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We have measured sub-shot-noise quantum correlations of spatial fluctuations in the far-field image of

the parametric fluorescence created in a type I β-barium-borate nonlinear crystal, either between opposite

angular sectors (nondegenerate configuration) or between opposite pixels (degenerate configuration). Imaging is

performed at a very low light level (0.2 photons per pixel) with an electron-multiplying CCD camera, resulting in

purely spatial coincidences between single photons when detecting on pixels. Experimental results overcome the

standard quantum-limit-shot-noise level without subtraction of the variance of the detection noise. We compare

these experimental results with numerical results given by the quantum Green’s function method, which is proved

to have strong advantages over stochastic simulations.

DOI: 10.1103/PhysRevA.81.043825 PACS number(s): 42.65.Lm, 42.50.Ar, 42.50.Lc, 42.50.Dv

I. INTRODUCTION

Spontaneous down-conversion (SPDC) occurs in a nonlin-

ear crystal when a pump photon splits into a pair of signal

and idler photons. Even if the number of pairs fluctuates,

this relation is exact in the sense that, in the absence of

input light at the signal and idler frequency, the difference

between the signal and idler output photon numbers is zero

in an ideal experiment. Heidmann et al. [1] showed that the

spectrum of temporal fluctuations of the intensity difference

between spatially monomode twin beams is below the standard

shot-noise level. Actually, the beams are entangled: The phases

of the beams are also correlated at the quantum level, as

shown by homodyne detection. If the two detectors do not

intercept the whole beams, the correlation is reduced because

for some pairs one photon is detected while the other is

not intercepted. Because “intercepted” can be replaced with

“detected” in the previous sentence, insufficient detector size

is exactly equivalent to a reduction in the quantum efficiency.

The situation is different for a strongly spatially multimode

beam issued from a traveling wave amplifier: Brambilla et al.

showed theoretically [2] that, for unity quantum efficiency,

the variance of the signal-idler photon number difference

goes to zero if the pixel size is much greater than the

coherence area. These results were numerically confirmed

either by stochastic simulations corresponding to the Wigner

formalism [3] or by using the quantum Green’s function

method [4]. Indeed, Boyer et al. studied temporal fluctuations

of spatially broad-band twin beams obtained with four-wave

mixing in a hot atomic vapor and showed that part of the

beams larger than the coherence area exhibit sub-shot-noise

intensity differences [5], as well as entanglement [6], if

detected with local oscillators shaped as the beams. These

experiments demonstrated temporal entanglement of “sub-

beams” but did not consider fluctuation of spatial variables,

like position or angle. Entanglement of such variables for

beams [7] was demonstrated by combining TEM00 beams with

a vacuum-squeezed TEM01 beam and homodyne detection

of temporal fluctuations [8]. On the other hand, Boyer et al.
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[9] demonstrated spatial entanglement of photon pairs in

an image by varying the position of detectors in both the

near and the far field and recording temporal coincidences.

Other spatial properties of twin photons have been extensively

studied in the group of Boston [10] by recording temporal

coincidences.

Though dealing with spatial aspects of multimode beams,

all the experiments in the preceding references were devoted

to the characterization of temporal fluctuations or temporal

coincidences. However, patterns in an image are pure spatial

information, without any time aspect, which are ultimately

degraded by spatial fluctuations of quantum origin for very

weak images [11]. Jedrkiewicz et al. [12] performed the

first experimental demonstration of sub-shot-noise behavior of

spatial fluctuations of the signal-idler difference. They imaged

SPDC issued from a type II β-barium-borate (BBO) crystal

onto a back-illuminated CCD camera and showed that the

value of the variance of the difference between signal-idler

intensities on opposite pixels is below the shot-noise level.

However, this result was obtained by subtracting the variance

of the readout noise, that is, about 100 squared photoelectrons,

from a measured variance of 110 squared photoelectrons. With

a conventional CCD, diminishing the relative weight of the

detection noise requires the acquisition of more intense images

and convincing results have been recently obtained without

subtraction of the background noise [13], for intensities around

600 photons per pixel and a pump pulse duration in the

ns range, in order to avoid excess noise due to the thermal

character of SPDC [14].

We chose the opposite direction for obtaining sub-shot-

noise correlations, without subtraction of the variance of the

detector noise, by detecting single photons in low-light-level

images with an electron-multiplying CCD camera (EMCCD).

In such cameras, the readout noise is rendered negligible

by adding a register where the photoelectrons are multiplied

before reading. Hence, even a unique photon gives a signal that

emerges from the readout floor. However, the gain is stochastic,

as in an avalanche photodiode, and it is not possible to assign

a precise number of photons to each value of the output signal.

It can be demonstrated [15] that dividing the output signal

by the mean gain results in adding a Poisson detection noise

having the same amplitude as the standard photon noise. This
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excess noise prevents any attempt to detect sub-shot-noise

correlations, at least without subtraction of the variance of the

detection noise. On the other hand, detection of single photons

by thresholding adds in principle no noise for high gain,

even stochastic, and very-low-light level images. In practice,

false detections occur whose number can be minimized [16]

by choosing an appropriate fluence (about 0.15 photon/pixel

with our camera) and by adjusting the threshold. Under

these conditions, the variance of the detection noise is much

smaller than the mean fluence and detection of sub-shot-noise

correlations becomes possible. We first studied [17] type I

broad-band nondegenerate SPDC and showed correlations

between angular sectors, then added an interferential filter to

obtain SPDC around degeneracy, in order to obtain correlations

between opposite pixels [18]. We proved in this latter case

spatial coincidences between individual photons. The aim of

this article is to present in more detail these experimental

results, especially those in the degeneracy configuration, and

to add a discussion of the numerical methods that allow a

comparison. In particular, we will show that usual stochastic

simulations, based on the Wigner formalism, are not feasible

in practice for intensities on the order of tenths of photons

per pixel, while the Green’s function method can be rendered

less computationally expensive than expected at a first sight.

The paper is organized as follows. Section II deals with

experimental results at degeneracy, while Sec. III treats the

broad-band configuration. Section IV is devoted to numerical

simulations and Sec. V concludes.

II. MEASUREMENT OF SUB-SHOT-NOISE

CORRELATIONS BETWEEN PIXELS

The experimental setup is sketched in Fig. 1. The pump

pulse provided by the fourth harmonic (0.93-ps duration

at 263.8 nm) of a Q-switched mode-locked Nd:glass laser

(Twinkle laser by Light Conversion Inc.) at a repetition rate

of 33 Hz, illuminated a type I 7 × 7 × 4-mm3 BBO nonlinear

crystal. The far-field image of the parametric fluorescence was

formed in the focal plane of a lens by a back-illuminated

EMCCD camera from Andor Technology (Model iXon+
DU897-ECS-BV) with a quantum efficiency greater than 90%

in the visible range. The detector area is formed by 512 ×
512 pixels, with a pixel size of 16 × 16 µm2. We used a

readout rate of 10 MHz at 14 bits and the camera was cooled to

−85◦C. The exposure time was 33 ms and the EM gain was set

to 1000. In these conditions, the readout noise has a standard

deviation of 46 electrons and the level of clock-induced noise,

EM.C.C.D

BBO

   Pump

  263.8 nm

Dichroic

Lens

f=50 mm f=50 mm

T= 80 % @ 527 nm

t = 0.9 psδ

     IF @527nm

T>90% over 20nm

type1

FIG. 1. Experimental setup.

that is, generation of spurious electrons during the transfer,

is on the order of 4 × 10−3 e−/pixel. A threshold set to 2.8

readout noise standard deviations allows the number of false

detections to be minimized [16]. To eliminate the residual UV,

two dichroic filters with a nominal transmission of 95% at

527 nm were placed after the BBO crystal. To obtain

degenerate parametric fluorescence, an interferential filter (IF)

was placed after the dichroics, with a quantum efficiency

greater than 90% over a bandwidth of 20 nm, while broadband

fluorescence was obtained simply by removing this filter. The

trajectory of the light after the dichroics and the filter was

enclosed in a tube in order to avoid parasitic reflections.

The energy of the 263.75-nm pump pulse was measured at

106 ± 38 nJ. The total quantum efficiency is the product of the

quantum efficiency of the EMCCD by the transmission of the

optical elements after the crystal:

ηtot = ηCCD × ηopt × ηIF = 0.9 × 0.68 × 0.9 = 0.55. (1)

ηCCD is given by the manufacturer and ηopt was measured. In

particular, a transmission by the two dichroic filters of 80%

has been measured.

Measurements at degeneracy were performed for a crys-

tal orientation corresponding to collinear phase matching.

Figure 2 shows a sum of 50 single-shot images of parametric

fluorescence recorded by the EMCCD. Unlike in a single

image, the fluorescence disk is clearly visible. The mean

level in the disk for one image, about 0.20 photon per pixel,

has been chosen in order to minimize the number of false

detections [16].

We have measured the difference between the number of

photons in opposite pixels, which should go to zero for a

perfect detector, perfect degeneracy, and negligible diffraction,

that is, for a coherence area much smaller than the pixel size

[4]. This last condition is fulfilled here because of the wide

illumination of the crystal: The measured pump width on the

crystal [full width at half maximum (FWHM)] is 3.2 mm. For
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FIG. 2. (Color online) Sum of 50 experimental images. The white

circle delimits the area where the statistic is performed.
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pure SPDC with negligible further amplification and a pump

beam area smaller than the crystal section (7 × 7 mm2 here),

the down-converted beam has the same intensity profile as the

pump beam. The width of the coherence area in the far field,

0.07 mrad (FWHM), is proportional to the inverse of the width

of this beam [19] and is much smaller than the 0.32-mrad

lateral size of the CCD pixel. Moreover, the mean number

of photons for one spatiotemporal mode is less than 10−2,

resulting in theoretical Bose-Einstein photon distribution [20]

that is undistinguishable from a Poisson distribution. Indeed,

the number of amplified temporal modes is approximately

40 [19] and the number of amplified spatial modes on a pixel

is on the order of (0.32/0.07)2 ≃ 20. To take into account

the nonuniform level of the electronic background over the

detector area, this background is measured in darkness and

subtracted from the SPDC images in the form of a mean square

plane. Then, a thresholding procedure is applied on each image

in order to decide whether there is one or zero photoelectrons

on each pixel [16]. Note that it is not possible to distinguish the

(rare) cases where two photoelectrons are present on one pixel.

The variance of the difference between opposite pixels is then

computed inside a circle containing N pixels where the level

of SPDC is approximately constant. The center of this circle

is determined by minimizing the variance of the difference

σ 2
diff = 1

N/2

N/2
∑

i=1

(ni − nN−i)
2, (2)

with a numbering of the pixels ensuring that indices i and

N − i correspond to opposite pixels. The center determination

must be performed with precision [14], at best with a resolution

of half a pixel in order to keep the actual pixels with, if

necessary, an unused crux (see Fig. 3). After this centering

has been performed with physical pixels, statistics can be

calculated using square blocks of pixels called binned pixels.

It should be noted that subpixel centering algorithms

exist [21,22] and have been employed with good results

in [13], but we have not used them in the presented results

in order to conserve a measurement of either zero or one

photon per physical pixel. We have nevertheless verified that

improvements of results provided by these methods do exist

for our experimental results but are weak because of the

predominence of quantum noise in our low-flux regime.

CC

FIG. 3. (Color online) Centering for a 2 × 2 binning. (Left) The

best center corresponds to the center of a physical pixel. (Right) The

best center corresponds to the corner between four physical pixels.

For perfect detection, sub-shot-noise correlations exist if

σ 2
diff is smaller than twice the mean nmoy = 1

N

∑N
i=1 (ni).

However, the measured variance of the photon number appears

to be smaller than the mean photon number, while the equality

is expected for a Poisson distribution. This phenomenon can

be easily explained by taking into account the cases where two

or more photoelectrons are accumulated in the same pixel. If

µ is the true mean number of photoelectrons accumulated in

one pixel, a thresholding procedure would give, in the absence

of false detections, a measured mean m given by

m = 1 − p(0) = 1 − exp(−µ), (3)

where p(0) is the probability of detecting no photoelectron.

The first equality expresses the fact that the thresholding

procedure is unable to distinguish between one and more

photoelectrons on one pixel, while the second equality reflects

the Poisson distribution of photoelectrons. With the same

hypotheses, the measured variance σ 2 is given by

σ 2 = m2p(0) + (1 − m)2[1 − p(0)] = m(1 − m). (4)

Hence, the measured variance is smaller than the measured

mean, because of the binary detection. On the other hand, the

variance of the difference is affected in the same way as the

variance by this effect. To cancel this artifact, the criterion for

the detection of sub-shot-noise correlations becomes

σ 2
diff

m(1 − m)
� 2. (5)

Hence, the measured ratio σ 2
diff/nmoy must be multiplied

by a correction coefficient c = 1/(1 − nmoy) in order to be

compared to the shot-noise limit (SNL). If binned pixels are

used, c must be estimated before binning, since thresholding

is performed on the physical pixels.

Figure 4 presents the measured ratios on 50 images, without

binning and with 4848 physical pixels in the statistics area or

for 1212 blocks of 2 × 2 pixels. In the absence of binning,

the corrected ratios r are almost exactly equal to the ratios of

the variances r ′ = σ 2
diff/σ

2, meaning that the classical noise is

negligible, while the corrected ratios are slightly different from

the variance ratios for 2 × 2 binning, because of the smaller

number of samples. In both cases, these ratios are clearly in

the quantum regime. At 95% of confidence the results on

individual images are

r = c
σ 2

diff

nmoy

= 1.94 ± 0.08, (6)

r ′ = σ 2
diff

σ 2
s

= 1.94 ± 0.08 (7)

for physical pixels and

r = c × σ 2
diff

nmoy

= 1.82 ± 0.18, (8)

r ′ = σ 2
diff

σ 2
s

= 1.83 ± 0.16 (9)

for blocks of 2 × 2 pixels. In this latter case, the dispersion

is doubled, because the number of pixels has been divided by

4. While the limits of the confidence interval for individual
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FIG. 4. Experimental results. Each point corresponds to a single-

shot measurement. (a) No binning; (b) 2 × 2 binning.

images attain the SNL, the averages of the estimators on the

50 images are well below the SNL,

〈r〉 = 1.94 ± 0.08√
50

= 1.94 ± 0.01,

(10)

〈r ′〉 = 1.94 ± 0.08√
50

= 1.94 ± 0.01

for physical pixels and

〈r〉 = 1.82 ± 0.18√
50

= 1.82 ± 0.02, (11)

〈r ′〉 = 1.83 ± 0.18√
50

= 1.83 ± 0.02 (12)

for blocks of 2 × 2 pixels.

To conclude this section, we have demonstrated pure spatial

quantum correlations between opposite pixels of different

sizes. For the smallest size, corresponding to the physical

pixels, this correlation corresponds to spatial coincidences

between individual photons, because the number of photons

per pixel is either one or zero. However, though diffraction

is negligible even for this pixel size, correlations are reduced

because of imperfect centering, nonperfect degeneracy, and

detector errors, as is shown in Sec. IV. The best results have

been obtained by grouping the pixels in 2 × 2 blocks.

III. MEASUREMENT OF SUB-SHOT-NOISE

CORRELATIONS BETWEEN ANGULAR SECTORS

We now describe results obtained without chromatic fil-

tering for a crystal orientation corresponding to noncollinear

phase matching. Figure 5 shows a sum of 58 single-shot images

in this configuration. For nondegenerate wavelengths, the idler

and signal fluorescence form rings of different diameter and the

rings corresponding to different wavelengths add incoherently

in the image. However, because of momentum conservation,

each pair of twin photons emitted in the SPDC process,

although not equidistant from the center of the pattern, lies

along a diameter line, as shown in Fig. 6.

The SPDC image is divided in S = 90 angular sectors and a

number of photons ni is determined in the intersection of each

of these sectors with a ring encompassing the greatest part of

the multimode SPDC. The center of this ring is determined in

order to obtain the most regular distribution of light between

sectors on the sum image. Note that only the pump beam

experiences walk-off: The center of the SPDC ring does not

correspond to the center of the pump beam, with no practical

consequences since this pump beam is not detected. The size

of a sector, 240 pixels, results from a compromise between

effects of diffraction and not perfect centering, which are

more sensitive for small sectors, and of the other classical

noises (e.g., deterministic residual aberrations, see later in

this article) that predominate if the number of photons in a

sector is too large. The symmetrical sector-pair correlation

is evaluated by estimating the ratios r and r ′ defined in the
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FIG. 5. (Color online) Sum of 58 experimental images in pass-

band configuration. The white circles delimit the area where the

statistic is performed.
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preceding section. Figure 7 shows the experimental results

for 58 single-shot images with a mean comprised between 0.1

and 0.25 photon/pixel: Each point corresponds to a single-shot

measurement with a statistics performed over the 90 sectors.

Results can be summarized for the whole set of images as

r = c
σ 2

diff

nmoy

= 1.85 ± 0.78 r ′ = σ 2
diff

σ 2
s

= 1.75 ± 0.50. (13)

For both values, the uncertainty range is centered on the

average r or r ′ of the coefficients of the 58 images and the range

width, that is, ±2 standard deviations of these 58 coefficients,

gives a confidence of 95% for Gaussian measurement errors.

The dispersion of the measurements of r is mainly due to

the measurement of σ 2
diff on a limited set of 90 pairs of

sectors, giving a theoretical standard deviation for Gaussian

0.1 0.15 0.2 0.25
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3.5

Image intensity (photon per pixel)

 σ2
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/  σ2
s

c . σ2
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/ n
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FIG. 7. Experimental results. Each point corresponds to a single-

shot measurement.

statistics σvar = (2/90)1/2σ 2
diff , hence a standard deviation on

r , by neglecting the much smaller uncertainty on m: σr =
(2/90)1/2 r , that is a theoretical uncertainty range of ±0.45.

The other important source of dispersion of r comes from

the fluctuations of the mean photon number from an image to

another due to the fluctuations of the pump energy. Though

some measurement values on individual images are greater

than 2, in accordance with the uncertainty range of Eq. (13), the

mean coefficients for the 58 images are significantly smaller

than 2:

〈r〉 = 1.85 ± 0.78√
58

= 1.85 ± 0.10, (14)

〈r ′〉 = 1.83 ± 0.50√
58

= 1.83 ± 0.07. (15)

We show in Fig. 8(b) the evolution of the variance of the

photon number difference between two nonopposite sectors,
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FIG. 8. (Color online) (a) Intensity (in sum of gray levels/sector)

of the sum image versus the angular position of the sector. (b) Variance

of the difference between sectors versus their angular separation.
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versus their angular separation α:

σ 2
diff,α = 1

S/2 − 1

S/2
∑

i=1

(ni − ni+ αS
2π

)2. (16)

This variance increases when increasing α, because of

some residual deterministic aberrations which are evidenced

on Fig. 8(a), and falls abruptly for opposite sectors, because

of quantum correlations. Nevertheless, these deterministic

aberrations deteriorate the quantum correlations. Another

deterioration comes from noncollinear phase matching in the

cases where the signal ring is included in the detection area

while the idler ring lies outside this area. If the detection was

perfect, such a situation could be avoided by extending the

outer diameter of the detection ring. However, in practice,

experimental results are worse because of the contribution

of the detector noise in the low-intensity part of this area.

The other effects which deteriorate the theoretically perfect

quantum correlations are detailed in the next section.

IV. NUMERICAL SIMULATIONS

A. Stochastic simulations

In the linear approximation, one can show that the Wigner

distribution of the output field can be simulated by integrating

the classical propagation equations starting from a stochastic

field which has the phase-space distribution determined by

the input field Wigner function. By averaging a great number

of such simulations, one determines the expectation values of

symmetrized operators. However, quantities measured in an

experiment do not correspond to symmetrized operators but

rather to normal ordering, so that correction terms must be

added to the averages. First, the expectation of the photon

number in pixel �r is given by

〈â+
�r â�r〉 = 〈α∗

�r α�r〉stoch − 1
2
. (17)

Similarly, the normally ordered photon number variance is

obtained by subtracting 1
4

to the stochastic variance.

To perform the Monte-Carlo numerical simulations, we

proceed with the following steps [4]:

(i) For each temporal mode, we generate the stochastic

input field with the appropriate phase-probability distribution

corresponding to the vacuum field in the Wigner representa-

tion, that is, for each pixel Gaussian white noise with zero

mean and a random phase, such that 〈α∗
�r α�r〉stoch = 1

2
.

(ii) The propagation of the stochastic field is then evaluated

by integrating classical propagation equations, which are

solved with a split-step algorithm.

(iii) The fluences for each temporal mode are added at the

output to obtain results corresponding to a single trajectory.

(iv) The expectations of the symmetrically ordered opera-

tors are estimated by averaging the results over a great number

of trajectories.

(v) All the expectation values in the normal ordering are

finally obtained from these stochastic averages by applying

the appropriate corrections.

The duration of a temporal mode is roughly equal to the

inverse of the bandwidth of the SPDC, resulting for a pump

pulse duration of 1 ps in approximately a temporal mode

per nm of bandwidth, that is, approximately 20 temporal

modes for a bandwidth limited by the IF, or 40 temporal

modes in the broadband SPDC configuration (the other modes

give light outside the statistics area). Each temporal mode

must be simulated with its proper couple of wavelengths.

The final fluence of the order of 0.15 photons/pixel is thus

obtained by subtracting 40 × 1
2

=20 photons/pixel from the

averaged output. The variance σ 2
before of this fluence before

corrections, obtained as the average of N trajectories, has a

mean of the order 40 × 1
4

= 10 photons2/pixel and obeys a

Gaussian statistics (χ2 law with 40N degrees of freedom) and

with a variance σ 4
before/N . Hence, if the physical variance, that

is, the variance after corrections, is of the order of 0.15, a huge

number of trajectories must be averaged to determine σ 2
diff with

a precision at 95% of confidence of, say, 10%:

σ 4
before

N
= (0.05 σ 2)2 ⇒ N =

(

σ 2
before

0.05 σ 2

)2

≃ 1.8 × 106.

(18)

This number has to be multiplied by the number of temporal

modes. To conclude this section, stochastic simulations need a

nonacceptable huge number of runs to give a good precision,

because of the low light level in the output image, resulting

in a too-high difference between the fluences in the corrected

and the noncorrected images.

B. Green’s function method

In the undepleted pump approximation, equations of para-

metric amplification are linear and the output field on the

pixel �r can be described as the sum of contributions from

all the pixels �r1, multiplied by Green’s function G (�r, �r1).

To take into account the noncommuting character of the

fields in their quantum description, two Green’s functions

G (�r, �r1) and H (�r, �r1) must be introduced [23]. Their numerical

values are computed using a δ function successively on both

quadratures corresponding either to a maximum amplification

or a maximum deamplification as an initial condition in the

classical propagation equation. The output quadrature fields

obtained through the numerical propagation of this δ-like input

functions are directly proportional to linear combinations of

the Green’s functions. It is then easy to deduce the actual

value of G and H after the numerical propagation of a δ

function centered at each point of the transverse plane. To

summarize the anterior work [4], the Green’s functions H

and G can be numerically computed as linear combinations

of output fields obtained by propagation of δ-function in-

put fields. The propagation of these input fields must be

computed for each position in the output crystal plane and

for both input quadratures. The knowledge of these Green’s

functions allows us to compute all the output covariance

functions.

To describe the experiment, the number and the size of

the pixels in the simulation must correspond to the actual

CCD sensor. At first glance, it means that we have to

calculate G and H Green’s functions for 2 × 5122 input δ

functions, giving for 1 input pixel (two δ functions, one per

quadrature) 2 × 5122 output values (two Green’s functions G

and H ). This scheme seems not practicable because of the

half-million simulations and the 1011 output values. However,

043825-6



PURELY SPATIAL COINCIDENCES OF TWIN PHOTONS . . . PHYSICAL REVIEW A 81, 043825 (2010)

symmetries and negligible terms allow a considerable reduc-

tion of the computations. For example, an angular sector

includes 240 pixels. To calculate σ 2
diff characterizing this

sector, simulations must be performed for input Diracs on

the pixels of the sector plus a border 2 pixels wide, to take into

account diffraction, and for input Diracs on an opposite area

of the same dimensions, to retrieve signal-idler correlations.

Hence, approximately 2000 propagations of a field of 512 ×
512 pixels must be performed and it is necessary to keep in

memory only the results for �r inside the sector or its opposite.

This number is even considerably reduced in the degenerate

case, because a binned pixel and its border include less than

100 physical pixels. The preceding numbers correspond to one

temporal mode and must be multiplied by the number of these

modes that give a significant contribution. To conclude this

paragraph, the Green’s function method appears to be the only

one that allows the computation of quantum covariances for

very low fluxes corresponding to photon counting detection.

C. Results

Four types of cause deteriorate the ideal perfect signal-idler

correlation when considering opposite areas. First, the idler

photon is detected in a coherence area around the exact

opposite position of the detection of the signal photon,

because of diffraction. This effect will be quantified by

simulations involving only one temporal mode corresponding

to degeneracy and oversampling in the far field. Second,

the center of a physical pixel or the corner between four

pixels does not correspond exactly to the symmetry center

of the far-field image. Third, twin photons correspond to

nondegenerate frequencies, resulting in a noncollinear phase

matching scheme and nonopposite locations in the far field (see

Fig. 6). The Green’s function allows us to quantify this effect

by using a sufficient number of temporal modes, with a specific

sampling in the image space (near field) for each in order to

obtain a uniform sampling in the far field corresponding to

the actual CCD sensor. Fourth, the imperfect detection by the

camera leads to the loss of some photons and to the detection

of spurious photoelectrons that do not correspond to actual

photons. We present in the following results these four types

of error.

To quantify diffraction effects, we have to take into account

the actual dimensions of the illuminated crystal and of the

pump beam in the near field, while the sampling step in

this near field must correspond to the entire phase-matching

bandwidth in the far field. By using 2048 × 2048 samples, both

requirements are fulfilled, with 4 × 4 samples corresponding

to one physical pixel of the camera in the far field. Even for

the smallest measurement area, that is, one physical pixel,

the effect of diffraction appears to be weak, r < 4 × 10−2,

because the coherence area is sufficiently smaller than the

physical pixel. Hence, the other effects will be simulated with

512 × 512 samples, that is, a sample length equal to a fourth

of the crystal transversal size, in order to keep computation

times reasonable and to obtain in the far field an equal size

between the sample in the simulations and the physical pixel.

Diffraction effects will be nevertheless taken into account by

using a pump beam diameter smaller than its actual diameter

in order to retrieve the same value of r as with 2048 × 2048

samples.
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FIG. 9. (Color online) Variance of the signal-idler difference

versus the shift between the actual and the used center. The values on

the abscissa correspond to a shift along a diameter and to a shift of

the same value in the orthogonal direction. The distance between the

twin pixels and the center is 20 pixels.

Centering is physically performed with a resolution of

half a pixel in order to avoid interpolation (see Sec. II). The

maximum difference between the actual center and the center

used in calculations of Sec. II is therefore 0.25 pixel, if the

actual center is determined without error. Figure 9 shows the

evolution of r with this difference in the cases of no binning and

2 × 2 binning. For the maximum theoretical shift of 0.25 pixel,

r attains half the SNL if no binning is performed and twice

as less for 2 × 2 binning. r becomes negligible for greater

binning, in particular in the case of the angular sectors of

Sec. III.

Figure 9 shows also the difference between a strict degen-

eracy and the experiment described in Sec. II, where the SPDC

is rendered narrow-band by a 20-nm-wide filter. For perfect

centering and without binning, r equals 0.4 for this multimode

light. Actually, this value depends notably on the position of

the opposite pixels that are used for the simulation. If the pair

of pixels is close to the center of the far-field fluorescence disk,

there is almost no degradation due to the multimode character

of the SPDC, as shown in Fig. 10: Involved angles are small

and the locations for different wavelengths, though not exactly

opposite, are shifted by far less than 1 pixel. However, the

shift increases linearly with the distance between both pixels,

resulting in a linear increase of r . Actually, using a smaller

statistics area (maximum distance from the center of 20 pixels

instead of 40) induces a diminution of the experimental value

of r: 1.93 instead of 1.94 found in Eq. (11), but with a greater

dispersion between images because of the smaller number of

pixels available for the statistics. Note that an error in centering

diminishes the effect of nonperfect degeneracy because the

asymmetry due to different wavelengths compensates in part

the asymmetry due to imperfect centering: See the points for a

high centering error in Fig. 9. All the points in this figure have

been obtained for twin pixels 20 pixels away from the center,

that is, a middle value of this distance.
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FIG. 10. (Color online) Variance of the signal-idler difference

versus the distance between the twin pixels and the center.

In actual measurements, r is computed by using different

distances between twin pixels and without knowing the actual

error of the center position. To take into account all the

parameters, we have repeated the simulation for multimode

SPDC with random values of the centering errors between

0 and 0.25 on both axes and random positions of the twin

pixels inside the disk. We obtain rperfect = 0.93 for perfect

detection. We have then computed with our model of EMCCD

camera [16] the probability p1 of detecting only one photon on

one pixel when opposite pixels receive either 0 or twin photons

(ideal correlation before detection) for a detected photon mean

m [see Eq. (3)] equal to 0.20, in agreement with the average

of experimental results. The variance σ 2
diff after detection can

then be computed as

σ 2
diff = rperfectσ

2 + p1(1 − rperfect/2), (19)

where σ 2 is computed with Eq. (4). We obtain as a final result

for one physical pixel without binning:

r = c
σ 2

diff

m
= 1.47. (20)

A part of the remaining difference between experiment

(r = 1.94) and simulation (r = 1.47) is due to deterministic

aberrations, visible on Fig. 8(a). However, this part is weak

in the case of correlations between single pixels, because

the quantum noise is predominent for a fluence smaller than

1 photon/pixel, and the origin of the discrepancy between

simulation and experimental results is not clear. Note however

that parametric amplifiers are often described in quantum

optics by introducing an “excess noise” factor [24], whose

origin comes from distortions in the pump wave front.

In the case of a 2 × 2 binning, the experimental and

simulated ratios become, respectively, r = 1.82 and r = 1.29,

while, for angular sectors, they become r = 1.75 and r = 1.33.

Note that, because of the greater number of photons in an

angular sector, the deterministic aberrations induce an increase

of r of about 0.1 that is no more negligible.

V. CONCLUSION

In conclusion, we have experimentally demonstrated in the

photon-counting regime that opposite spatial fluctuations of

SPDC radiation are correlated in the quantum regime with

a variance of the photon numbers between opposite areas

below the shot-noise level. This conclusion holds close to

degeneracy for opposite pixels, as well as for broad-band

SPDC for opposite angular sectors. In the case of physical

pixels, purely spatial coincidences have been demonstrated

because the fluence of 0.2 photon/pixel corresponds to either

zero or one photon on the pixel. These experimental results

are supported by numerical simulations based on the Green’s

function method, which has been proved to have strong

advantages on stochastic simulations for such a low photon

flux.
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