N

N

On the well-posed coupling between free fluid and
porous viscous flows
Philippe Angot

» To cite this version:

Philippe Angot. On the well-posed coupling between free fluid and porous viscous flows. Applied
Mathematics Letters, 2011, 24 (6), pp.803-810. 10.1016/j.aml.2010.07.008 . hal-00476386v2

HAL Id: hal-00476386
https://hal.science/hal-00476386v2
Submitted on 23 Jul 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00476386v2
https://hal.archives-ouvertes.fr

Accepted Manuscript R Applica

Mathematics

On the well-posed coupling between free fluid and porous viscous
flows

Philippe Angot
PII: $0893-9659(10)00252-1 s
DOI: 10.1016/j.am1.2010.07.008

Reference: AML 3282
To appear in:  Applied Mathematics Letters

Received date: 31 October 2009
Revised date: 18 April 2010
Accepted date: 17 July 2010

Please cite this article as: P. Angot, On the well-posed coupling between free fluid and porous
viscous flows, Appl. Math. Lett. (2010), doi:10.1016/j.am1.2010.07.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.


http://dx.doi.org/10.1016/j.aml.2010.07.008

AppLIED M aTHEMATICS LETTERS, 2010 [0 APPEAR)

On the well-posed coupling between free fluid and porous viscous flows

Philippe Angot
Universite de Provenc& LATP - CMI, UMR CNRS 6632, 39 rue F. Joliot Curie, 13453 Mardki Cedex 13 - France.

Abstract

We present a well-posed model for the StgBemkman problem with a family ojump embedded boundary condi-
tions (J.E.B.C.pn an immersed interface with weak regularity assumptidinis. issued from a general framework
recently proposed for fictitious domain problems. Our maglbbhsed on algebraic transmission conditions combining
the stress and velocity jumps on the interfacseparating the fluid and porous domains. These conditiang/elt
chosen to get the coercivity of the operator. Then, the géfirmmework allows us to prove new results on the global
solvability of some models with physically relevant stresyelocity jump boundary conditions for the momentum
transport at a fluid-porous interface. The StgBemkman problem withOchoa-Tapia& Whitaker (1995)nterface
conditions and the Stoké#arcy problem withBeaversé Joseph (1967¢onditions are both proved to be well-posed
by an asymptotic analysis. Up to now, only the StgRescy problem withSgfman (1971)approximate interface
conditions with negligible tangential porous velocity wamwn to be well-posed.

Key words: Transmission problems, Jump embedded boundary conditktokegBrinkman problem, StokgBarcy
problem, Fluidporous coupled flows, Well-posedness analysis, Asympaotadysis, Vanishing viscosity, Singular
perturbation

2000 MSC34E15, 35J20, 35J25, 35J50, 35J55, 35Q30, 35Q35, 65J20378BD07, 76M45, 76S05, 86A60

1. Introduction

Notations.Let the domair c RY (d=2 or 3 in practice) be an open bounded and Lipschitz contismmain.

Let an interfac& c R%1, Lipschitz continuous, separatkinto two disjoint connected subdomains: the fluid domain
Q¢ and the porous on®, such thatQ = Qf U X U Q,. The boundaries of the subdomains are respectively defined
by: Q¢ =Tt UX for Q¢, 0Q, =T'p U X for Q, andoQ = T'y UT, for Q, see Fig. 1, assuming no cusp singularity
atx N oQ. Letn be the unit normal vector ob oriented fromQ, to Q; andt any unit tangential vector of a local
tangential basist(, - - - , 74-1) onZ. For any quantityy defined all ovel, the restrictions of2; andQ, are denoted

by " andyP respectively. For a functiop in HL(Qf U Qp), lety~ andy* be the traces abjq, andy o, on each side
ofX respectively@Iz = (y" +¢7)/2 the arithmetic mean of traceswfand [4]sx = (¥* —¢~) the jump of traces af

on X oriented byn.

There exist in the literature filerent models with physically relevant stress or velocitppuboundary conditions
for the tangential momentum transport at the fluid-porotsrifaceX, see e.g. [30, 20]. When the homogeneous
porous flow is to be governed by the Brinkman equation, cf., {8 1, 22, 3, 10], the interface condition below
linking the jump of shear stress with a continuous velocigiswerived with volume averaging techniques by Ochoa-
Tapia and Whitaker [28] instead of the usual stress and \gloontinuity boundary conditions at the interface [3]:

f H p /JBOIW
uvvien — =Vv -n) T=—
¢ > VK

vset and vi=vP=vs onz, 1)
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Figure 1: Configuration for fluid-porous flows inside the dom@i= Q; UX U Q.

where the dimensionless paramegyy, is of order of one; see [29, 20, 17, 33] for its characteroratiwe prove in
Section 3, as a by-product of our general framework recafi€glection 2, that stress jump boundary conditions of
this type yield a well-posed fluid-porous Stokgsnkman problem whatever the dimensionless parangtgr> 0.
This was not already stated up to our knowledge.

When the porous flow is governed by the Darcy equation, see[23], the well-known Beavers and Joseph
interface condition [11] must be used. It links the shearsstiat the interface with the jump of tangential velocity:

Vv n)s T = % (vf - Vp>z-‘r and vien=vP.n=v.ny onZx, 2

where the dimensionless parametg| = O(%) depends on the porosiyand may vary betweenDand 4 [11, 2].
The approximate SBman interface condition [31], derived by homogenizatiochtéques in [23], is also written
when the Porous filtration tangential velocity can be negi@avith respect to the fluid velocity at the interface:
|v§- 7| < |vg+ 7/, i.€. for a permeability valud or Darcy number Da K/H? sufficiently small. The global solvability
of the StokegDarcy problem with the S&man condition forv-7 ~ 0 is proved with a mixed hybrid formulation
in [24] whatever the dimensionless parametg; > 0, and then by many others with various formulations, see
e.g. the recent review [18]. The only result of well-posexntor the full form of Beavers and Joseph condition
is recently established in [15] forgj suficiently small. We prove in Section 4 by a singular pertudiatin our
general framework with a vanishing viscosity that the abBeavers and Joseph interface conditions yield a well-
posed StokgBarcy problem whatever the parametgt > 0. Here, the main dliculty lies in how to give a sense to
the tangential trace of the porous velocity on the interfaite minimal regularity assumptions. This is particularly
relevant for thin fluid layers as for conducting fractureparous media flows [8, 9, 15].

We first begin in the next Section 2 by describing the geneaat&work with jump embedded boundary conditions
studied in [6]. It is derived by a generalization to vectdipgéic problems of a previous model stated for scalar
problems [4, 5]. A short version of the following results dafound in [7].

2. A well-posed StokeBrinkman problem with jump embedded boundary conditions

Leto(v, p) = —pl +2a d(v) denote the Newtonian stress tensor defined with fieetive viscosity:in the porous

. N : . . 1 . . .
domainQp, with /i = u in the fluid domainQs andd(v) = =(Vv + VV') being the strain rate tensor. We consider
the following StokefBrinkman problem includingump embedded boundary conditions (J.E.BdD.}he interfac&



which link the trace jumps of both the stress veetgv, p)- n and the velocity vectov through the interfacg:

-V-o(v,p) =f in Qg, )
-V.o(v,p) +uKlv=f in Qp, 4)
V-v=0 inQf UQ,, (5)

v=0 onl's UT, (6)

[o(v.p)-nls =MV onz, (7)
oV, PN = S[VIs ons. ®

Here, the viscosity cdBcientu and dfective viscosityu'in the porous medium are bounded positive functions such
thatuo = min(y, i) > 0, the symmetric permeability tensir = (Kij)1<i j<d IS uniformly positive definite, and the
transfer matricesS, M on X are measurable, bounded and uniformly semi-positive oesrverifying ellipticity
assumptions:

K e (Lo@)™; 3Ko>0, VéeRY, KX L&&2Kolél? ae in Q. (A1)
M, Se (L®E)™?; IMg, Sp >0, VERY, M(X)-& &> MoleP, S(N-&&>Solé? aeonz.  (A2)
With usual notations for Sobolev spaces, e.g. [27, 21], we define the Hilbert spaces:
Ha-, Q)% = {w e HY(Q0)% wir, =0 on Ty},  Hg (Qp)" = {w e HY(Qp)® wir, =0 on T,
W = {w e LX(Q)Y, wig, € HE (Q1)? andwyg, € HE (@p)% V-w =0in Qf U Qp)
equipped with the natural inner product and associated ot (Q; U Qp)d.

Let us note that fov € W satisfying (3) or (4) withf € L?(Q)9 such thatV- o(v, p) € L3(Q)Y, we can define
a(v, p)- nE inH-z (2)9, see [25, 12]. The model with the J.E.B.C. (7-8) also allowsssible pressure jump]x # 0
in H‘%(E) with additional regularity assumptions.

Then, as a consequence of the general framework stated, ithfsproblem (3-8) satisfies f the nice weak
formulation below:

Find v € W such thatvw € W, a(v, w) = I(w) with

a(v,w)zzj;2 ,ud(v):d(w)dx+2fg ,ad(v):d(w)dx+fg yK‘lv-wdx+£M V|Z-W|zds+f28|[v]|2-|[w]|zds

I(W):ff-wdx 9)
Q
Besides, the following well-posedness result is ensurelé byheorem 1.1].

Theorem 2.1 (Global solvability of StokefBrinkman model with J.E.B.C.). If the ellipticity assumptions (A1,A2)
hold, the problem (3-8) with € L?(Q)¢ has a unique solutiotv, p) € W x L?(Q) satisfying the weak form (9) for all
w € W and such that p= p{ +C%+ Cl/2and @ = pf + C° - Cl/2 where p € L2(Q) = {q € L%(Q), J,adx=0}
and C, C! are constants defined by:

1 ,— 1
0 _ 1l _
co= 5 (o(v. po) s — S[VI: . n>_%,z and C' = 5

Hence, to satisfy (7-8) in the sense OT%I(IZ)“, the pressure field g L?(Q) must be adjusted from the zero-average
pressure p e L3(Q) such that:(p — po)z = C° and[p — po]sx = C*.
Moreover, there exists a constamf(Q2+, Qp, Ko, o) > 0 such that:

C(Qf7Q 7/'1’1&7 |IK71||00)
IVilw + lIpollog < ? o Ifllog-

([o(v, po)-n]s —~M Vs, n>—%,): .

Remark 1 (Generalizations). For practical problems, theeaf a nonhomogeneous Dirichlet boundary condition:
v=vponI'f Ul'y withvp € H 2 (Tsu l“p)d and the compatibility conditio!f_fur vp-nds= 0, can be treated as well
by defining arad-hocdivergence-free extension v, e.g. [32], and adding its contribution in the source tefrof
the present problem (9). The generalization to unsteadyeSRBrinkman problems is also straightforward.
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3. The StokegBrinkman problem with Ochoa-Tapia & Whitaker interface cond itions

We now consider that = u/¢, whereg €]0, 1] is the porosity of the porous medium, and stress jump fexter
conditions of Ochoa-Tapia & Whitaker’s type [28] like in (1fe original ones reading wii, = Bow andB, = 0:

uBr . HPBn
,j=1---,d=-1, Myq= and [v]y=0 onX, 10
e j dd M (10)

VKy

whereM is a positive diagonal matrix wit.,3, > 0 a.e. onx and K, K, permeability cofficients. Then, as a
consequence of the general framework stated in [6], thelgmo(B-6,10) satisfies i the weak formulation below:
Findv e V = {u € H}(Q)%; V-u = 0} such that

[o(v,p)-nls =Mv  with M;; =

Zf ,ud(v):d(w)dx+2f Ed(v):d(w)dx+f uK‘lv-de+va-wds=ff-wdx, YweV. (11)
o Q, ¢ Q s Q

p

Besides, the following well-posedness result is ensuredcasollary of Theorem 2.1.

Corollary 3.1 (Global solvability of StokegBrinkman problem with OT-W). If the ellipticity assumptions (A1,A2)
hold, the problem (3-6,10) withe L?(Q)? has a unique solutiofv, p) € V x L2(Q) satisfying the weak form (11) for
all w e V and such that p= p(f) +C!/2and P = pf) - Ct/2 with p € L3(Q) and the constant Edefined by:

Cl = 2 ([otv.po) il =M. )y,
SKETCH OF PROOF. The existence and uniquenesyaf V satisfying (11) is ensured by the Lax-Milgram Theorem. The
pressure fielgy € L%(Q) can be also recovered by the De Rham theorem [32, 12] whicivies theinf-supcondition
between the velocity and pressure spaces [19]. Then, byrooting anad-hocdivergence-free extension as for [6,
Theorem 1.1] (see also [12]), this allows to verify the srgsnp condition (10) irH‘%(E)d with the pressure field
p € L2(Q) fitted such that we have formallyp[- po]s = C* and(p — po); = O. O

We can also interpret this solution as the limit solutionha# problem (3-8) with penalized velocity jumps Bn
when the penalty parameter- 0 tends to zero and we have the following convergence result.

Theorem 3.2 (Convergence to Stok¢gBrinkman problem with OT-W). For anye > 0, the solution(v,, p,) of the
. , . 1 .

problem (3-8) from Theorem 2.1 wit defined in (10) and = gl strongly converges to the solutidm, p) of

Corollary 3.1 inW x L%(Q) whene — 0. Moreover, there exists a constan((@, Qp, 1, ¢, Ko, [I[K 1{l) > 0 such that

the following error estimate holdg; being the weak limit 01gi|[vg]|z in L2(Z):
&
Ve = Vllw + IPoe = Polloe < CllYllos Ve and [[Velsllos < [Wllox €.

With additional regularity assumptions such tlyat H : (2)4, then the previous estimate becomes optimal(s).

SKETCH OF PROOF. The solutionv, € W satisfies with (9) the weak form below:
1
2 | pd(ve):d(w)dx+ 2f £ d(ve): d(w)dx+f uK v wdx+ fM VoW ds+ — fl[vg]lz- [w]sds
Q Q, ¢ Qp > e Js
= ff-wdx, YweW. (12)
Q

By choosingwv = v,,, we get using the Korn and Friedrichs-Poirearequalities i+, Q, together with the inequality:
ab< (a®+b?)/2, YabeR:

o f Vv, dx-+ 0 Ko f
Q1uQ, Q

. 1 c(Q¢, O
|v8|2dx+fM vg|z-vg‘zds+—fll[vg]|2|2dss —( r )
z € Jz Ho

4
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With this bound, there existse W such that, up to a subsequenegtends tov in W or HY(Q; U Qp)d weakly when
e — 0 and strongly in.2(Q)®. Indeed, since the trace application is continuous, we:haver, = 0. Moreover we
have:||[V:]zllox < c(Q+, Qp, 1o, f) Ve and thus [z = 0, Vs = vz andv belongs to the subspattof W. Thenpg,
defined by Theorem 2.1 is boundedLif(Q2) since we have using the Kas theorem [32, 19]:

IPoclloe < (@ 2p) (IVPeell-za, + IV Peell-10,) < CIVeliw + [iflloc. (13)

Thus, there existgg € L%(Q) such that, up to a subsequenpg, tends topy weakly in L?(€2). Now taking the limit

. 1 ; .
of (12) whene — 0, there existg € L2(Z)? such that=[v.] s tends weakly tay in L?(Z)? and we get that is the
E
unique solution irV (the uniqueness being proved directly witk 0 andw = v € V c W) satisfying:

sz“d(V):d(W)dX+2fQ p

Ed(v):d(w)dx+f

Qp

ﬂK‘lv-wdx+va|;-W|;ds+fz//-l[w]lzds
z z
:ff-wdx, Yw e W. (14)
Q

Hence,v € V also satisfies (11) for all € V. Besides, using test functioms= ¢ € Cz° compactly supported either
in Q¢ or in Qp and such that diy = 0 in Q¢ or in Qp respectively, and using the Stokes formula, we get with the D
Rham theorem [32, 12] the existence and uniquer@ssa(dQ, being connected) of the pressure restrictipps,
andpog, in L3(Qf) andL3(Qp) respectively. This defines the pressure figdc= pog, + Pog, in L3(Q) over the whole
domainQ such that¥, po) verifies the StokgBrinkman equations (3-5) a.e. & U Q,,.

Then, we can define the pressure fiplet L?(Q) with pp and the constar@? as in Corollary 3.1 such that the
stress jump condition (10) is verified H~2(X)?. Moreover, the constar@! defined in Theorem 2.1 withv(, po.)
satisfies: Egci = C! with the weak limits of ., po.) and the continuity of the trace applications. We can alge gh

interpretgtion ofy. By writing the diference between the weak form of problem (3-6,10) with testtfansw € W
using the Stokes formula and the limit weak form (14), it g&l(o(v. po)- ns -, [Wlz) , = 0. ¥w € W. By

_%,z
constructing amad-hocdivergence-free extension W of any functionu in H : (%)¢, as for [6, Theorem 1.1] (see also
[12, chap. 1I] for the Stokedleumann problem with a stress boundary condition), we d#fmeonstant® = Iirrg)Cg

below,C? defined in Theorem 2.1 wittv{, po.), such that we havg = o-(v, po + C°)- nj; in the sense ofH~2(Z)%:

1 — _ 1
0_ _ 1snd
cl= 5 (o(v. o) Nz — ¥ n>_%,z, suchthat (o(v, po + C%)-ny — v, u>_%’z =0, YueH3(x)".

To prove the strong convergence and the error estimate, stevfite the error equation being theférence between
(9) satisfied by, for all w € W and (14) using the fact thatv]s = 0 andviy = viz. Then, choosingv = v, — v, we
get with the Cauchy-Schwarz inequality:

_ 1
200 [ 180w W)kt poKo [ Ny - uPdxs Mo [ s - viEdss 3 [ I[v, = vIsPds< Wlosl. ~ Vil
Q1UQp Qp ) € Js
which simply gives using the Korn and Poinéanequalities ir2s andQ:

Ilvelsllos = II[Ve — Vlsllos < IWlloze and [V = Vilw < C(Qs, Qp, o) IYllox Ve. (15)

If Y belongs taH 2 (%)9, the last error estimate can be improved ugfe) by constructing some adequate extensions
from ¢ in the subdomain& andQ,. Finally, the pressure estimate is obtained using théell¢heorem and we get:

lIpos = Polloe < (. 2p) (IV(Pa: = Po)ll-1a, + IV(Pos = Po)ll-10,) < C Ve = Vilw,

which completes the proof. O



4. The StokegDarcy problem with Beavers & Joseph interface conditions

We consider the problem (3-8) with the Dirichlet boundarydition (6) onI', replaced by the stress boundary
condition of Neumann wheneis the outward unit normal vector df, andq € H‘%(l“p)d given, e.gg = —peV:

v=0 only and o(VP pP)v=-pPv+avVvP-yv=q onT). (16)

Let us define the Hilbert spad¥y equipped with the natural inner product and nornir{Q¢ U Q,)%:
Wy = {w e L2(Q)%, wiq, € Hi, (Q)? andwig, € H(Qp)%; V-w = 0in Qf U Qp}.

Then, the following well-posedness result is ensured asalaoy of Theorem 2.1, see also [6, Theorem 2.1].
Corollary 4.1 (Global solvabilit)l/ of the StokegBrinkman model with J.E.B.C. and stress B.C.). With the assump-
tions of Theorem 2.1 angle H~2(T'p)?, there exists a unique solutigw, p) € Wy x L%(Q) satisfying the weak form:
a(v,w) = I(w) +(q, w)_y r, forall w € Wy with pf = pg +C%+Cl/2and PP = p§+C°-C!/2where p € L3(Q) and
the constants & C? are defined as in Theorem 2.1 such that the equations (3-8)dioiost everywhere i2s U Q,
and (7-8) are satisfied in T-E(Z)d. Then, if the following compatibility condition holds:

cO- %cl =CN with cV= 1

- Irpl <0-(Vs pO)' V- q ) V>—%,l"p )

the stress boundary condition (16) is also satisfied 'rr%ﬂrp)d and(v, p) € Wy x L%(Q) is the unique solution of the
problem (3-5,7-8,16).

For anye > 0, let us now consider the solution.(p,) € Wy x L?(Q) of the problem (3-5,7-8,16) with a vanishing
viscosityu = ¢ for the Brinkman problem ifi2,. The condition (16) avoids the creation of a spurious bountgyer
alongI', for the Darcy problem whea — 0. The J.E.B.C. (7-8) are also calibrated as follows to obierface
conditions of Beavers & Joseph’s type [11] with a jump of t@anigal velocity (2) allowing a possible pressure jump:

_ . . ,U,Bn
ov,p-n]s =MV with  M;; =0, j=1,---,d-1 Mg = onx, 17
[o(v. p)-n]s = ii j €= g a7)
- ) nag . 1
o(v,p)-ns =S[v]y with Sjj= —KT j=21,---,d=1, Sygq= - onx, (18)

whereM, S are positive diagonal matrices with = apj, Sn > 0 a.e. ork andK,, K, permeability cofficients.
Let us define the Hilbert spaces

Wsp = {w e LAQ), Wi, € Hr, (Q1)%, Wig, € LAQp)% V-w =0in Qf UQy)
equipped with the natural inner product and nornii{Q¢)? x L2(Qp)¢ and
Wsp = {weWsp; V-w e L(Q), [w]s € LA(Z), [w-n]; =0}

equipped with the norm defined byw|3,_ . = Iwlifq, + ||w||(2mp + V- W3 o + ITWI sll35-
We now prove the following convergence result which alsaessthe well-posedness of the Stgkescy pro-
blem with Beavers & Joseph’s type interface conditions{Rythatever the cdicientsa., 3, > 0 a.e. ork.

Theorem 4.2 (Convergence to StokgBarcy problem with B-J). With the dataf € L2(Q)¢ andq = 0, the solution
(Ve, Ps) in Wy x L2(Q) for anye > 0 from Corollary 4.1 of the problem (3-5,16,17,18) with a \&ining viscosityi = &
weakly converges to the solutigwn, p) in Ws,p x L?(Q) of the StokgBarcy problem with the interface conditions
(2,17) onZ whene — 0. Indeed, in the porous domainy, vP and (P satisfy the Darcy equation.e. Eq. (4) with

fi =0, and @ belongs to H(Q;) such that B = 0onT.

With additional regularity assumptions such théte H}(Qp)?, thenv € Wsp N Wy and we have the global error

estimate with C> 0 depending on the datéiVVloq,, [l#llox andy defined as the weak limit ejﬂ[vg- n]s in L2(%):
&

1
2 2 )2
IVe=VllLo+ Ve [IVe=Vila, +HIVe=Vllo, HIPo:—Polloa < Clivllos Ve and  [I[ve nlsllos < (2||VVIIO,Qp + III,/IIIO,E)2 2
6



SKETCH OF PROOFE. The proof is here abridged without explaining most of thguarents already detailed in the proof
of Theorem 3.2. From (3-5,16,17,18) with the Stokes formihlea solutionv, € Wy satisfies the weak form below:

2f /Jd(Vs):d(W)dX+28f d(vg):d(w)dx+f ,uK’lvg-de+va_8‘2-v_v‘zds
Qs Qp Qp b
d-1 1
+Zfsjj |[v8-rj]|z|[w-~rj]|2ds+—f|[v6-n]|2|[w-n]|2ds=ff-wdx, Yw € Wy. (19)
ic1vE € Js Q

By choosingw = v,, we get using the Korn inequality 3¢, Q, and Poincae inequality inQ;:

d-1
K

wo | 1VvePdx+2e | wvPdx+ B0 [ v Pdx+ Mof|vg.n|2|2ds+ So E f[vg.rj]lgds
2 Ja, > = Js

Q¢ Q
1
+2 f [Ver 12 ds < o(Qr. Qp. 0, Ko) 1 - (20)
)

With this bound, there exists € Wg,p andV € Hl(Qp)d such that, up to a subsequenegtends tov in Ws,p or
H(Q)? x L2(Qp)® weakly whene — 0 (strongly inL?(Q¢)?) and e v! tends tov in H1(Q,)? weakly. Indeed, since
the trace application is continuous, we hawve; = 0. Moreover we havel[ V.- n]sllos < ¢(Qf, o, Ko, f) Ve and thus
[v-nls = 0, VA = v-ng in L3(X). Since .- ]y is bounded in_%(Z) (for a, > 0 and thusS, > 0) and because
v e HY(Q()? has a trace iH3(2)?, there exists/} € LA(2)? defined as the weak limit of the traegy. in LX(z)".
Hence we define the tangential velocity jump: f]s = (v‘fz -V§)TE L?(Z) and we havey € Ws p.

Then pg, defined by Corollary 4.1 is bounded hﬁ(Q) because, using the Bas theorem as for (13), we have:
IPoclloq < c(€2f, 2p) (IIVposll_l,Qf + ”VpOs”—l,Qp> < C, sincel|Vellro,, VellVellLa, andv.lloq, are all bounded. Thus,
there existgyg € Lg(Q) such that, up to a subsequenpg, weakly tends tqy in L%(Q).

. - . 1 :
Now taking the limit of (19) wher — 0, there exist® € L%(X) such that=[v,- n]y weakly tends tas in L2(Z)
&
and we get that is the unique solution iV s p satisfying the weak form:

d-1
Zf pd(v):d(w)dx+f ,qulv-wdx+fM V\Z-W‘zds+2fsjj I[V'Tj]lzl[W'Tj]IzdS‘Ffl//l[W’n]IzdS
Q¢ Q = i vE =

=ff-wdx, Yw e Wy. (21)
Q

The existence and uniqueness of the solution Ws p to the above problem can be alagriori ensured by the
generalized Lax-Milgram theorem of Bas [27] with aninf-sup stability inequality. Besides, using test functions
w = ¢ € CZ compactly supported either €+ or in Q, and such that digp = 0 in Q¢ or in Q, respectively,
and using the Stokes formula, we get with the De Rham theohenexistence and uniquenes$s; (andQ, being
connected) of the pressure restrictiqug, and pgq, in Lg(Qf) and Lg(Qp) respectively. This defines the pressure
field po = poq, + Pog, I Lg(Q) over the whole domaif such thaty, po) verifies the StokgBarcy equations (3-5)
a.e. inQ¢ UQ, with i = 0in (4),i.e. the Darcy equation. Because of uniqueness, the whole seggenpo.) weakly
converges toy, po) in Ws)p x L3(Q).

Then, to satisfy the interface conditions (17,18)Xn.e. in H‘%(E)d, the pressure fielgp € L%(Q) must be
adjusted from the zero-average presspgec L2(Q) such that:(p— po)s = C° and [p - po]s = C*, where the
constant£?, C! are calculated as in Theorem 2.1 with o) above defined. Sind@, vP € L%(Q,), we have by the
Darcy equation thapP belongs toH(Q;). The limit boundary condition (16) which reduces mﬁ.p =0in H%(Fp)
can be also satisfied if the following compatibility conditiholds:

co_letien with cN- —if Pods (22)
2 ITpl Jr,
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such that:p’ = pé +CP+ C1/2 andpP = pf + CN define the pressure solutigne L%(Q) x ngp(Qp). We can also
interprety in a similar way agy in the proof of Theorem 3.2.

Now, if vP belongs toH(Q,)? with suficient regularity assumption, thene Wsp N Wy, v = V2 € H3(z)d
and we prove the strong convergence and a global error @stim@. The diference equation between (19) and (21)
reads: for allwv € Wy,

ngfud(vg—v):d(w)dx+25fﬂr)d(v¢;—v):d(w)dx+Lp

,uK‘l(vg—v)-de+fM(vg—v)|z-W|;ds
z

d-1 1
+;f2$“ |[(vg—v)-rj]|2|[w-1-,-]|zds+;fz[vg-n]lzlw-n]lzds,:—z(s de(v):d(w)dx—fzw[w-n]zds (23)

Then, choosingv = (v, — V) € Wy with [v-n] s = 0, we get the error estimate for the velocity:

d-1

2u0lld(v; = V)3, + £1ld(ve = V)3 g, + H0Ko Ve = VI3, + Moll(Ve = Vsl s + So D IV = v)- 7113
=1

1 1
tolllve nlsls < 5 (2VVIB, + WI3s) & (24)

which yields the result with the Korn and Poineanequalities irf2s or Q,. Finally, the pressure estimate is obtained
using the Néas theorem and we get with the Stokes and Darcy equations:

lIpoe = Polloq < C (IVe = VilLay + Vs = Vllog, + £ ¥Vellog,) (25)

which concludes the proof with (24) sinages IVVelloq, is bounded with (20). We thus obtain the given error estimate
typical of the existence of a spurious boundary layer in imigular perturbation problem, see e.g. [26], as for the
L2-penalty method analysed in [3, 16]. O
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