways to visualise brain struc-
tures. Based on this imaging technique, the study of the main cerebral tissues (namely,
white matter (WM) and grey matter (GM)) is in particular a key point in the context of
computer-aided diagnosis and patient follow-up. Such a study generally requires to first per-
form a segmentation step, which aims at partitioning the intra cranial volume into —potentially
overlapping— parts: WM, GM, and cerebrospinal fluid (CSF). When dealing with MRI brain
data, the principal challenge related to segmentation is generally the correct handling of the
following image deterioration elements: (i) acquisition noise, (ii) partial volume effect (PVE)
(i.e., the mixture of several tissue signals in a same voxel, induced in particular by the image
resolution), and (iii) bias field (i.e., spatial intensity inhomogeneity, physically linked to the
radiofrequency MR signal [SP98]).

*The research leading to these results has received funding from the European Research Council under the
European Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 207667). This
work is also funded by NIH Grant R01 NS055064 and a CNRS grant for collaboration between LSIIT and
BICG.



A huge literature is devoted to brain segmentation from 3D MRI data. Indeed, segmentation
methods can deal with a large spectrum of purposes:

e extraction of one or several specific and/or small structures, e.g., cortex [MFB195,
GKRRO02], sulci [LGPC199, YKO08], sub-cortical structures [PMH"98, SFGD09];

e partition of the brain into main anatomical structures [DBC*03, BP07, CB09];

e extraction of the main tissues, i.e., partitioning of the intracranial volume into WM, GM
and CSF [JAMBYS06, FdS07, BCA08, MG09].

This last topic is the one considered in this work. The corresponding state of the art meth-
ods can be categorised by considering their methodological approach [PXP00]; non exhaus-
tively, one can distinguish classifiers, Markov Random Field (MRF), artificial neural networks,
and deformable models. In this article we focus on classification-based methods devoted to the
segmentation of adult brain tissues into three classes: white matter (WM), grey matter (GM),
and cerebrospinal fluid (CSF). We begin with a review of current published approaches to this
problem.

Classification methods dealing with brain MRI data can be divided into two groups: para-
metric and non-parametric. Most of the parametric methods make the assumption that the
three brain tissue types present a MR signal which follows a Gaussian distribution. In this case,
the statistical model parameters are usually estimated using a Maximum Likelihood (ML) or
Maximum A Posteriori (MAP) approach and the Expectation-Maximisation (EM) algorithm
is used for the optimisation process. In order to reduce the effects of noise, a regularisation
term taking into account local interactions between voxels is commonly added, relying for in-
stance on MRF [VLMVS99, ZBS01, LW09] or Hidden Markov Chains [BCAQ8]. Alternatively
to statistical parametric methods, unsupervised non-parametric schemes have been recently
proposed for adult brain MRI segmentation [JAMBYS06, MG09]. One such approach is the
mean-shift algorithm, whose key points include the fact that no initial clusters are required
and that the number of distinct tissue clusters is estimated from the data. The assumptions
required for parametric approaches to statistical tissue distributions are then avoided.

In order to complete this review of the current state of the art in tissue classification meth-
ods, let us now consider Fuzzy C-Means (FCM) based approaches [Zad65, PPCD97|. The
principle of these clustering techniques is to estimate three clusters by iteratively computing a
mean intensity for each class being considered (GM, WM, CSF). A soft segmentation compen-
sating for PVE artifacts is then obtained by computing the distances between the intensity of
a voxel and the means of each of the different classes. To decrease the algorithm sensitivity
to noise and intensity inhomogeneity, the FCM framework can be easily extended by incorpo-
rating information about multiple channels [PP99], spatial regularisation [Pha01], topological
constraints [BP07], bias field correction [PP99, AYM™02]

In this article, which is an extended version of the following conference paper [CRP109], we
especially consider the use of a FCM based methodology for brain MRI segmentation. To deal
with the three main image degradation elements listed above (namely, noise, PVE and bias
field), we investigate the use of a non-local framework which has been recently proposed for
denoising purpose [BCMO5]. Since then, this non-local strategy has been studied and applied
in several image processing applications such as non-local regularisation functionals in the
context of inverse problems ([KOJ05, GO07, Rou08, Mig08]). More generally, the non-local
methodology has led to the design of powerful algorithms providing, in particular, an ability
to efficiently handle repetitive structures and textures. In this context, the main contributions
proposed in this article are:



1. the definition of a non-local image data term in the FCM framework, devoted to deal
with intensity inhomogeneity (Section 3.2);

2. the definition of a non-local regularisation term to cope with image noise (Section 3.3);

3. an exhaustive evaluation of the contribution of the non-local methodology to the FCM
framework using both synthetic and real MRI data (Section 4).

The structure of this article is organised as follows. In Section 2, we present the segmen-
tation problem and provide a short overview of the FCM framework and some extensions to
deal with MR image artifacts. Section 3 details how the non-local approach is introduced in
the FCM methodology for brain MRI segmentation. In Section 4, results obtained on the
Brainweb database [CKKE97| are presented. Finally, Section 5 discusses the contribution of
the work and examines future directions for development.

2 Background Notions

2.1 Fuzzy C-Means

The Fuzzy C-Means (FCM) algorithm integrates the fuzzy sets approach [Zad65] into the
classical K-Means algorithm [Mac67]. The FCM approach is presented in detail in [Bez84,
PPDX96], but in the context of our work, the FCM approach can be formulated as follows.

Let us consider an image composed of a set of points (voxels) 2, each point j € Q having
a given value (grey-level) y;. Let us suppose that this image has to be segmented into C'
(> 2) classes, in a fuzzy fashion. This means that a voxel j does not necessarily belong to
one of the C classes, but can “partially” belong to several ones. For each voxel j € €2, let
(ujk)kczl = (uj1,Uj2,...,u;c) be the membership ratios of j with respect to these C' classes,
such that Z]C:1 uj, = 1 and wj, € [0,1],Vk € [1,C]. For each class k, let v, be the centroid
of this class (which usually corresponds to the mean grey-level value of this class of voxels).
Based on these notations, in the FCM approach, the segmentation process of a grey-level image
can be defined as the minimisation of an energy function

C
Jrem = Y > ullly; — vill3 (1)

JEQ k=1

where || . ||2 is the Euclidean norm. Then, |ly; —vy||3 is actually the Euclidean squared distance
(in the grey-level space) between the value of the voxel j and the centroid of the class k. Note
that the parameter ¢ (generally set to 2) enables the control of the fuzziness of the segmentation
(in particular, when ¢ gets close to 1, the segmentation tends to converge onto a binary result).

The energy function Jpeps can be easily minimised using a gradient-based iterative algo-
rithm which alternatively computes the membership ratios u;, and the centroids v, [PP99].
It has to be noted here that the FCM method generally tends to converge rapidly to a stable
solution.

By definition, the FCM approach is intrinsically able to deal efficiently with PVE artifacts,
since voxels presenting PVE are simply allowed to belong to several classes by the FCM, as
illustrated in Figure 1. It must be noted here that the image depicted in Figure 1(a) is of very
high quality, being corrupted neither by noise nor by bias field.

In the case of images of lower quality, altered in particular by noise and/or bias field —which
is generally the case when considering clinical MRI data— the performance of FCM methods
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Figure 1: FCM segmentation in case of partial volume effect. (a) A brain MRI slice. (b-d)
Results of the segmentation of (a): (b) GM, (c) WM, (d) CSF.

Figure 2: FCM segmentation in case of noise. (a) A brain MRI slice (similar to the one of
Figure 1(a)) altered by noise. (b-d) Results of the segmentation of (a): (b) GM, (¢) WM, (d)
CSF.

Figure 3: FCM segmentation in case of bias field. (a) A brain MRI slice (similar to the one of
Figure 1(a)) altered by bias field. (b—d) Results of the segmentation of (a): (b) GM, (c) WM,
(d) CSF.

strongly decrease. In the case of noisy images (illustrated in Figure 2), anatomically erroneous
structures may appear (in the form of “salt and pepper” noise in the resulting segmentation),
for instance single GM voxels within homogeneous WM. In the case of images altered by bias
field (illustrated in Figure 3), significantly sized clusters of voxels may be erroneously classified,
possibly leading to significant errors in tissue volume estimates.

Fortunately, in order to deal with these different issues, the FCM methodology can be
extended. In particular, several approaches have been proposed to improve its robustness to
artifacts, for instance by including bias field correction (Section 2.2) and regularisation (Section



2.3).

2.2 Bias Field Correction

Since the bias field is a smooth variation of the MR signal within tissues across the image,
the correction methods proposed in the literature generally consider it as an additional feature
which can be modelled either as a smooth non-parametric gain field using a derivative-based
regularisation approach [PP99], a smooth polynomial surface [AYM*02, BP07] over the image,
or a stack of smooth B-Spline surfaces with enforced continuities across slices [LY03].

When the bias field is modelled as a slowly varying multiplicative field, it can be included
into the segmentation energy function to be minimise. This leads to a modified expression of
the term Jpcoy [PP99], previously defined in Equation (1)

c
Jp-rom = Z ZU?kH}’j —b;vill3 (2)

JEQ k=1

where b, is the bias field measured at voxel j. Since such a computational approach may not
lead to a smooth estimation of the bias field, the use of this strategy can require an additional
regularisation term (parametric [AYM102, LY03] or non-parametric [PP99]).

Rather than assuming the presence of a single multiplicative field applied over the image
data, an alternative approach is to allow the spatial variation of each tissue class to vary
independently across the image, to, for example, allow changes across white matter that do not
occur in grey matter. Although not motivated by the most common coil induced MR intensity
inhomogeneity, such a formulation can capture other important effects, such as those relating to
the variation of underlying tissue properties, and other scanner related signal inhomogeneities.
Following this idea, and using a local image model for brain tissue clustering, an FCM-based
algorithm which does not require any explicit bias field correction has been proposed in [ZJ03].
This approach is the one which has been followed in our work to tackle the problem of intensity
inhomogeneity. Our contribution related to this point (described in Section 3.2) is the use of
a non-local approach to estimate locally the centroids of the brain tissue classes.

2.3 Regularisation

Regularisation is a classic approach to solving inverse problems, enabling the determination of
the most suitable solution among several possible ones [Tik63]. It has inspired methods relying
on Markov Random Fields [VLMVS99] or on Markov Random Chains (MRC) [BCAO08] which
introduce (global or partial) spatial constraints to eliminate non-relevant solutions. In the FCM
framework, the regularisation process increases the robustness of the clustering algorithm with
respect to the image noise [Pha0l, AYM™*02, CCZ07, WSSS09].

In particular in [Pha01], a regularisation term is added in Equation (1), in order to penalise
unlikely configurations of labels in the image segmentation. The resulting method is called the
Robust Fuzzy C-Means Algorithm (R-FCM). The resulting expression for the energy function

becomes o o
Tncrer = 30 S ulyllyy —vilB 45 St 30 3)

JjeQ k=1 JeQ k=1 neNFRIELy
TV N J/

TV
Jrom

JReg

where N is the set of the neighbours of voxel j and Ly = [1,C)\ {k} = {1,...,k — 1,k +
1,...,C}. The parameter # controls the trade-off between the data term Jpcops and the
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(a)

Figure 4: Comparison of (a) the R-FCM [Pha01] and (b) the NL approaches. In this example,
the area around the voxel j is much more similar to the one of voxel k£ than the ones of voxels
m and [. Therefore, the weight w;, will be higher than the weights w;,, and wj;.

smoothing term Jg.,. If 3 = 0, the formulation reverts to the classic FCM algorithm without
any regularisation term. If 8 > 0, the dependency on the neighbours causes u;;, to be large when
the neighbouring membership values of the other classes are small. The result is a smoothing
effect that causes neighbouring membership values of a class to be negatively correlated with
the membership values of other classes. Broadly speaking, minimising this regularisation term
is equivalent to encouraging the formation of regions of homogeneous class composition. In
[Pha01], the use of cross-validations was proposed as a way to estimate [ and obtain near-
optimal performance, with a neighbourhood (N ]R) composed of 6-adjacent neighbours to the
given voxel j (see Figure 4(a) for a 2-D illustration).

In the work proposed here, we focus on an approach for regularisation similar to that of in
the R-FCM algorithm, but instead using a larger weighted neighbourhood that can make use
of a non-local framework.

3 Non-Local Framework

3.1 Definition

The Non-Local (NL) regularisation is a strategy that has been proposed first as a denoising
tool [BCMO5] and named as NL Mean denoising. Essentially, it aims to take advantage of the
redundancy present in natural structures; broadly speaking a small neighbourhood around a
voxel may match neighbourhoods around other voxels within the same scene.

This framework relies on a weighted graph w that links together voxels over the image
domain. The computation of this graph w is based on the similarity between neighbourhoods
of voxels (see Figure 4(b)). In the following formulation we will refer to such a neighbourhood
as a patch, and denote the patch around voxel j as P;. The similarity of two voxels 7 and j is
defined as the similarity of the grey-levels contained within P; and P;. This similarity can be
computed as a Gaussian weighted Euclidean distance [BCMO05], but it has been shown that a
Euclidean distance is actually reliable enough [CYPT08]. The weight w;; for the voxels i and
7 is defined as

I R (4)



where the distance between the patches P; and P; is
| Ps]
Iy(P) =y (P)I3 =Y (WP (P) -y (P)))? ()
p=1
The term Z; is a normalisation constant, while A is a smoothing parameter. The vector
y(P;) contains the grey-level profile in the neighbourhood of the voxel i and y)(P) is the p*
component of this vector.

Note that it is possible to set the parameter h automatically [CYPT08] by using h? =
2a0?| B;|. In this formulation, o, namely the standard deviation of the noise, can be computed
directly from the image. If the noise in the image is Gaussian, the parameter o can be fixed
to 1 [CYPT08]; otherwise, it can be adjusted to provide a more accurate result.

The use of the NL regularisation approach has already been investigated for different kinds
of image processing problems. In [KOJ05, Mig08] it has been used to constrain a deconvolution
process, while in [Rou08] it has been proposed as a route to providing resolution enhancement
during image reconstruction. It has also been used in segmentation by replacing the origi-
nal Euclidean distance by a measure which includes a balance between local and non-local
information [WKL*08].

The key point of the NL approach is the ability to handle large neighbourhoods without
prior knowledge. We show in this work that this NL methodology can be integrated into the
FCM framework. Indeed, we define:

1. anon-local data term Jyr_rcar (Section 3.2) which can cope with intensity inhomogene-
ity;

2. a non-local regularisation term Jyz_pge, (Section 3.3) which can deal with image noise.

3.2 Non-Local Energy Function

As stated above, the standard FCM approach assumes that cluster centroids are spatially
invariant over the image space. Consequently, the FCM algorithm can be sensitive to intensity
inhomogeneity artifacts occurring in MRI data. In order to tackle this problem without relying
on ad hoc prior knowledge related to this inhomogeneity, it is possible to incorporate a non-
local data term into the FCM energy function provided in Equation (1). This term enables to
relax the spatial stationarity assumption related to cluster centroids.

The following data term, designed for this purpose, integrates non-local weights w;, asso-
ciated with different patches located in an extended neighbourhood N; around the voxel of

interest j
c
INL-FoM = Z Z Z wjnuijyj - vani (6)

JEQ k=1 nEN;

Compared to the standard data term of Equation (1), two main differences have to be
observed: (i) each cluster centroid is no longer assumed to be spatially invariant and thus
presents a specific value (vy,) for each point of the image, and (ii) each point of the extended
neighbourhood does not necessarily have the same influence, based on a specific non-local graph
w modelling the similarity between image patches. In particular, this graph w penalises the
points n which are surrounded by a patch less similar to the patch around the current point j
(wj, is low), allowing the points surrounded by the same kind of patches as j to have greater
influence.

The local centroid (vy;) is computed for each voxel j over a local neighbourhood denoted
M; (the impact of the size of this neighbourhood is studied in Section 4.2.1).

7



3.3 Non-Local Regularisation

In the FCM regularisation context, we investigate the use of neighbourhoods larger than those
considered in previous work [Pha01l] which can then provide more information to the regular-
isation process. The underlying assumption is that voxels which have similar patches in the
search area belong to the same tissue, as illustrated in Figure 4(b).

Consequently, we propose to define a NL version for FCM regularisation, with the following

formulation .
JNL—Reg = g Z Z u?k Z Wjn Z UZ; (7)

jeQ k=1 neNT: leLy,

Compared to Equation (3), a weight parameter (wj,) is introduced in order to automatically
balance the influence of voxels in the neighbourhood NJR. Note also that, in contrast to
[Pha01], where NJR is defined as a six-adjacency neighbourhood, here we explore the use of
large scale neighbourhoods, such as the ones used in the non-local denoising approach described
in [BCMO5].

The regularisation term of the energy function defined in Equation (7) takes into account
the image content to smooth the current segmentation map in an adaptive and flexible manner.
Broadly speaking, if the neighbourhoods of two voxels j and n are similar, it is more probable
that these voxels belong to the same tissue and so, the weight wj, increases. Conversely, if
these two voxels are quite different in the original image, the influence of the regularisation
term should be decreased, since there is a lower probability that the voxel n might have a
strong influence on the classification of the current voxel j.

3.4 Overview

By combining the non-local data term Jxr_pcoar and the non-local regularisation term Jyy— geg
introduced above, we obtain a fully non-local regularised energy function, which enables us to
simultaneously deal with noise and inhomogeneity artifacts within the image data,

INL—R—FcM = INL—FCM + INL—Reg =

C C
S S s vl 5SSt 3w Y )

JEQ k=1 neN; JEQ k=1 nENJR leLy,

It must be noted that the weights w;,, of the Jy1_pgey and Jyr—rpey may be distinet, since
they are actually not used for the same purpose. Similarly, the neighbourhoods N; and N jR
may have a different size. For the sake of simplicity, we will however consider in this work
that, for the same pair (j,n), both wj, weights have the same value, and N; = NJR.

The final N FCM method using by the proposed energy function can be summarised as
follows:

1. Compute w;, for all (j,n) € Q.
2. Compute vy, for all (k,n) € [1,C] x © (initial cluster centroid evaluation).
3. Compute uj; for all (j,k) € Q x [1,C] (initial fuzzy clustering).
4. Repeat
(a) Recompute vy, for all (k,n) € [1,C] x 2.



(b) Recompute uj; for all (j,k) € Q x [1,C].
Until minimising Jy;_r_roum.

The input of this algorithm is the image data (providing €2 and the y values). The parameters
determining its behaviour are C' (number of classes), the size and shape of the neighbourhoods
N; and the 3 value which controls the trade-off between the two terms.

The proposed method (and the other ones further considered for validation, namely FCM
and R-FCM) were optimised as proposed in [Pha01l]: in particular, the same analytical expres-
sions were used for the calculation of the centroids and of the membership functions.

4 Experiments

4.1 Evaluation Framework

Experiments have been carried out on simulated T1-weighted brain MR images provided by
the Brainweb database [CKKE97] and on real brain images provided by the Internet Brain
Segmentation Repository (IBSR) database.

First, considering the Brainweb dataset, three experimental setups have been investigated
to exhaustively test the non-local framework introduced into FCM:

1. Evaluation of the non-local energy function using images only corrupted by intensity
inhomogeneity (Section 4.2.1);

2. Evaluation of the non-local regularisation using images only corrupted by Rician noise [KEP99]

(Section 4.2.2);

3. Evaluation of the non-local FCM framework using images corrupted by both intensity
inhomogeneity and Rician noise (Section 4.2.3).

Second, the proposed non-local FCM algorithm has been applied on IBSR brain im-
ages. These MR brain data sets and their manual segmentations were provided by the
Center for Morphometric Analysis at Massachusetts General Hospital and are available at
http://www.cma.mgh.harvard.edu/ibsr/.

In both cases, a ground truth is used to quantify the quality of the segmentation results
and the Kappa Index (K1) overlap measure is used:

2TP

KI =
2TP+FP+FN

(9)

where TP is the number of true positives, F'P is the number of false positives and F'N, the
number of false negatives.

4.2 Results on Brainweb Images
4.2.1 Study of the non-local energy function

Experiments were carried out to determine the influence of the size of the neighbourhoods M;
and N; used in the non-local energy function. M; is the size of the neighbourhood used in the
computation of the local centroids vy, and we define m; as: |M;| = (2.m; + 1)3, m; € [4,10].
N; is the size of the neighbourhood used for the computation of the non-local weights w;,, and
n; is then defined as: |N;| = (2.n; +1)*, n; € [4,10]. (The interval bounds for m; and n; have

9
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Figure 5: Influence of parameters N; and M; in the non-local energy function on the mean
overlap values computed for (a) Grey Matter and (b) White Matter. Legend : (+) n; =4, (¢)
n;j=>5,(0)n;=6,(x)n; =7,(V),n; =8, (1), n; =9.

been experimentally set to 4 and 10 to find a satisfying compromise between computation time
and performances.)

Figure 5 shows the evolution of the mean overlap measures for the classes WM and GM
depending on the values of n; and m;. Based on these results, we chose a couple that was small
enough for not slowing the computation down while providing good performance: (n;,m;) =
(8,8).

The proposed non-local energy function was compared with the FCM function [PPDX96].
Figure 6 shows the segmentation results and the resulting overlap measures are reported in
Table 1. As shown in Section 2, the FCM algorithm is not adapted to intensity inhomogeneity
since the class centroids are assumed to be stationary over the entire image.

Conversely, the proposed non-local framework greatly improves the WM/GM/CSF seg-
mentation even though no explicit evaluation of the bias-field is performed.

Methods CSF GM WM
FCM [PPDX96] | 73.84 | 69.15 | 75.83
NL-FCM 196.65] | [95.68] | [96.35]

Table 1: Mean overlap measures for the WM /GM/CSF segmentation of the Brainweb image
corrupted by intensity inhomogeneity (m; = 8 and n; = 8). Three different bias fields have
used to corrupt the Brainweb image.
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Figure 6: Segmentation results of the Brainweb T1-weighted image only corrupted by inten-
sity inhomogeneity. (a) Original image, (b) Brainweb segmentation ground truth, (¢) FCM
segmentation, (d) NL-FCM segmentation (m; = 8 and n; = 8).

4.2.2 Study of the non-local regularisation

The key parameters of the regularisation framework are o and NV JR. « is a smoothing parameter
(related to the parameter h, Equation (4)) involved in the computation of the non-local graph
w and N} is the cubic neighbourhood used in the regularisation term (see Equation (7)).
We define n/; such that |NJ*| = (2.n] + 1)°. The results for different values of n} (n} €
[1,6]) are stated in Figure 7(a). These experiments emphasise that considering extended
neighbourhoods is a way to improve the segmentation results. However, increasing n} above
2 does not significantly refine the segmentation results and slows the computation down. We
therefore chose to run the validations described below with n = 2 (i.e., with 5 x 5 x 5 cubic

neighbourhoods).

Overlap Rate of CSF, GM and WM compare to size of research area Overlap Rate of CSF, GM and WM compare to Smooth parameter
0.955 - 0.96 -

0.945 /—§\\\V o092k
¥

0.9

Overlap rate
|3
Overlap Rate

0.935 — 0.881

0.93F 0.86

15 2 25 3 35 4 4.5 5 55 6 0'840 0.5 1 15 2 25 3 35 4 4.5 5
Size of research area Smooth parameter

(a) (b)

0.925
1

Figure 7: Influence of NL regularisation parameters. Application on the Brainweb T1-weighted
image with 9% Rician noise. (a) Overlap rate w.r.t. the value of n} and (b) overlap rate w.r.t.
the smoothing parameter a. Legend: GM (o), WM (V), CSF (x).

We have also investigated the influence of the smoothing parameter a (defined in Sec-
tion 3.1) on the segmentation results. Figure 7(b) shows that, in agreement with Buades et al.
[BCMO5], values of a around 1 provide the best results. Moreover, it can be observed that the
algorithm is not sensitive to this parameter if its value is set above 1 (« is set to 1.1 for the
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validations in the following experiments).

Figure 8: Results of segmentations on the T1-weighted Brainweb image with a 9% Rician noise.
(a) Original image with zoom area, (b) Brainweb segmentation ground truth, (¢) FCM segmen-
tation [PPDX96], (d) R-FCM segmentation [PhaOl], (e) NL-Reg segmentation, (f) zoom on
the T1-weighted Brainweb image with a 9% Rician noise, (g) zoom on Brainweb segmentation
ground truth, (h) zoom on R-FCM segmentation, (i) zoom on NL-Reg segmentation.

To evaluate the contribution of the non-local framework to the efficiency of the segmentation
process, we have also compared the following versions of FCM:

1. FCM [PPDX96];
2. R-FCM [Pha01];

3. R-FCM with adaptive non-local weights, i.e., NJR is defined as being the 6-adjacency
neighbourhood in Equation (7);

4. NL-Reg with fixed weights, i.e., the wj, weights are set to 1 in Equation (7);

12



5. NL-Reg with adaptive non-local weights, i.e., Equation (7) is applied in its most general
form.

The resulting segmentation overlap measures are reported in Table 2. The non-local regu-
larisation approach improves the segmentation results with respect to FCM and R-FCM. The
comparison between R-FCM and NL-Reg without weights shows that using a larger neighbour-
hood leads to significant improvements especially for GM and WM (approx. 1%). Moreover,
for the extended neighbourhood, introducing the NL approach results in an improved overlap
measure.

Overlap rate of GM compare to noise level Overlap rate of WM compare to noise level
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(a) (b)
Figure 9: Application of different techniques on the same Brainweb T1-weighted image with

different Rician noise level. (a) Overlap rate of GM, (b) overlap rate of WM. Legend: NL-Reg
(o), R-FCM (v) [Pha01], FCM (+) [PPDX96].

Methods CSF GM WM
FCM [PP99] 90.46 | 84.36 | 85.48
R-FCM without adaptive weights [PhaO1] | 92.09 | 91.12 | 92.91
R-FCM with adaptive weights 92.76 | 91.09 | 92.49
NL-Reg without adaptive weights 92.22 | 92.22 | 94.12
NL-Reg with adaptive weights 193.63] | [93.35] | [94.77]

Table 2: Application of different segmentations on a Brainweb T1-weighted image with a 9%
Rician noise. Comparison of the different overlap rates for CSF, GM and WM.

Figure 8 provides an illustration of these improvements, particularly with regard to the GM
and CSF performance. The observed differences may be due to the low contrast between CSF
and GM in a noisy image which can however be correctly handled by the NL regularisation
framework. In addition, we observed that the NL-Reg results resolve fine structure more clearly,
as seen in the borders between ventricles and GM, and around cortical sulci as depicted by the
enlarged views of the R-FCM segmentation in Figure 8(h) and of the NL-Reg segmentation in
Figure 8(i), when compared to the ground truth in Figure 8(g).

We carried out complementary experiments to determine the robustness to noise for FCM
[PPDX96], R-FCM [Pha01] and NL-Reg with Brainweb T1-weighted images with varying noise
levels (see Figure 9). It can be seen that NL-Reg begins to emerge as a strong approach at
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noise levels of 3% and above, and becomes more accurate compared to R-FCM approach at a
5% noise.

4.2.3 Complete Algorithm (Bias + Noise Correction)

Experiments are carried out on Brainweb Images corrupted not only by noise, but also by
intensity inhomogeneity. To point out the contribution of the regularisation term, we compared
the complete algorithm NL-R-FCM to NL-FCM and NL-Reg to an image with a 9% Rician
noise and 20% inhomogeneity. The considered parameters are the ones chosen according to
the previous experiments, namely m; = 8, n; = 8, and N jR =5 x 5 x 5. Results are presented
in Table 3 and a visual insight of the results is given in Figure 10.

(a)

Figure 10: Segmentation results of the Brainweb T'1-weighted image only corrupted by intensity
inhomogeneity and a 9% rician noise. (a) Original image, (b) Brainweb segmentation ground
truth, (¢) NL-FCM segmentation, (d) NL-R-FCM segmentation (m; = 8 and n; = 8).

Methods CSF GM WM
FCM [PP99] | 67.45 | 62.09 | 69.98
NL-Reg 69.60 | 64.25 | 72.16
NL-FCM 84.75 | 78.1 | 82.41
NL-R-FCM | |87.28] | [83.52] | [86.98]

Table 3: Application of different segmentations on a Brainweb T1-weighted image with a 9%
Rician noise and 20% intensity inhomogeneity. Comparison of the different overlap rates for
CSF, GM and WM.

As expected, including either non-stationary centroids or non-local regularisation enables
to significantly improve the segmentation map by comparison to the standard FCM method.
Moreover, the simultaneous use of both non-local strategies (NL-R-FCM) leads to complemen-
tary segmentation improvements and finally provides the best results.

We carried out supplementary experiments to determine the robustness to noise for the
non-local FCM methods with Brainweb T1-weighted images (see Figure 11). The considered
Rician noise level range is [0,9]%. It appears that the benefits of the NL-R-FCM emerges at
7% noise and above, and especialy by comparison to the NL-FCM.

14



Y
T
i
5

3 = —K—
0.9 o B SS 0.9
I ~ Q —<_
g - 3
&osgt " gosr
e} o ¥
s0.7 so.7
o} o
e —
0.6 0.6
0 1 2 3 5 6 7 8 9 0 1 2 7 8 9

4 4 5
Noise Level Noise Level

(a) (b)

Figure 11: Application of different techniques on the same Brainweb T1-weighted image with
different Rician noise level and a 20% inhomogeneity. (a) Overlap rate of GM, (b) overlap rate
of WM. Legend: NL-Reg (V), NL-FCM (x), NL-R-FCM (+).

Methods White Matter (%) | Grey Matter (%)
Mean Standard | Mean Standard
Devia- Devia-
tion tion
SPM 5 [AF05] 85.27 5.52 78.7 13.98
EMS [VLMVS99] | 85.87 2.27 78.94 5.68
HMC [BCAO0S] 86.53 1.73 79.94 5.57
FCM [PP99] 85.60 3.81 83.21 4.03
R-FCM [Pha01] 86.09 2.75 84.08 3.98
NL-Reg 86.31 3.18 83.18 4.08
NL-FCM 84.68 3.38 78.84 4.07
NL-R-FCM 84.35 3.38 83.22 3.47

Table 4: Overlap measures (GM, WM) obtained for different segmentation methods applied
on the IBSR database (overlap rates of SPM5, EMS and HMC are from [BCAO0S]).

4.3 Results on IBSR Images

The non-local FCM algorithms have been applied on real brain MR datasets (obtained from
the Internet Brain Segmentation Repository (IBSR)). Since IBSR is a commonly used MRI
database for brain tissue segmentation assessment, the obtained results can be directly com-
pared to those provided by the other state of the art methods which also considered IBSR
for validations, and in particular the following ones: Statistical Parametric Mapping (SPM
5) [AF05], Expectation-Maximization Segmentation (EMS) [VLMVS99]) and Hidden Markov
Chains (HMC) [BCAO0S].

Based on these considerations, overlap measures were computed for GM and WM and the
average results obtained on the 18 cases were compared to the ones of these other methods.
Notice that as the expert segmentations of IBSR include only internal CSF spaces (i.e., the ven-
tricles) while our method also delineates sulcal CSF, we do not report results for cerebrospinal
fluid. Quantitative mean results are reported in Table 4 while results for each subject are
depicted in Figure 12.

From the measures of Table 4, it appears that all the segmentation methods considered
in these experiments quantitatively provide similar results for the WM. When considering the
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Figure 12: Application of different segmentation methods through IBSR database. (a) Overlap
Rate of White Matter, (b) Overlap Rate of Grey Matter. Legend: FCM (+4), R-FCM (¢), NL-
Reg (x), NL-FCM (o), NL-R-FCM (V).

GM segmentation results, the use of FCM-based strategies globally leads to better results than
the other state of the art methods (both in terms of mean value and standard deviation).

From the case results of Figure 12, it can be observed that the FCM-based methods tend
to provide globally similar results. In the few cases where we can distinguish non homogeneous
results (for instance case 4), the best results are obtained without considering non-stationary
centroids. A possible cause of this fact may be the global intensity homogeneity of the IBSR
data, which do not actually require to correct a potential bias field (see Figure 13(a)). In this
context, the methods that intend to correct such a bias field (namely NL-FCM and NL-R-FCM)
may possibly behave in a non-optimal way.

These quantitative results have to be interpreted with care, since the manual ground-
truth segmentation proposed for the IBSR database may sometimes be not fully accurate (for
instance, the underlying tissue boundaries are not well delineated in regions such as sulci, or
ventricles). In this context, the analysis has to be qualitatively completed by a visual inspection
of the results.

To illustrate this point, let us consider the case of the segmentation results shown in Figure
13 which corresponds to the IBSR image # 11. In Figure 12, it can be observed that the
overlap measure for the GM of the FCM-based method is below 0.8. This low performance
is visually justified by comparing the segmentation maps with the provided ground truth
obtained by manual delineation. In this manual segmentation, the GM clearly appeared to be
oversegmented and then constitutes a superset of the actual GM.
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Figure 13: FCM segmentation in case of noise. (a) A brain MRI slice of case 11 of IBSR
Database. (b) Ground truth. (c—f) Results of the segmentation of (a): (¢) RFCM, (d) NL-
Reg, (e) NL-FCM, (f) NL-R-FCM.
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5 Conclusion

In this article, we proposed an extended FCM-based method to unsupervised segmentation,
by introducing a non-local formulation for the regularisation and the data-driven terms. By
considering data-driven adaptive neighbourhoods, the use of a non-local framework enables
to deal with frequent image corruption such as noise and intensity inhomogeneity which are
generally observed in MR data. In order to assess the relevance of this non-local FCM approach,
it has thus been applied to brain tissue MR segmentation using simulated and real images.

First experiments performed on several noisy (up to 9% Rician noise) and biased (up to
20% inhomogeneity) Brainweb MR images highlight the usefulness of these non-local extensions
by efficiently dealing with intensity inhomogeneity and noise. More specifically, it has been
experimentally shown that the two non-local functionals (energy function and regularisation)
improve the results in a complementary way. Moreover, the resulting method also does not
appear to be highly sensitive to parameter settings. Additional experiments, run on real
brain MR images from the IBSR database, have shown that this new non-local FCM-based
algorithm reliably extracts brain tissue maps with accuracy comparable to state of the art
methods (SPM5, EMS, HMC).

From a methodological point of view, further works could now focus on non-local character-
istics [KFEA10] such as: data-driven estimation of parameters such as (M;, N;) and patch sizes,
non-local multipoint modeling versus non-local pointwise modeling, anisotropic patch support,
patch parameter dimension reduction, etc. In terms of application, this new approach could
be useful in the case of lower contrast imaging (limited by the imaging time, or challenged by
inherently low contrast tissue boundaries) for example in the study of the developing human
foetus [HKGT09].
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