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On the well-posed coupling between free fluid and porous viscous flows
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Abstract

We present a well-posed model for the Stokes/Brinkman problem with a family ofjump embedded boundary condi-
tions (J.E.B.C.)on an immersed interface with weak regularity assumptions.It is issued from a general framework
recently proposed for fictitious domain problems. Our modelis based on algebraic transmission conditions combining
the stress and velocity jumps on the interfaceΣ separating the fluid and porous domains. These conditions are well
chosen to get the coercivity of the operator. Then, the general framework allows us to prove new results on the global
solvability of some models with physically relevant stressor velocity jump boundary conditions for the momentum
transport at a fluid-porous interface. The Stokes/Brinkman problem withOchoa-Tapia& Whitaker (1995)interface
conditions and the Stokes/Darcy problem withBeavers& Joseph (1967)conditions are both proved to be well-posed
by an asymptotic analysis. Up to now, only the Stokes/Darcy problem withSaffman (1971)approximate interface
conditions with negligible tangential porous velocity wasknown to be well-posed.

Key words: Transmission problems, Jump embedded boundary conditions, Stokes/Brinkman problem, Stokes/Darcy
problem, Fluid/porous coupled flows, Well-posedness analysis, Asymptoticanalysis, Vanishing viscosity, Singular
perturbation
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1. Introduction

Notations.Let the domainΩ ⊂ Rd (d=2 or 3 in practice) be an open bounded and Lipschitz continuous domain.
Let an interfaceΣ ⊂ Rd−1, Lipschitz continuous, separateΩ into two disjoint connected subdomains: the fluid domain
Ω f and the porous oneΩp such thatΩ = Ω f ∪ Σ ∪ Ωp. The boundaries of the subdomains are respectively defined
by: ∂Ω f = Γ f ∪ Σ for Ω f , ∂Ωp = Γp ∪ Σ for Ωp and∂Ω = Γ f ∪ Γp for Ω, see Fig. 1, assuming no cusp singularity
at Σ ∩ ∂Ω. Let n be the unit normal vector onΣ oriented fromΩp to Ω f andτ any unit tangential vector of a local
tangential basis (τ1, · · · , τd−1) onΣ. For any quantityψ defined all overΩ, the restrictions onΩ f andΩp are denoted
by ψ f andψp respectively. For a functionψ in H1(Ω f ∪Ωp), letψ− andψ+ be the traces ofψ|Ωp andψ|Ω f on each side
of Σ respectively,ψ|Σ = (ψ+ + ψ−)/2 the arithmetic mean of traces ofψ, and [[ψ]]Σ = (ψ+ − ψ−) the jump of traces ofψ
onΣ oriented byn.

There exist in the literature different models with physically relevant stress or velocity jump boundary conditions
for the tangential momentum transport at the fluid-porous interfaceΣ, see e.g. [30, 20]. When the homogeneous
porous flow is to be governed by the Brinkman equation, cf. [13, 14, 1, 22, 3, 10], the interface condition below
linking the jump of shear stress with a continuous velocity was derived with volume averaging techniques by Ochoa-
Tapia and Whitaker [28] instead of the usual stress and velocity continuity boundary conditions at the interface [3]:

(
µ∇v f · n − µ

φ
∇vp· n

)

Σ

· τ = µ βotw√
K

vΣ· τ and v f = vp = vΣ on Σ, (1)
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Figure 1: Configuration for fluid-porous flows inside the domainΩ = Ω f ∪ Σ ∪Ωp.

where the dimensionless parameterβotw is of order of one; see [29, 20, 17, 33] for its characterization. We prove in
Section 3, as a by-product of our general framework recalledin Section 2, that stress jump boundary conditions of
this type yield a well-posed fluid-porous Stokes/Brinkman problem whatever the dimensionless parameterβotw ≥ 0.
This was not already stated up to our knowledge.

When the porous flow is governed by the Darcy equation, see e.g.[22], the well-known Beavers and Joseph
interface condition [11] must be used. It links the shear stress at the interface with the jump of tangential velocity:

(µ∇v f · n)|Σ· τ =
µαb j√

K

(
v f − vp

)
Σ
· τ and v f · n = vp· n = v· nΣ on Σ, (2)

where the dimensionless parameterαb j = O( 1√
φ
) depends on the porosityφ and may vary between 0.1 and 4 [11, 2].

The approximate Saffman interface condition [31], derived by homogenization techniques in [23], is also written
when the porous filtration tangential velocity can be neglected with respect to the fluid velocity at the interface:
|vp
Σ
· τ| ≪ |v f

Σ
· τ|, i.e. for a permeability valueK or Darcy number Da= K/H2 sufficiently small. The global solvability

of the Stokes/Darcy problem with the Saffman condition forvp
Σ
· τ ≈ 0 is proved with a mixed hybrid formulation

in [24] whatever the dimensionless parameterαb j ≥ 0, and then by many others with various formulations, see
e.g. the recent review [18]. The only result of well-posedness for the full form of Beavers and Joseph condition
is recently established in [15] forα2

b j sufficiently small. We prove in Section 4 by a singular perturbation in our
general framework with a vanishing viscosity that the aboveBeavers and Joseph interface conditions yield a well-
posed Stokes/Darcy problem whatever the parameterαb j ≥ 0. Here, the main difficulty lies in how to give a sense to
the tangential trace of the porous velocity on the interfacewith minimal regularity assumptions. This is particularly
relevant for thin fluid layers as for conducting fractures inporous media flows [8, 9, 15].

We first begin in the next Section 2 by describing the general framework with jump embedded boundary conditions
studied in [6]. It is derived by a generalization to vector elliptic problems of a previous model stated for scalar
problems [4, 5]. A short version of the following results canbe found in [7].

2. A well-posed Stokes/Brinkman problem with jump embedded boundary conditions

Letσ(v, p) ≡ −p I +2µ̃ d(v) denote the Newtonian stress tensor defined with the effective viscosity ˜µ in the porous

domainΩp, with µ̃ = µ in the fluid domainΩ f andd(v) ≡ 1
2

(∇v + ∇vt) being the strain rate tensor. We consider

the following Stokes/Brinkman problem includingjump embedded boundary conditions (J.E.B.C.)on the interfaceΣ

2
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which link the trace jumps of both the stress vectorσ(v, p)· n and the velocity vectorv through the interfaceΣ:

−∇·σ(v, p) = f in Ω f , (3)

−∇·σ(v, p) + µK−1 v = f in Ωp, (4)

∇· v = 0 inΩ f ∪Ωp, (5)

v = 0 onΓ f ∪ Γp, (6)

[[σ(v, p)· n]]Σ = M v|Σ onΣ, (7)

σ(v, p)· n|Σ = S[[v]]Σ onΣ. (8)

Here, the viscosity coefficientµ and effective viscosity ˜µ in the porous medium are bounded positive functions such
thatµ0 = min(µ, µ̃) > 0, the symmetric permeability tensorK ≡ (Ki j )1≤i, j≤d is uniformly positive definite, and the
transfer matricesS, M on Σ are measurable, bounded and uniformly semi-positive matrices verifying ellipticity
assumptions:

K ∈ (L∞(Ω))d×d ; ∃K0 > 0, ∀ξ ∈ Rd, K (x)−1· ξ· ξ ≥ K0 |ξ|2 a.e. in Ωp. (A1)

M , S ∈ (L∞(Σ))d×d ; ∃M0, S0 ≥ 0, ∀ξ ∈ Rd, M (x)· ξ· ξ ≥ M0 |ξ|2, S(x)· ξ· ξ ≥ S0 |ξ|2 a.e. onΣ. (A2)

With usual notations for Sobolev spaces, e.g. [27, 21], we now define the Hilbert spaces:

H1
0Γ f

(Ω f )d ≡
{
w ∈ H1(Ω f )d; w|Γ f = 0 on Γ f

}
, H1

0Γp
(Ωp)d ≡

{
w ∈ H1(Ωp)d; w|Γp = 0 on Γp

}
,

W ≡
{
w ∈ L2(Ω)d, w|Ω f ∈ H1

0Γ f
(Ω f )d andw|Ωp ∈ H1

0Γp
(Ωp)d; ∇·w = 0 in Ω f ∪Ωp

}

equipped with the natural inner product and associated normin H1(Ω f ∪Ωp)d.
Let us note that forv ∈ W satisfying (3) or (4) withf ∈ L2(Ω)d such that∇·σ(v, p) ∈ L2(Ω)d, we can define

σ(v, p)· n±|Σ in H−
1
2 (Σ)d, see [25, 12]. The model with the J.E.B.C. (7-8) also allows apossible pressure jump [[p]]Σ , 0

in H−
1
2 (Σ) with additional regularity assumptions.

Then, as a consequence of the general framework stated in [6], the problem (3-8) satisfies inΩ the nice weak
formulation below:
Find v ∈W such that∀w ∈W, a(v,w) = l(w) with

a(v,w) = 2
∫

Ω f

µd(v) : d(w) dx+ 2
∫

Ωp

µ̃d(v) : d(w) dx+
∫

Ωp

µK−1 v·w dx+
∫

Σ

M v|Σ·w|Σ ds+
∫

Σ

S[[v]]Σ· [[w]]Σ ds

l(w) =
∫

Ω

f ·w dx. (9)

Besides, the following well-posedness result is ensured by[6, Theorem 1.1].

Theorem 2.1 (Global solvability of Stokes/Brinkman model with J.E.B.C.). If the ellipticity assumptions (A1,A2)
hold, the problem (3-8) withf ∈ L2(Ω)d has a unique solution(v, p) ∈W × L2(Ω) satisfying the weak form (9) for all
w ∈ W and such that pf = pf

0 +C0 +C1/2 and pp = pp
0 +C0 −C1/2 where p0 ∈ L2

0(Ω) = {q ∈ L2(Ω),
∫
Ω

q dx= 0}
and C0, C1 are constants defined by:

C0 =
1
|Σ|
〈
σ(v, p0)· n|Σ − S[[v]]Σ , n

〉
− 1

2 ,Σ
and C1 =

1
|Σ|
〈
[[σ(v, p0)· n]]Σ −M v|Σ , n

〉
− 1

2 ,Σ
.

Hence, to satisfy (7-8) in the sense of H−
1
2 (Σ)d, the pressure field p∈ L2(Ω) must be adjusted from the zero-average

pressure p0 ∈ L2
0(Ω) such that:(p− p0)|Σ = C0 and[[ p− p0]]Σ = C1.

Moreover, there exists a constantα0(Ω f ,Ωp,K0, µ0) > 0 such that:

||v||W + ||p0||0,Ω ≤
c(Ω f ,Ωp, µ, µ̃, ||K−1||∞)

α0
||f ||0,Ω.

Remark 1 (Generalizations). For practical problems, the case of a nonhomogeneous Dirichlet boundary condition:
v = vD onΓ f ∪ Γp with vD ∈ H

1
2 (Γ f ∪ Γp)d and the compatibility condition

∫
Γ f∪Γp

vD· n ds= 0, can be treated as well

by defining anad-hocdivergence-free extension ofvD, e.g. [32], and adding its contribution in the source termf of
the present problem (9). The generalization to unsteady Stokes/Brinkman problems is also straightforward.

3
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3. The Stokes/Brinkman problem with Ochoa-Tapia & Whitaker interface cond itions

We now consider that ˜µ = µ/φ, whereφ ∈]0,1] is the porosity of the porous medium, and stress jump interface
conditions of Ochoa-Tapia & Whitaker’s type [28] like in (1),the original ones reading withβτ = βotw andβn = 0:

[[σ(v, p)· n]]Σ = M v with M j j =
µ βτ√

Kτ
, j = 1, · · · ,d − 1, Mdd =

µ βn√
Kn

and [[v]]Σ = 0 onΣ, (10)

whereM is a positive diagonal matrix withβτ, βn ≥ 0 a.e. onΣ and Kτ,Kn permeability coefficients. Then, as a
consequence of the general framework stated in [6], the problem (3-6,10) satisfies inΩ the weak formulation below:
Find v ∈ V = {u ∈ H1

0(Ω)d; ∇· u = 0} such that,

2
∫

Ω f

µd(v) : d(w) dx+ 2
∫

Ωp

µ

φ
d(v) : d(w) dx+

∫

Ωp

µK−1 v·w dx+
∫

Σ

M v ·w ds=
∫

Ω

f ·w dx, ∀w ∈ V. (11)

Besides, the following well-posedness result is ensured asa corollary of Theorem 2.1.

Corollary 3.1 (Global solvability of Stokes/Brinkman problem with OT-W). If the ellipticity assumptions (A1,A2)
hold, the problem (3-6,10) withf ∈ L2(Ω)d has a unique solution(v, p) ∈ V × L2(Ω) satisfying the weak form (11) for
all w ∈ V and such that pf = pf

0 +C1/2 and pp = pp
0 −C1/2 with p0 ∈ L2

0(Ω) and the constant C1 defined by:

C1 =
1
|Σ| 〈[[σ(v, p0)· n]]Σ −M v , n〉− 1

2 ,Σ
.

S  . The existence and uniqueness ofv ∈ V satisfying (11) is ensured by the Lax-Milgram Theorem. The
pressure fieldp0 ∈ L2

0(Ω) can be also recovered by the De Rham theorem [32, 12] which involves theinf-supcondition
between the velocity and pressure spaces [19]. Then, by constructing anad-hocdivergence-free extension as for [6,
Theorem 1.1] (see also [12]), this allows to verify the stress jump condition (10) inH−

1
2 (Σ)d with the pressure field

p ∈ L2(Ω) fitted such that we have formally [[p− p0]]Σ = C1 and(p− p0)|Σ = 0. 2

We can also interpret this solution as the limit solution of the problem (3-8) with penalized velocity jumps onΣ
when the penalty parameterε > 0 tends to zero and we have the following convergence result.

Theorem 3.2 (Convergence to Stokes/Brinkman problem with OT-W). For anyε > 0, the solution(vε, pε) of the

problem (3-8) from Theorem 2.1 withM defined in (10) andS =
1
ε

I strongly converges to the solution(v, p) of

Corollary 3.1 inW × L2(Ω) whenε → 0. Moreover, there exists a constant C(Ω f ,Ωp, µ, φ,K0, ||K−1||) > 0 such that

the following error estimate holds,ψ being the weak limit of
1
ε

[[vε]]Σ in L2(Σ)d:

||vε − v||W + ||p0ε − p0||0,Ω ≤ C ‖ψ‖0,Σ
√
ε and ‖[[vε]]Σ‖0,Σ ≤ ‖ψ‖0,Σ ε.

With additional regularity assumptions such thatψ ∈ H
1
2 (Σ)d, then the previous estimate becomes optimal inO(ε).

S  . The solutionvε ∈W satisfies with (9) the weak form below:

2
∫

Ω f

µd(vε) : d(w) dx+ 2
∫

Ωp

µ

φ
d(vε) : d(w) dx+

∫

Ωp

µK−1 vε·w dx+
∫

Σ

M vε |Σ·w|Σ ds+
1
ε

∫

Σ

[[vε]]Σ· [[w]]Σ ds

=

∫

Ω

f ·w dx, ∀w ∈W. (12)

By choosingw = vε, we get using the Korn and Friedrichs-Poincaré inequalities inΩ f ,Ωp together with the inequality:
a b≤ (a2 + b2)/2, ∀a,b ∈ R:

µ0

∫

Ω f∪Ωp

|∇vε|2 dx+ µ0 K0

∫

Ωp

|vε|2 dx+
∫

Σ

M vε |Σ· vε |Σ ds+
1
ε

∫

Σ

|[[vε]]Σ|2 ds≤ c(Ω f ,Ωp)

µ0
‖f‖20,Ω.

4
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With this bound, there existsv ∈W such that, up to a subsequence,vε tends tov in W or H1(Ω f ∪Ωp)d weakly when
ε → 0 and strongly inL2(Ω)d. Indeed, since the trace application is continuous, we have: v|Γ f∪Γp = 0. Moreover we
have:‖[[vε]]Σ‖0,Σ ≤ c(Ω f ,Ωp, µ0, f )

√
ε and thus [[v]]Σ = 0, v|Σ = v|Σ andv belongs to the subspaceV of W. Thenp0ε

defined by Theorem 2.1 is bounded inL2
0(Ω) since we have using the Nečas theorem [32, 19]:

‖p0ε‖0,Ω ≤ c(Ω f ,Ωp)
(
‖∇p0ε‖−1,Ω f + ‖∇p0ε‖−1,Ωp

)
≤ C ‖vε‖W + ‖f‖0,Ω. (13)

Thus, there existsp0 ∈ L2
0(Ω) such that, up to a subsequence,p0ε tends top0 weakly inL2(Ω). Now taking the limit

of (12) whenε → 0, there existsψ ∈ L2(Σ)d such that
1
ε

[[vε]]Σ tends weakly toψ in L2(Σ)d and we get thatv is the

unique solution inV (the uniqueness being proved directly withf = 0 andw = v ∈ V ⊂W) satisfying:

2
∫

Ω f

µd(v) : d(w) dx+ 2
∫

Ωp

µ

φ
d(v) : d(w) dx+

∫

Ωp

µK−1 v·w dx+
∫

Σ

M v |Σ·w|Σ ds+
∫

Σ

ψ· [[w]]Σ ds

=

∫

Ω

f ·w dx, ∀w ∈W. (14)

Hence,v ∈ V also satisfies (11) for allw ∈ V. Besides, using test functionsw = ϕ ∈ C∞c compactly supported either
in Ω f or inΩp and such that divϕ = 0 inΩ f or inΩp respectively, and using the Stokes formula, we get with the De
Rham theorem [32, 12] the existence and uniqueness (Ω f andΩp being connected) of the pressure restrictionsp0|Ω f

andp0|Ωp in L2
0(Ω f ) andL2

0(Ωp) respectively. This defines the pressure fieldp0 = p0|Ω f + p0|Ωp in L2
0(Ω) over the whole

domainΩ such that (v, p0) verifies the Stokes/Brinkman equations (3-5) a.e. inΩ f ∪Ωp.
Then, we can define the pressure fieldp ∈ L2(Ω) with p0 and the constantC1 as in Corollary 3.1 such that the

stress jump condition (10) is verified inH−
1
2 (Σ)d. Moreover, the constantC1

ε defined in Theorem 2.1 with (vε, p0ε)
satisfies: lim

ε→0
C1
ε = C1 with the weak limits of (vε, p0ε) and the continuity of the trace applications. We can also give an

interpretation ofψ. By writing the difference between the weak form of problem (3-6,10) with test functionsw ∈ W
using the Stokes formula and the limit weak form (14), it yields:

〈
σ(v, p0)· n|Σ − ψ , [[w]]Σ

〉
− 1

2 ,Σ
= 0, ∀w ∈ W. By

constructing anad-hocdivergence-free extension inW of any functionu in H
1
2 (Σ)d, as for [6, Theorem 1.1] (see also

[12, chap. III] for the Stokes/Neumann problem with a stress boundary condition), we definethe constantC0 = lim
ε→0

C0
ε

below,C0
ε defined in Theorem 2.1 with (vε, p0ε), such that we haveψ = σ(v, p0 +C0)· n|Σ in the sense ofH−

1
2 (Σ)d:

C0 =
1
|Σ|
〈
σ(v, p0)· n|Σ − ψ , n

〉
− 1

2 ,Σ
, such that

〈
σ(v, p0 +C0)· n|Σ − ψ , u

〉
− 1

2 ,Σ
= 0, ∀u ∈ H

1
2 (Σ)d.

To prove the strong convergence and the error estimate, we first write the error equation being the difference between
(9) satisfied byvε for all w ∈ W and (14) using the fact that: [[v]]Σ = 0 andv|Σ = v|Σ. Then, choosingw = vε − v, we
get with the Cauchy-Schwarz inequality:

2µ0

∫

Ω f∪Ωp

|d(vε − v)|2 dx+ µ0K0

∫

Ωp

|vε − v|2 dx+ M0

∫

Σ

|vε |Σ − v|2 ds+
1
ε

∫

Σ

|[[vε − v]]Σ|2 ds≤ ‖ψ‖0,Σ‖[[vε − v]]Σ‖0,Σ

which simply gives using the Korn and Poincaré inequalities inΩ f andΩp:

‖[[vε]]Σ‖0,Σ = ‖[[vε − v]]Σ‖0,Σ ≤ ‖ψ‖0,Σ ε and ‖vε − v‖W ≤ C(Ω f ,Ωp, µ0) ‖ψ‖0,Σ
√
ε. (15)

If ψ belongs toH
1
2 (Σ)d, the last error estimate can be improved up toO(ε) by constructing some adequate extensions

fromψ in the subdomainsΩ f andΩp. Finally, the pressure estimate is obtained using the Nečas theorem and we get:

‖p0ε − p0‖0,Ω ≤ c(Ω f ,Ωp)
(
‖∇(p0ε − p0)‖−1,Ω f + ‖∇(p0ε − p0)‖−1,Ωp

)
≤ C ‖vε − v‖W ,

which completes the proof. 2
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4. The Stokes/Darcy problem with Beavers & Joseph interface conditions

We consider the problem (3-8) with the Dirichlet boundary condition (6) onΓp replaced by the stress boundary
condition of Neumann whereν is the outward unit normal vector onΓp andq ∈ H−

1
2 (Γp)d given, e.g.q = −peν:

v = 0 onΓ f and σ(vp, pp)· ν = −pp ν + µ̃∇vp· ν = q onΓp. (16)

Let us define the Hilbert spaceWN equipped with the natural inner product and norm inH1(Ω f ∪Ωp)d:

WN ≡ {w ∈ L2(Ω)d, w|Ω f ∈ H1
0Γ f

(Ω f )
d andw|Ωp ∈ H1(Ωp)d; ∇·w = 0 in Ω f ∪Ωp}.

Then, the following well-posedness result is ensured as a corollary of Theorem 2.1, see also [6, Theorem 2.1].

Corollary 4.1 (Global solvability of the Stokes/Brinkman model with J.E.B.C. and stress B.C.).With the assump-
tions of Theorem 2.1 andq ∈ H−

1
2 (Γp)d, there exists a unique solution(v, p) ∈WN × L2(Ω) satisfying the weak form:

a(v,w) = l(w)+ 〈q , w〉− 1
2 ,Γp

for all w ∈WN with pf = pf
0+C0+C1/2 and pp = pp

0+C0−C1/2 where p0 ∈ L2
0(Ω) and

the constants C0, C1 are defined as in Theorem 2.1 such that the equations (3-5) hold almost everywhere inΩ f ∪ Ωp

and (7-8) are satisfied in H−
1
2 (Σ)d. Then, if the following compatibility condition holds:

C0 − 1
2

C1 = CN with CN =
1
|Γp| 〈σ(v, p0)· ν − q , ν〉− 1

2 ,Γp
,

the stress boundary condition (16) is also satisfied in H− 1
2 (Γp)d and(v, p) ∈WN × L2(Ω) is the unique solution of the

problem (3-5,7-8,16).

For anyε > 0, let us now consider the solution (vε, pε) ∈WN×L2(Ω) of the problem (3-5,7-8,16) with a vanishing
viscosityµ̃ = ε for the Brinkman problem inΩp. The condition (16) avoids the creation of a spurious boundary layer
alongΓp for the Darcy problem whenε → 0. The J.E.B.C. (7-8) are also calibrated as follows to obtain interface
conditions of Beavers & Joseph’s type [11] with a jump of tangential velocity (2) allowing a possible pressure jump:

[[σ(v, p)· n]]Σ = M v|Σ with M j j = 0, j = 1, · · · ,d − 1, Mdd =
µ βn√

Kn
onΣ, (17)

σ(v, p)· n|Σ = S[[v]]Σ with S j j =
µατ√

Kτ
, j = 1, · · · ,d − 1, Sdd =

1
ε

onΣ, (18)

whereM , S are positive diagonal matrices withατ = αb j, βn ≥ 0 a.e. onΣ andKτ,Kn permeability coefficients.
Let us define the Hilbert spaces

WS/D ≡
{
w ∈ L2(Ω)d, w|Ω f ∈ H1

0Γ f
(Ω f )

d, w|Ωp ∈ L2(Ωp)d; ∇·w = 0 in Ω f ∪Ωp

}

equipped with the natural inner product and norm inH1(Ω f )d × L2(Ωp)d and

WS−D ≡
{
w ∈WS/D; ∇·w ∈ L2(Ω), [[w]]Σ ∈ L2(Σ)d, [[w· n]]Σ = 0

}

equipped with the norm defined by:‖w‖2WS−D = ‖w‖21,Ω f
+ ‖w‖20,Ωp

+ ‖∇·w‖20,Ω + ‖[[w]]Σ‖20,Σ.
We now prove the following convergence result which also ensures the well-posedness of the Stokes/Darcy pro-

blem with Beavers & Joseph’s type interface conditions (2,17) whatever the coefficientsατ, βn ≥ 0 a.e. onΣ.

Theorem 4.2 (Convergence to Stokes/Darcy problem with B-J). With the dataf ∈ L2(Ω)d andq = 0, the solution
(vε, pε) in WN×L2(Ω) for anyε > 0 from Corollary 4.1 of the problem (3-5,16,17,18) with a vanishing viscositỹµ = ε
weakly converges to the solution(v, p) in WS/D × L2(Ω) of the Stokes/Darcy problem with the interface conditions
(2,17) onΣ whenε → 0. Indeed, in the porous domainΩp, vp and pp satisfy the Darcy equation,i.e. Eq. (4) with
µ̃ = 0, and pp belongs to H1(Ωp) such that pp = 0 onΓp.
With additional regularity assumptions such thatvp ∈ H1(Ωp)d, thenv ∈ WS−D ∩WN and we have the global error

estimate with C> 0 depending on the data,‖∇v‖0,Ωp, ‖ψ‖0,Σ andψ defined as the weak limit of
1
ε

[[vε· n]]Σ in L2(Σ):

||vε−v||1,Ω f+
√
ε ||vε−v||1,Ωp+||vε−v||0,Ωp+||p0ε−p0||0,Ω ≤ C ‖ψ‖0,Σ

√
ε and ‖[[vε· n]]Σ‖0,Σ ≤

(
2‖∇v‖20,Ωp

+ ‖ψ‖20,Σ
) 1

2 ε.
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S  . The proof is here abridged without explaining most of the arguments already detailed in the proof
of Theorem 3.2. From (3-5,16,17,18) with the Stokes formula, the solutionvε ∈WN satisfies the weak form below:

2
∫

Ω f

µd(vε) : d(w) dx+ 2ε
∫

Ωp

d(vε) : d(w) dx+
∫

Ωp

µK−1 vε·w dx+
∫

Σ

M vε |Σ·w|Σ ds

+

d−1∑

j=1

∫

Σ

S j j [[vε· τ j ]]Σ [[w· τ j ]]Σ ds+
1
ε

∫

Σ

[[vε· n]]Σ [[w· n]]Σ ds=
∫

Ω

f ·w dx, ∀w ∈WN. (19)

By choosingw = vε, we get using the Korn inequality inΩ f ,Ωp and Poincaŕe inequality inΩ f :

µ0

∫

Ω f

|∇vε|2 dx+ 2ε
∫

Ωp

|∇vε|2 dx+
µ0 K0

2

∫

Ωp

|vε|2 dx+ M0

∫

Σ

|vε· n|Σ|2 ds+ S0

d−1∑

j=1

∫

Σ

[[vε· τ j ]]
2
Σ ds

+
1
ε

∫

Σ

[[vε· n]]2
Σ ds≤ c(Ω f ,Ωp, µ0,K0) ‖f‖20,Ω. (20)

With this bound, there existsv ∈ WS/D and ṽ ∈ H1(Ωp)d such that, up to a subsequence,vε tends tov in WS/D or
H1(Ω f )d × L2(Ωp)d weakly whenε→ 0 (strongly inL2(Ω f )d) and

√
ε vp
ε tends toṽ in H1(Ωp)d weakly. Indeed, since

the trace application is continuous, we have:v|Γ f = 0. Moreover we have:‖[[vε· n]]Σ‖0,Σ ≤ c(Ω f , µ0,K0, f )
√
ε and thus

[[v· n]]Σ = 0, v· n|Σ = v· n|Σ in L2(Σ). Since [[vε· τ]]Σ is bounded inL2(Σ) (for ατ > 0 and thusS0 > 0) and because
v f ∈ H1(Ω f )d has a trace inH

1
2 (Σ)d, there existsv⋆

Σ
∈ L2(Σ)d defined as the weak limit of the tracevp

ε|Σ in L2(Σ)d.

Hence we define the tangential velocity jump: [[v· τ]]Σ = (v f
|Σ − v⋆

Σ
)· τ ∈ L2(Σ) and we havev ∈WS−D.

Then p0ε defined by Corollary 4.1 is bounded inL2
0(Ω) because, using the Nečas theorem as for (13), we have:

‖p0ε‖0,Ω ≤ c(Ω f ,Ωp)
(
‖∇p0ε‖−1,Ω f + ‖∇p0ε‖−1,Ωp

)
≤ C, since‖vε‖1,Ω f ,

√
ε ‖vε‖1,Ωp and‖vε‖0,Ωp are all bounded. Thus,

there existsp0 ∈ L2
0(Ω) such that, up to a subsequence,p0ε weakly tends top0 in L2(Ω).

Now taking the limit of (19) whenε → 0, there existsψ ∈ L2(Σ) such that
1
ε

[[vε· n]]Σ weakly tends toψ in L2(Σ)

and we get thatv is the unique solution inWS−D satisfying the weak form:

2
∫

Ω f

µd(v) : d(w) dx+
∫

Ωp

µK−1 v·w dx+
∫

Σ

M v|Σ·w|Σ ds+
d−1∑

j=1

∫

Σ

S j j [[v· τ j ]]Σ [[w· τ j ]]Σ ds+
∫

Σ

ψ [[w· n]]Σ ds

=

∫

Ω

f ·w dx, ∀w ∈WN. (21)

The existence and uniqueness of the solutionv ∈ WS−D to the above problem can be alsoa priori ensured by the
generalized Lax-Milgram theorem of Nečas [27] with aninf-supstability inequality. Besides, using test functions
w = ϕ ∈ C∞c compactly supported either inΩ f or in Ωp and such that divϕ = 0 in Ω f or in Ωp respectively,
and using the Stokes formula, we get with the De Rham theorem the existence and uniqueness (Ω f andΩp being
connected) of the pressure restrictionsp0|Ω f and p0|Ωp in L2

0(Ω f ) andL2
0(Ωp) respectively. This defines the pressure

field p0 = p0|Ω f + p0|Ωp in L2
0(Ω) over the whole domainΩ such that (v, p0) verifies the Stokes/Darcy equations (3-5)

a.e. inΩ f ∪Ωp with µ̃ = 0 in (4), i.e. the Darcy equation. Because of uniqueness, the whole sequence (vε, p0ε) weakly
converges to (v, p0) in WS/D × L2

0(Ω).

Then, to satisfy the interface conditions (17,18) onΣ, i.e. in H−
1
2 (Σ)d, the pressure fieldp ∈ L2(Ω) must be

adjusted from the zero-average pressurep0 ∈ L2
0(Ω) such that:(p− p0)|Σ = C0 and [[p − p0]]Σ = C1, where the

constantsC0, C1 are calculated as in Theorem 2.1 with (v, p0) above defined. Sincef p, vp ∈ L2(Ωp)d, we have by the
Darcy equation thatpp belongs toH1(Ωp). The limit boundary condition (16) which reduces to:pp

|Γp
= 0 in H

1
2 (Γp)

can be also satisfied if the following compatibility condition holds:

C0 − 1
2

C1 = CN with CN = − 1
|Γp|
∫

Γp

p0 ds, (22)
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such that:pf = pf
0 +C0 +C1/2 andpp = pp

0 +CN define the pressure solutionp ∈ L2(Ω f ) × H1
0Γp

(Ωp). We can also
interpretψ in a similar way asψ in the proof of Theorem 3.2.

Now, if vp belongs toH1(Ωp)d with sufficient regularity assumption, thenv ∈ WS−D ∩WN, v⋆
Σ
= vp

|Σ ∈ H
1
2 (Σ)d

and we prove the strong convergence and a global error estimate inΩ. The difference equation between (19) and (21)
reads: for allw ∈WN,

2
∫

Ω f

µd(vε − v) : d(w) dx+ 2ε
∫

Ωp

d(vε − v) : d(w) dx+
∫

Ωp

µK−1 (vε − v)·w dx+
∫

Σ

M (vε − v)|Σ·w|Σ ds

+

d−1∑

j=1

∫

Σ

S j j [[(vε − v)· τ j ]]Σ [[w· τ j ]]Σ ds+
1
ε

∫

Σ

[[vε· n]]Σ [[w· n]]Σ ds= −2ε
∫

Ωp

d(v) : d(w) dx−
∫

Σ

ψ [[w· n]]Σ ds. (23)

Then, choosingw = (vε − v) ∈WN with [[v· n]]Σ = 0, we get the error estimate for the velocity:

2µ0 ‖d(vε − v)‖20,Ω f
+ ε ‖d(vε − v)‖20,Ωp

+ µ0K0 ‖vε − v‖20,Ωp
+ M0 ‖(vε − v)|Σ‖20,Σ + S0

d−1∑

j=1

‖[[(vε − v)· τ j ]]Σ‖20,Σ

+
1
2ε
‖[[vε· n]]Σ‖20,Σ ≤

1
2

(
2‖∇v‖20,Ωp

+ ‖ψ‖20,Σ
)
ε (24)

which yields the result with the Korn and Poincaré inequalities inΩ f orΩp. Finally, the pressure estimate is obtained
using the Něcas theorem and we get with the Stokes and Darcy equations:

‖p0ε − p0‖0,Ω ≤ C
(
‖vε − v‖1,Ω f + ‖vε − v‖0,Ωp + ε ‖∇vε‖0,Ωp

)
, (25)

which concludes the proof with (24) since
√
ε ‖∇vε‖0,Ωp is bounded with (20). We thus obtain the given error estimate,

typical of the existence of a spurious boundary layer in thissingular perturbation problem, see e.g. [26], as for the
L2-penalty method analysed in [3, 16]. 2
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[26] J.-L. L, Perturbations singulières dans les problèmes aux limites et en contrôle optimal, Lect. Notes in Math.323, Springer (Berlin),

1973.
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