R. Munns and M. Tester, Mechanisms of Salinity Tolerance, Annual Review of Plant Biology, vol.59, issue.1, pp.651-681, 2008.
DOI : 10.1146/annurev.arplant.59.032607.092911

I. Møller and M. Tester, Salinity tolerance of Arabidopsis: a good model for cereals?, Trends in Plant Science, vol.12, issue.12, pp.534-540, 2007.
DOI : 10.1016/j.tplants.2007.09.009

S. Wu, L. Ding, and J. Zhu, SOS1, a Genetic Locus Essential for Salt Tolerance and Potassium Acquisition, THE PLANT CELL ONLINE, vol.8, issue.4, pp.617-627, 1996.
DOI : 10.1105/tpc.8.4.617

M. Apse, G. Aharon, W. Snedden, and E. Blumwald, Salt Tolerance Conferred by Overexpression of a Vacuolar Na+/H+ Antiport in Arabidopsis, Science, vol.285, issue.5431, pp.1256-1258, 1999.
DOI : 10.1126/science.285.5431.1256

A. Rus, S. Yokoi, A. Sharkhuu, M. Reddy, B. Lee et al., AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots, Proceedings of the National Academy of Sciences, pp.9814150-14155, 2001.
DOI : 10.1073/pnas.241501798

P. Berthomieu, G. Conéjéro, A. Nublat, W. Brackenbury, C. Lambert et al., Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance, The EMBO Journal, vol.22, issue.9, pp.2004-2014, 2003.
DOI : 10.1093/emboj/cdg207

. Sunarpi, T. Horie, J. Motoda, M. Kubo, H. Yang et al., Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells, The Plant Journal, vol.6, issue.6, pp.44928-938, 2005.
DOI : 10.1111/j.1365-313X.2005.02595.x

K. Tsugane, K. Kobayashi, Y. Niwa, Y. Ohba, K. Wada et al., A Recessive Arabidopsis Mutant That Grows Photoautotrophically under Salt Stress Shows Enhanced Active Oxygen Detoxification, THE PLANT CELL ONLINE, vol.11, issue.7, pp.1195-1206, 1999.
DOI : 10.1105/tpc.11.7.1195

X. Gao, Z. Ren, Y. Zhao, and H. Zhang, Overexpression of SOD2 Increases Salt Tolerance of Arabidopsis, PLANT PHYSIOLOGY, vol.133, issue.4, pp.1873-1881, 2003.
DOI : 10.1104/pp.103.026062

H. Hayashi, A. Mustardy, L. Deshnium, P. Ida, M. Murata et al., Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress, The Plant Journal, vol.12, issue.1, pp.133-142, 1997.
DOI : 10.1046/j.1365-313X.1997.12010133.x

G. Szekely, E. Abraham, A. Cseplo, G. Rigo, L. Zsigmond et al., genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis, The Plant Journal, vol.270, issue.1, pp.11-28, 2008.
DOI : 10.1111/j.1365-313X.2007.03318.x

A. Kinnersley and F. Turano, Gamma Aminobutyric Acid (GABA) and Plant Responses to Stress, Critical Reviews in Plant Sciences, vol.19, issue.6, pp.479-509, 2000.
DOI : 10.1016/S0735-2689(01)80006-X

N. Bouché and H. Fromm, GABA in plants: just a metabolite?, Trends in Plant Science, vol.9, issue.3, pp.110-115
DOI : 10.1016/j.tplants.2004.01.006

A. Fait, H. Fromm, D. Walter, G. Galili, and A. Fernie, Highway or byway: the metabolic role of the GABA shunt in plants, Trends in Plant Science, vol.13, issue.1, pp.14-19, 2008.
DOI : 10.1016/j.tplants.2007.10.005

F. Steward, J. Thompson, and C. Dent, Aminobutyric acid: a constituent of the potato tuber?, Science, vol.110, pp.439-440, 1949.

B. Shelp, A. Bown, and M. Mclean, Metabolism and functions of gamma-aminobutyric acid, Trends in Plant Science, vol.4, issue.11, pp.446-452, 1999.
DOI : 10.1016/S1360-1385(99)01486-7

C. Masclaux-daubresse, M. Valadier, E. Carrayol, M. Reisdorf-cren, and B. Hirel, Diurnal changes in the expression of glutamate dehydrogenase and nitrate reductase are involved in the C/N balance of tobacco source leaves, Plant, Cell & Environment, issue.11, pp.251451-1462, 2002.

A. Carroll, G. Fox, L. S. Phillips, R. Ratcliffe, R. Stewart et al., Ammonium Assimilation and the Role of [gamma]-Aminobutyric Acid in pH Homeostasis in Carrot Cell Suspensions, Plant Physiology, vol.106, issue.2, pp.513-520, 1994.
DOI : 10.1104/pp.106.2.513

L. Crawford, A. Bown, K. Breitkreuz, and F. Guinel, The Synthesis of [gamma]-Aminobutyric Acid in Response to Treatments Reducing Cytosolic pH, Plant Physiology, vol.104, issue.3, pp.865-871, 1994.
DOI : 10.1104/pp.104.3.865

C. Studart-guimarães, A. Fait, A. Nunes-nesi, F. Carrari, B. Usadel et al., Reduced Expression of Succinyl-Coenzyme A Ligase Can Be Compensated for by Up-Regulation of the ??-Aminobutyrate Shunt in Illuminated Tomato Leaves, PLANT PHYSIOLOGY, vol.145, issue.3, pp.145626-639, 2007.
DOI : 10.1104/pp.107.103101

N. Beuve, N. Rispail, P. Laine, J. Cliquet, A. Ourry et al., Putative role of gamma -aminobutyric acid (GABA) as a long-distance signal in up-regulation of nitrate uptake in Brassica napus L., Plant, Cell and Environment, vol.92, issue.8, pp.271035-1046, 2004.
DOI : 10.1046/j.1365-313X.1999.00396.x

M. Lancien and M. Roberts, Regulation of Arabidopsis thaliana 14-3-3 gene expression by gamma-aminobutyric acid, Plant, Cell and Environment, vol.18, issue.7, pp.1430-1436, 2006.
DOI : 10.1093/jexbot/53.370.959

R. Palanivelu, L. Brass, A. Edlund, and D. Preuss, Pollen Tube Growth and Guidance Is Regulated by POP2, an Arabidopsis Gene that Controls GABA Levels, Cell, vol.114, issue.1, pp.47-59, 2003.
DOI : 10.1016/S0092-8674(03)00479-3

K. Busch and H. Fromm, Plant Succinic Semialdehyde Dehydrogenase. Cloning, Purification, Localization in Mitochondria, and Regulation by Adenine Nucleotides, Plant Physiology, vol.121, issue.2, pp.589-598, 1999.
DOI : 10.1104/pp.121.2.589

K. Breitkreuz, W. Allan, O. Van-cauwenberghe, C. Jakobs, D. Talibi et al., A Novel ??-Hydroxybutyrate Dehydrogenase: IDENTIFICATION AND EXPRESSION OF AN ARABIDOPSIS cDNA AND POTENTIAL ROLE UNDER OXYGEN DEFICIENCY, Journal of Biological Chemistry, vol.278, issue.42, pp.27841552-41556, 2003.
DOI : 10.1074/jbc.M305717200

G. Baum, Y. Chen, T. Arazi, H. Takatsuji, and H. Fromm, A plant glutamate decarboxylase containing a calmodulin binding domain. Cloning, sequence, and functional analysis, Journal of Biological Chemistry, issue.26, pp.26819610-19617, 1993.

W. Snedden, T. Arazi, H. Fromm, and B. Shelp, Calcium/Calmodulin Activation of Soybean Glutamate Decarboxylase, Plant Physiology, vol.108, issue.2, pp.543-549, 1995.
DOI : 10.1104/pp.108.2.543

R. Mirabella, H. Rauwerda, E. Struys, C. Jakobs, C. Triantaphylides et al., The Arabidopsis her1 mutant implicates GABA in E-2- hexenal responsiveness. The Plant Journal, pp.197-213, 2008.

F. Ludewig, A. Haùser, H. Fromm, L. Beauclair, and N. Bouché, Mutants of GABA Transaminase (POP2) Suppress the Severe Phenotype of succinic semialdehyde dehydrogenase (ssadh) Mutants in Arabidopsis, PLoS ONE, vol.33, issue.10, p.3383, 2008.
DOI : 10.1371/journal.pone.0003383.s002

V. Reddy, G. Ali, and A. Reddy, Genes Encoding Calmodulin-binding Proteins in the Arabidopsis Genome, Journal of Biological Chemistry, vol.277, issue.12, pp.9840-9852, 2002.
DOI : 10.1074/jbc.M111626200

D. De-biase, D. Barra, M. Simmaco, R. John, and F. Bossa, Primary Structure and Tissue Distribution of Human 4-Aminobutyrate Aminotransferase, European Journal of Biochemistry, vol.12, issue.1-2, pp.476-480, 1995.
DOI : 10.1006/abio.1987.9999

S. Clark, D. Leo, R. Dhanoa, P. Van-cauwenberghe, O. Mullen et al., Biochemical characterization, mitochondrial localization, expression, and potential functions for an Arabidopsis ??-aminobutyrate transaminase that utilizes both pyruvate and glyoxylate, Journal of Experimental Botany, vol.60, issue.6, pp.601743-1757, 2009.
DOI : 10.1093/jxb/erp044

Y. Miyashita and A. Good, Contribution of the GABA shunt to hypoxiainduced alanine accumulation in roots of Arabidopsis thaliana. Plant and Cell Physiology, pp.92-102, 2008.

N. Bouché, A. Fait, M. Zik, and H. Fromm, The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis, Plant Molecular Biology, vol.37, issue.3, pp.315-325, 2004.
DOI : 10.1007/s11103-004-0650-z

F. Turano and T. Fang, Characterization of Two Glutamate Decarboxylase cDNA Clones from Arabidopsis, Plant Physiology, vol.117, issue.4, pp.1411-1421, 1998.
DOI : 10.1104/pp.117.4.1411

N. Strizhov, E. Abrahám, L. Okrész, S. Blickling, A. Zilberstein et al., Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis, The Plant Journal, vol.12, issue.3, pp.557-569, 1997.
DOI : 10.1111/j.0960-7412.1997.00557.x

F. Fougere, L. Rudulier, D. Streeter, and J. , Effects of Salt Stress on Amino Acid, Organic Acid, and Carbohydrate Composition of Roots, Bacteroids, and Cytosol of Alfalfa (Medicago sativa L.) Plant Physiology, pp.1228-1236, 1991.

M. Bolarín, A. Santa-cruz, E. Cayuela, and F. Pérez-alfocea, Short-term Solute Changes in Leaves and Roots of Cultivated and Wild Tomato Seedlings Under Salinity, Journal of Plant Physiology, vol.147, issue.3-4, pp.463-468, 1995.
DOI : 10.1016/S0176-1617(11)82184-X

M. Binzel, P. Hasegawa, D. Rhodes, S. Handa, A. Handa et al., Solute Accumulation in Tobacco Cells Adapted to NaCl, PLANT PHYSIOLOGY, vol.84, issue.4, pp.1408-1415, 1987.
DOI : 10.1104/pp.84.4.1408

V. Ling, W. Snedden, B. Shelp, and S. Assmann, Analysis of a Soluble Calmodulin Binding Protein from Fava Bean Roots: Identification of Glutamate Decarboxylase as a Calmodulin-Activated Enzyme, THE PLANT CELL ONLINE, vol.6, issue.8, pp.1135-1143, 1994.
DOI : 10.1105/tpc.6.8.1135

A. Bown, K. Macgregor, and B. Shelp, Gamma-aminobutyrate: defense against invertebrate pests?, Trends in Plant Science, vol.11, issue.9, pp.424-427, 2006.
DOI : 10.1016/j.tplants.2006.07.002

H. Knight, A. Trewavas, and M. Knight, Calcium signalling in Arabidopsis thaliana responding to drought and salinity. The Plant Journal, pp.1067-1067, 1997.

F. Kaplan, J. Kopka, D. Sung, W. Zhao, M. Popp et al., Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals Renault et al http://www.biomedcentral.com/1471-2229/10/20 an intricate relationship of cold-regulated gene expression with modifications in metabolite content. The Plant Journal, BMC Plant Biology, vol.10, issue.6, pp.20-50967, 2007.

K. Urano, K. Maruyama, Y. Ogata, Y. Morishita, M. Takeda et al., Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics, The Plant Journal, vol.7, issue.6, pp.1065-1078, 2009.
DOI : 10.1111/j.1365-313X.2008.03748.x

P. Zimmermann, M. Hirsch-hoffmann, L. Hennig, W. Gruissem, and . Genevestigator, GENEVESTIGATOR. Arabidopsis Microarray Database and Analysis Toolbox, PLANT PHYSIOLOGY, vol.136, issue.1, pp.2621-2632, 2004.
DOI : 10.1104/pp.104.046367

G. Baum, S. Lev-yadun, Y. Fridmann, T. Arazi, H. Katsnelson et al., Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants, The EMBO Journal, vol.15, pp.2988-2996, 1996.

B. Kanner and A. Bendahan, Two pharmacologically distinct sodium- and chloride-coupled high-affinity gamma-aminobutyric acid transporters are present in plasma membrane vesicles and reconstituted preparations from rat brain., Proceedings of the National Academy of Sciences, pp.14150-14155, 1990.
DOI : 10.1073/pnas.87.7.2550

P. Essah, R. Davenport, and M. Tester, Sodium Influx and Accumulation in Arabidopsis, PLANT PHYSIOLOGY, vol.133, issue.1, pp.307-318, 2003.
DOI : 10.1104/pp.103.022178

P. Armengaud, R. Sulpice, A. Miller, M. Stitt, A. Amtmann et al., Multilevel Analysis of Primary Metabolism Provides New Insights into the Role of Potassium Nutrition for Glycolysis and Nitrogen Assimilation in Arabidopsis Roots, PLANT PHYSIOLOGY, vol.150, issue.2, pp.772-785, 2009.
DOI : 10.1104/pp.108.133629

C. Diaz, S. Purdy, A. Christ, J. Morot-gaudry, A. Wingler et al., Characterization of Markers to Determine the Extent and Variability of Leaf Senescence in Arabidopsis. A Metabolic Profiling Approach, PLANT PHYSIOLOGY, vol.138, issue.2, pp.898-908, 2005.
DOI : 10.1104/pp.105.060764

M. Ansari, R. Lee, and S. Chen, A novel senescence-associated gene encoding gamma-aminobutyric acid (GABA):pyruvate transaminase is upregulated during rice leaf senescence, Physiologia Plantarum, vol.19, issue.1, pp.1-8, 2005.
DOI : 10.1023/A:1006047623263

T. Lemaitre, E. Urbanczyk-wochniak, V. Flesch, E. Bismuth, A. Fernie et al., NAD-Dependent Isocitrate Dehydrogenase Mutants of Arabidopsis Suggest the Enzyme Is Not Limiting for Nitrogen Assimilation, PLANT PHYSIOLOGY, vol.144, issue.3, pp.1546-1558, 2007.
DOI : 10.1104/pp.107.100677

W. Araújo, A. Nunes-nesi, S. Trenkamp, V. Bunik, and A. Fernie, Inhibition of 2-Oxoglutarate Dehydrogenase in Potato Tuber Suggests the Enzyme Is Limiting for Respiration and Confirms Its Importance in Nitrogen Assimilation, PLANT PHYSIOLOGY, vol.148, issue.4, pp.1782-1796, 2008.
DOI : 10.1104/pp.108.126219

M. Merwe-van-der, S. Osorio, T. Moritz, A. Nunes-nesi, and A. Fernie, Decreased Mitochondrial Activities of Malate Dehydrogenase and Fumarase in Tomato Lead to Altered Root Growth and Architecture via Diverse Mechanisms, PLANT PHYSIOLOGY, vol.149, issue.2, pp.653-669, 2009.
DOI : 10.1104/pp.108.130518

P. Giege, J. Heazlewood, U. Roessner-tunali, A. Millar, A. Fernie et al., Enzymes of Glycolysis Are Functionally Associated with the Mitochondrion in Arabidopsis Cells, THE PLANT CELL ONLINE, vol.15, issue.9, pp.2140-2151, 2003.
DOI : 10.1105/tpc.012500

N. Bouché, B. Lacombe, and H. Fromm, GABA signaling: a conserved and ubiquitous mechanism, Trends in Cell Biology, vol.13, issue.12, pp.607-610, 2003.
DOI : 10.1016/j.tcb.2003.10.001

M. Roberts, 14-3-3 Proteins find new partners in plant cell signalling, Trends in Plant Science, vol.8, issue.5, pp.218-223, 2003.
DOI : 10.1016/S1360-1385(03)00056-6

D. Boyes, A. Zayed, R. Ascenzi, A. Mccaskill, N. Hoffman et al., Growth Stage-Based Phenotypic Analysis of Arabidopsis: A Model for High Throughput Functional Genomics in Plants, THE PLANT CELL ONLINE, vol.13, issue.7, pp.1499-1510, 2001.
DOI : 10.1105/tpc.13.7.1499

T. Czechowski, M. Stitt, T. Altmann, M. Udvardi, and W. Scheible, Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis, PLANT PHYSIOLOGY, vol.139, issue.1, pp.5-17, 2005.
DOI : 10.1104/pp.105.063743

M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, vol.72, issue.1-2, pp.248-254, 1976.
DOI : 10.1016/0003-2697(76)90527-3

U. Roessner, C. Wagner, J. Kopka, R. Trethewey, and L. Willmitzer, Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. The Plant Journal, pp.131-142, 2000.

M. Curtis and U. Grossniklaus, A Gateway Cloning Vector Set for High-Throughput Functional Analysis of Genes in Planta, PLANT PHYSIOLOGY, vol.133, issue.2, pp.462-469, 2003.
DOI : 10.1104/pp.103.027979

S. Clough and A. Bent, Floral dip: a simplified method for Agrobacteriummediated transformation of Arabidopsis thaliana. The Plant Journal, pp.735-743, 1998.