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Abstract  

Summer mortality of Pacific oysters is known in several countries. However no 

specific pathogen has been systematically associated with this phenomenon. A complex 

combination of environmental and biological parameters has been suggested as the cause and 

is now starting to be identified. A high genetic basis was found for survival in oysters when a 

first generation (G1) was tested in three sites during summer. This paper presents a synthesis 

on physiological characteristics of two selected groups (‘R’ and ‘S’, from families selected for 

resistance and susceptibility to summer mortality respectively), of the second and third 

generations. R and S showed improvement or reduction of survival compared with the control 

in both field and laboratory trials confirming the high heritability of survival of juveniles <1 

year old. Interestingly, no correlation was observed between growth and survival.  

Comparison between the two selected groups showed that S oysters invested more 

energy in reproduction and stayed a longer time without spawning than R oysters which had 

high synchronous spawning. This was mainly shown with high rather than low dietary rations 

(respectively 12% and 4% DW algae/DW oyster) in a controlled experiment. Moreover, early 
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partial spawning was detected in S oysters and not R ones in the high dietary ration. S showed 

a higher respiration rate and an earlier decrease in absorption efficiency than R during 

gametogenesis, but they were not significantly different in glycogen or ATP utilisation. Two 

months before a mortality episode, hemocytes from S oysters had a higher adhesive capacity 

than R hemocytes and significantly higher reactive oxygen species production capacity. One 

month before mortality, S oysters had the highest hyalinocyte concentration and their 

expression of genes coding for glucose metabolism enzymes (Hexokinase, GS, PGM, 

PEPCK) was significantly lower in the labial palps. After a thermal increase from 13 °C to 

19 °C, during 8 days in normoxia, S oysters showed a large HSP70 increase under hypoxia 

contrary to R oysters, suggesting their high susceptibility to stress. Their catalase activity was 

lower than in R oysters and showed no further change to subsequent hypoxia and pesticide 

stresses, in contrast to R oysters.  

These observations suggest possible links between higher reproductive effort in S 

oysters, their specific stress response to temperature and hypoxia, ROS production, partial 

spawning, hyalinocyte increase and the infection process. To compare R and S oysters in a 

more integrated way, a suppression subtractive hybridisation (SSH) library and a micro-array 

strategy are being undertaken.   

 

1 .Introduction  

According to Koganezawa (1974), the phenomenon known as Crassostrea gigas 

“summer mortality” first began along the Japanese Pacific coast in 1945. Features common to 

mortality episodes were elevated temperature, full maturation or spawning and high trophic 

conditions. The relationship between gonadal maturation, energy metabolism, and the 

mortalities was investigated (Koganezawa, 1974; Mori, 1979) and it was concluded that 

summer mortality in Japan was due to a “physiological disorder and metabolic disturbance 

derived by heavy gonad formation and massive spawning under high water temperature and 

eutrophication” (Koganezawa, 1974). In the late 1950s, mortalities of C. gigas were first 

noted on the west coast of USA (Glude, 1975; Cheney et al., 2000). Experimental studies 

further implicated gonadal maturation and loss of carbohydrate reserves (Perdue et al., 1981). 

Lipovsky and Chew (1972) showed experimentally that rising temperature (up to 21 °C) or 

high levels of microalgae significantly increased mortality. Different pathogens were isolated 

but none of them could explain summer mortality (Elston et al., 1987; Friedman et al., 1998, 

1991, 2005). In France, oyster production has experienced periodical mass mortalities for the 

last 20 years (Renault et al., 1994; Goulletquer et al., 1998; Soletchnik et al., 1999). Results 

have confirmed that summer mortality is the result of multiple factors including elevated 

temperature, physiological stress associated with maturation, aquaculture practices, pathogens, 

pollutants, etc… (Soletchnik et al., 1997, 2006; Goulletquer et al., 1998; Le Roux et al., 2002, 

2004; Gay et al., 2004a). Despite inter-annual and interlivestock variability, mortality of 

oysters reared on the sediment (or a few centimetres above) was significantly higher (20–

30%) than mortality of animals on tables (iron frames) (Soletchnik et al., 1999, 2003, 2005). 

The Morest project on C. gigas oyster summer mortality (2001–2005) progressively classified 

the importance of these different factors by coupling field and experimental studies (Samain 

et al., 2004a,b, Soletchnik et al., 2005). Summer mortality has also been described in cultured 

eastern oysters, C. virginica , on the northeastern coasts of the USA where a disease named 

Juvenile Oyster Disease (JOD) was reported. This disease only affects juvenile (b1 year old) 

and fast growing oysters when seawater temperature exceeds 20 °C and plankton blooms 

occur (Lee et al., 1996). JOD can cause the death of up to 90% of affected stocks within a few 

weeks (Bricelj et al., 1992; Ford and Borrero, 2001). Studies have shown a genetic basis for 

the resistance to JOD allowing the production of resistant strains (Lewis et al., 1996).  
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Increasing stress and disease tolerance of economically important species has long 

been considered feasible through selective breeding. For oysters, genetic variability is thought 

to be a major determinant in sensitivity to summer mortality (Hershberger et al., 1984). 

Selected families produced in a breeding program showed greatly improved survival both in 

the field and in elevated temperature laboratory trials (Beattie et al., 1980). However these 

selected stocks appeared thinner, smaller and had slower growth than unselected stocks. 

During the Morest project, Dégremont et al. (2005) showed that 45% of the observed variance 

in mortality in the field was due to variation among families. Such resistance, against a 

complex of factors affecting survival, is a very attractive model for understanding biological 

resistance mechanisms. Moreover, natural populations are likely to be under selective 

pressure and consequently eliminate susceptible oysters. However, these observations suggest 

a possible difference in fitness and adaptation between resistant and susceptible oysters in 

different environments. In this paper, we describe the results of divergent selection based on 

these criteria, and present a review of the main biological aspects associated with resistance or 

susceptibility, by comparison of field and experimental data from different disciplines. 

 

2. Materials and methods  

2.1. Biological material  

A first generation (G1), constituted of 44 full-sib families and 17 half-sib families, was 

produced following a hierarchical mating design in 2001 as described by Dégremont et al. 

(2005). Oysters were deployed and tested until October 2001 in Rivière d'Auray located in 

South Brittany in France (2°57′W 47°36′N). According to their mean survival performances, 

3 half-sib families (each constituted of 3 full-sib families) showing high survival and 3 

showing high mortality were selected. In a second step, the two best and two worst full-sib 

families were selected out of 3 within each half-sib family. Due to a distribution of survival of 

the tested G1 families skewed, the resulting selection intensity was stronger for the low 

selected group (S=−26.5) than for the high one (S=11.8). In all cases, oysters used as parents 

to generate the following generations were not deployed in the field but kept in a nursery and 

consequently did not experience summer mortality. In 2002, 9 and 10 batches were produced 

from the high and low selected groups respectively using in average 53 oysters (27 males and 

26 females) per G1 selected families and avoiding crossing related individuals. These 2 

selected groups of the second generation (G2) are referred to hereafter as ‘R’ and ‘S’ for 

progeny from parents respectively ‘resistant’ and ‘susceptible’ to summer mortality. All 

batches were placed in Rivière d'Auray and mortality was recorded during summer 2002. 

Additionally, G1 oysters from the 12 selected families were also crossed within each family 

(mean number of males per family=28; mean number of females per family=30) to generate 

inbred families. Oysters from these families, were used in 2003 to generate a third generation 

(G3) and was produced by crossing individuals (mean number of males and females=23) 

among families, replicating the two G2 “R” and “S” groups. G3 progenies were also tested in 

Rivière d'Auray during summer 2003.  

Control groups were produced as follows. In 2001, gametes of all parental oysters 

used to produce G1 families of each hatchery group were pooled to constitute three multi-

parental G1 groups. In 2002, crosses among those groups (i.e. avoiding any inbreeding) were 

performed to generate a G2 control group. In 2003, a G3 control group was produced by 

crossing 17 female and 10 male oysters collected from the wild in the Marennes-Oléron Bay 

(France).  
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2.2. Controlled diet experiment  

One year old G2 oysters from three families with the R phenotype and two families 

with the S phenotype were respectively mixed to form R and S stocks. These were kept at the 

IFREMER shellfish laboratory in Argenton (Finistère, France) from April to September 2003, 

in separate 700-L raceways. The R and S oysters were each divided into two groups and fed 

either 4% or 12% algal dry weight (DW) per oyster dry weight (termed as CN1 and CN3 diets 

respectively) and kept at Marennes-Oléron mean temperatures and photoperiod cycles as 

described in Enriquez-Diaz (2004). Continuous records of pH, temperature, oxygen, salinity, 

turbidity (Endress et Hauser), florescence (Seapoint) and flow rate were performed in the 

different tanks, using an adapted multi-parameter probe system called MAREL (Ifremer-

NKE). This allowed to control the stability of the different environmental conditions tested 

(Bourles, 2004) and provided in real time the necessary data to estimate R and S energy 

balance in the two trophic conditions. Tanks and oysters were cleaned daily, which allowed 

the assessment of oyster mortality on a daily basis over the whole experiment. Spawning was 

induced at the end of August by thermal shock. Oysters (n=20) were sampled monthly or 

twice a month for biochemical, and hemocyte parameters.  

 

2.3. Semi-quantitative histology  

The length of the visceral mass was measured for each oyster, then the mass was 

divided into three equal portions. Sections of 5 µm were cut at three representative body 

levels (see Enriquez-Diaz, 2004 for details). These were fixed in Davidson's solution (Shaw 

and Battle, 1957) and dehydrated in an ascending alcohol series for wax embedding. They 

were mounted and stained in Harris hematoxylin and counter-stained in eosin Y following the 

standard method proposed by Martoja and Martoja-Pierson (1967). Percentages of gonad and 

digestive areas (GA and GD, respectively) were then determined on each histological section. 

Slides were scanned with a digital scanner (hp scanjet 7400c) and the images saved in �.TIFF 

format. Tissue areas were then measured using image analysis software (Imaq Vision Builder, 

National Instruments Corp.). Gonad area percentage was estimated as pixel number from 

gonad/pixel number from total section.   

 

2.4. Measurement of ingestion, assimilation and respiration rates 

From June to August, water flowing in and out of each raceway was periodically 

sampled for phytoplankton and oxygen concentration measurements. According to the flow 

rate in each raceway, these concentrations were used to calculate ingestion (C, J h g
− 1

) and O2 

consumption rate (R, mgO2 h
−1

 g) (Enriquez-Diaz, 2004). Bio-deposits were collected 

periodically to estimate the absorption efficiency (AE, %), measured by the Conover ratio 

(Conover, 1966): AE=F−E/ [(1−E)×F], where AE=Absorption efficiency; F=Organic content 

of the food; E=Organic content of faeces. 

 

2.5. Biochemical composition  

At each sampling date, biochemical analyses were performed on 10 individual oysters 

as described in Delaporte et al. (2006). Individual animals were frozen in liquid nitrogen 

(−196 °C) and ground with a Dangoumeau homogeniser. A known amount of frozen 

homogenate was used for the different analyses. Total carbohydrate content was measured as 

described by Dubois et al. (1956). Results were expressed as percentage of oyster dry tissue 

weight.  

Adenylate Energy Charge (AEC) analyses were realised on the same powder used for 

dry weight measurement and biochemical analyses, according to Moal et al. (1989). AEC, 
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which represents an estimation of the “instantaneous” cellular energy available, was 

calculated as: AEC=(ATP+0.5 ADP)/ (ATP+ADP+ AMP), which varies between 0 and 1.  

 

2.6. Quantification of relative gene expression  

For gene expression analysis, 4 pools of 5 oysters were collected every month. The 

data reported here are from June. Labial palps were dissected and lysed in RNA extraction 

buffer (Extract-all, Eurobio). Total RNA was isolated using the Eurobio procedure, and 

polyadenylated RNAs were reverse-transcribed from 1 µg of total RNA denatured for 10 min 

at 70 °C as described in Bacca et al. (2005).  

The detection and relative quantification of hexokinase (HK), phosphoglucomutase 

(PGM), pyruvate kinase (PK), phosphoenol pyruvate kinase (PEPCK), glycogen synthase 

(GS) and glycogen phosphorylase (GP) mRNA were carried out by real time PCR using 

SYBR Green chemistry. Amplification of glucose-6- phosphate dehydrogenase cDNAs was 

performed in order to confirm the steady-state level of expression allowing an internal control 

for gene expression. Specific primers used for amplification are indicated in Table 1. Real 

time PCR was performed, as described in Bacca et al. (2005), allowing the calculation of the 

relative quantity of target mRNAs. PCR efficiencies were determined for each primer pair by 

determining the slope of standard curves obtained from serial dilution analysis of cDNA.  

 

2.7. Measurement of hemocyte parameters by flow cytometry  

Various hemocyte parameters were analysed monthly from April to September using a 

flow cytometer (FACScalibur Becton-Dickinson): hyalinocyte and granulocyte concentrations 

(cells per mL), hemocyte mortality (%), phagocytosis rate (% active hemocytes able to engulf 

more than 3 fluorescent beads in an hour at 18 °C) and hemocyte adhesive capacity in 

seawater (% adhesive cells after 3 h incubation at 18 °C in sterile seawater). Additionally, 

hyalinocyte and granulocyte production of reactive oxygen species (ROS) was evaluated after 

2 h incubation in sterile seawater (expressed in arbitrary units). For all these parameters, 

methods have been previously described (Choquet et al., 2003; Delaporte et al., 2003; 

Lambert et al., 2003; Delaporte, 2005).  

 

2.8. Hypoxia stress experiment  

Oysters from the second generation produced in 2002 were stored in the Bouin nursery 

from May 2002 (Dégremont et al., 2005). In December 2002, two 7 day experiments were 

performed successively under normoxia and hypoxia conditions using a total of 300 R oysters 

and 300 S oysters. In each experiment, half of the population was firstly acclimated 

progressively from the initial nursery temperature 13 °C to 19 °C over 6 days, with two more 

days at 19 °C, and a seawater renewal once a day. Thereafter R and S oysters were exposed in 

two tanks (1200 L each) under the same room and under the same controlled conditions at 

100% or 30% oxygen using oxygen or nitrogen respectively (temperature: 19±1 °C, salinity: 

32±0.5 psu). Ten R and ten S oysters were removed from each treatment for each sampling 

date (0, 1, 3, 7 days). Mantle, digestive gland and gills were dissected, weighed and then 

frozen in liquid nitrogen and stored at −80 °C until analyses of enzyme activities and protein 

content were made. Only gills in both oxygen concentrations are reported here in example. 

They were then homogenized in appropriate buffers for the different analyses as described in 

the publications cited below. HSP70 quantification by ELISA was made as described in 

Boutet et al. (2003). Catalase (EC 1.11.1.6) (CAT) activity was measured in the gills 

according to Greenwald (1985). Total protein concentration of the supernatant was measured 

according to Bradford (1976), using bovine serum albumin as a standard.  

 



 

 

6 

2.9. Infection challenges and hemolymph bacterial counts 

Bacterial challenge by injection was performed with strains belonging to Vibrio 

splendidus or Vibrio aestuarianus species as described previously (Gay et al., 2004b; Gay, 

2004; Labreuche et al., 2006; Le Roux et al., 2004).  

Challenges by the bath method were performed by bathing 3×30 or 3×20 oysters per 

batch in 106 cell ml
−1

 (final concentration) of V. aestuarianus (strain 02/ 041). Before this 

challenge, oysters were submitted to temperature shock (40 °C for 2 h). The experiment lasted 

11 days at 19±1 °C and was performed with R and S oysters from the field (Rivière d'Auray, 

2002) and from the two treatments (4% and 12%) of the controlled diet experiment described 

above.  

A survey of bacteria in hemolymph from healthy R and S oysters placed in the Rivière 

d'Auray site was performed in 2002. The oysters were placed in bags on a table at 70 cm 

above the sediment. Five animals per batch were sampled every month from May to 

September. Bacterial concentrations in sterilely withdrawn hemolymph were determined by 

serial ten-fold dilutions and plating onto Marine Agar.  

 

2.10. Statistical analysis  

Survival was analysed by a logistic regression using the GENMOD procedure and a 

log transformation for binomial data using SAS® software (SAS Institute Inc., 1995) 

following: 

    
where Sijk is the survival of the spat k in batch j nested in group i and εijk is the error 

term.  

Statistical analyses of growth and yield are described in Dégremont et al. (2005). 

Briefly, daily yield and growth were analysed using ANOVA and ANCOVA respectively 

performed by the GLM procedure in the SAS® software. All factors tested were treated as 

fixed factors because the selected groups and batches were a non-random sample from the 

entire population. Weight was log-transformed and the time in the field was defined as 

continuous variable in order that the interaction between time and class represents the growth 

rate.  

Enzymatic activity data were log-transformed and analysed by an ANOVA using 

Duncan's test for paired multiple comparisons with the software Statistica. 

 Multifactor analysis of variance (MANOVA) was performed for all biochemical and 

immune parameters using STATGRAPHICS Plus 5.1 (Statistical Graphs Corp.). Percentage 

data were transformed (arcsine of the square root) before MANOVA.  

 

 

3. Results  

3.1. R and S mortality, growth and yield  

Mortality, individual weight (initial and final) and yield are presented in Table 2. The 

R group showed much higher survival than the S group and the control group had 

intermediate survival (p<0.0001) for both generations in Rivière d'Auray (i.e., G2 and G3 

from 2002 and 2003 respectively). For example in 2002 for G2, summer mortality of the S 

oysters was 43%, while it was only 7% for R oysters and 24% for the unselected control. 

Similar results were found in 2003 for G3 where summer mortality of S was 73%, while it 
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was only 27% for R and 48% for the unselected control. No significant growth difference was 

found between R, S and the control in either generation (p>0.05) A significant effect was 

observed for the yield though: in G2, R had a daily yield 77% higher than S, and the control 

yield was 40% higher than S (Table 2). Similar results were found for the G3 with the highest 

daily yield in the R oysters, half as much for the control, and a quarter in the S oysters.  

In the controlled diet experiment, a mortality event was recorded. Although 

cumulative mortality remained below 5% during the first 2 months of the experiment, a rapid 

increase was seen in July (Fig. 1), where differences in mortality were shown between groups 

and treatments. Oysters batches fed the 12% diet suffered higher mortalities than those fed the 

4% diet, and S oysters had higher mortalities than R oysters. Consequently, a gradient was 

observed in cumulative mortality: 12% SN12% RN4% SN4% R, from July until the end of 

the experiment in September.  

 

3.2. Reproductive strategy  

Quantitative histology performed on R and S oysters, reared in the same field site 

(Rivière d'Auray) showed there was higher reproductive investment in S compared with R 

oysters during the first part of gametogenesis. Thereafter, a small decrease in S gonad index 

led to similar gonad volume between the groups. R oysters spawned completely in August 

when maximum temperature reached 20 °C. However, S oysters did not spawn completely 

and a progressive gamete resorption was observed in fall (Fig. 2). This observation was 

repeated in 2004, under similar thermal conditions, but not in 2003 when temperature 

increased sharply to a maximum of 22 °C and R and S oysters spawned synchronously (data 

not shown).  

Under high dietary rations (12%) in the controlled diet experiment, a large variability 

in gonad area index was observed for S oysters compared to R ones (Fig. 3). Due to this 

variability, the only trend clearly shown was an initial higher germinal investment for S 

compared with R, followed by a small decrease corresponding to partial spawning of S at the 

end of June (observed on continuous records of environmental data in the tank). With the low 

diet (4%), gonad area index increased less but in a more regular manner than with the 12% 

diet and no difference appeared between R and S oysters. In August a thermal stimulation was 

applied to induce spawning and both S and R oysters in the 4% diet spawned completely. In 

the 12% diet however, only the R oysters spawned completely. R oysters therefore showed 

the same spawning behaviour in both treatments, whereas an interaction with diet occurred for 

the S.  

3.3. Energy acquisition and expenditure  

During the dietary experiment, consumption (Fig. 4a) was similar between R and S 

oysters in both diets and increased progressively during summer from 22 to 30 J h
−1

 g
−1

 in the 

4% diet and from 60 to 85 J h
−1

 g
−1

 in the 12% diet. In contrast, AE (Fig. 4b) decreased over 

time reaching a minimum in August particularly for oysters in the 12% diet. No differences in 

AE were found between R and S oysters, except at the beginning of the measurements in June 

for oysters fed the 12% diet. As for energy use, the respiration rates (Fig. 4c) were slightly but 

significantly higher for S compared with R oysters.  

During the same period, the use of energy previously stored for gametogenesis (Total 

glucose and AEC was similar for R and S oysters whatever the diet (Fig. 4d). During the 

critical period (June) preceding the summer mortality period, levels of mRNA coding for 

hexokinase (HK), phosphoglucomutase (PGM) and phosphoenolpyruvatecarboxy kinase 

(PEPCK) were significantly lower for S oysters than for R ones (t=4.28, 4.86 and 3.20 

respectively; p<0.05) (Fig. 5).   
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3.4. Hemocyte characteristics  

R and S oyster hemocyte parameters were recorded throughout the diet experiment 

(Delaporte, 2005). Hemocyte parameters observed before and during the mortality event in 

mid-July are summarized in Table 3. Whatever the diet concentration, no difference was 

observed in percentage hemocyte mortality which was low (<5%, i.e. more than 95% cell 

viability) (ANOVA, p>0.1). The first difference between S and R was observed in April (data 

not shown) and in May where S oyster hemocytes exhibited a higher adhesive capacity than R 

ones (Kruskal–Wallis, p=0.02). Reactive oxygen species ROS were significantly higher in S 

than in R oysters in May for both hyalinocyte and granulocyte sub-populations (ANOVA, 

p=0.0001 and p=0.0036 respectively), and in June (Kruskal–Wallis, p=0.015 and p=0.035). 

After July and the major mortality event, ROS decreased and was identical for R and S 

oysters. Hyalinocyte concentration increased significantly more for S than for R oysters in 

July just before the mortality event (Kruskal–Wallis, p=0.055).   

 

3.5. Biomarker response to experimental temperature elevation and stress with 

hypoxia  

Several biomarkers were tested to investigate the difference in R and S oyster stress 

response. Surprisingly, stress protein levels (HSP70) were different between R and S oysters 

at J0, after 8 days of acclimation from 13 to 19 °C in the two independent experiments before 

normoxia and hypoxia condition ( p<0.05 and p<0.01 respectively) (Fig. 6 left). This 

difference disappeared rapidly with time in normoxia, with the progressive increase of HSP70 

from R oysters. However, in hypoxia, HSP70 from S increased to a high level in 3 and 7 days 

( p<0.01) as it stayed low and constant whatever the condition for R. Catalase activity (Fig. 6 

below) was very stable for S oysters, whatever the condition. It was also quite stable for R 

oysters, but their level was significantly higher (p<0.05).   

 

3.6. Experimental infections and field analyses  

Similar mortality levels were observed in both R and S from the field after injection of 

virulent strains of V. splendidus or V. aestuarianus into the oyster muscles (Nicolas pers. 

comm. Gay, 2004b). A significantly higher susceptibility of S compared with R oysters was 

however observed in May when animals of 15 months from Rivière d'Auray were submitted 

to a heat shock stress followed by a V. aestuarianus bath challenge. This difference was not 

observed for younger R and S spat of 4 months from the same site (Fig. 7).  

Using the same bacterial bath challenge but with animals from the controlled diet 

experiment, high mortality and differential responses were observed between R and S with the 

12% diet (p<0.05). A lower mortality was observed at 4% diet with no difference between R 

and S (Fig. 7). During May and June, bacterial concentrations in the hemolymph of apparently 

healthy oysters from Rivière d'Auray, increased to 10
5
 ml

−1
, then decreased to very low levels 

(<10
2
) after the mortality event at the end of June (Fig. 8). During the period of bacterial 

increase, concentrations tended to be higher in S oysters than in R ones, although these 

differences were not significant.  

 

4. Discussion  

4.1. Genetic effect  

R oysters demonstrated a better survival than S oysters indicating a positive response 

to selection for survival. These findings, combined with similar growth observed for the two 

selected groups and the unselected control, gave an overall higher yield for R compared with 

S, and intermediate yield in the control. Landgon et al. (2003) reported that yield is a heritable 
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trait, but without distinguishing the relative influence of survival and growth. In Rivière 

d'Auray, survival explains most of the yield variability (Dégremont et al., 2005) indicating 

that survival is the most important parameter to improve in sites showing high summer 

mortality. Such results were repeated over 3 successive generations leading to the conclusion 

that a family-based selection program could be useful to develop summer mortality resistance 

in the field at the spat stage. The high heritability for survival also suggests that only a few 

genes are involved for survival in oysters under 1 year old.  

 

4.2. Reproductive strategy  

An overview of the results comparing R and S oysters in the field and in experimental 

conditions, would suggest that a difference in reproductive strategy is a key point for 

resistance. An apparently higher germinal investment in the S oysters compared to R ones 

observed in the field was reproduced under controlled experimental conditions when oysters 

were fed the high (12%) diet. A possible genetic difference in energy allocation to 

reproduction between the two groups when faced with the different diets could explain this 

divergence. Food availability, energy balance and reproduction are strongly related in many 

organisms, such as vertebrates, through complex regulatory factors (Schneider, 2004). Among 

them, the neuropeptide Y (NPY) acts as a switch for appetite, sex and reproduction (Kalra and 

Kalra, 2004). It has also been detected in invertebrates (de Jong-Brink et al., 2001), and 

represents a possible line of investigation into genetic differences in reproductive strategy.  

Partial spawning characterized S under experimental conditions with rapid re-

maturation processes explaining the observed fluctuations in S gonad quantitative histology 

seen in the field. Complete spawning was not obtained in experimental conditions for S 

oysters fed the 12% diet under classical heat shock induction. These results confirm field 

observations as S oysters did not have one major spawning, but partial spawnings observed at 

temperatures between 19 and 21 °C about a month before the major spawning of the R oysters. 

This could represent a difference in sensitivity to temperature between the two groups because 

in 2003, when temperature in the field increased above 21 °C, both groups had complete 

synchronous spawning (data not shown). Differences in spawning strategy and spawning 

induction by biotic or abiotic factors are another way in which R and S oysters could be 

genetically compared.  

Differences in reproductive strategy could reflect differences in fitness between the S 

and R groups, but this difference would vary according to environmental conditions which 

might explain why S oysters are not always counter-selected in the wild.  

 

4.3. Reproduction intensity and energy balance  

As reported by Koganezawa (1974), Mori (1979) and Perdue et al. (1981), mortality 

was associated with high reproductive activity when glycogen reserves decreased and reached 

low points just before mortality events. Such depletion of reserves would possibly lead to 

energetic imbalances if temperature then increased. Recently, Pouvreau et al. (2003), and 

Enriquez-Diaz (2004) demonstrated, using an oyster population with a large genetic base, that 

an increase in dietary ration during the reproductive period induced a higher investment in 

gametogenesis. However, there was also a higher susceptibility to experimental infection than 

with a low diet (Gay, 2004). Lipovsky and Chew (1972) previously showed that adding high 

doses of microalgae to tank seawater significantly increased mortality. Working on different 

phenotypes, our findings are similar to these previous results, showing that in the 12% diet, S 

oysters exhibited a higher investment in gametogenesis but also a higher susceptibility to 

mortality compared with the 4% diet and R oysters. This antagonistic correlation between 

reproductive investment and survival when food is abundant was also reported by Ernande et 
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al. (2004). At the other end of the scale, when food is scarce, survival is favoured. The higher 

investment in gametogenesis in the S oysters is demonstrated through a higher respiration rate 

compared with R oysters and probably corresponds to higher biosynthetic activity. 

Assimilated energy was equivalent between S and R, except for an earlier decrease in 

absorption efficiency by S oysters occurring the month before the mortality. Respiration and 

absorption efficiency differences could have resulted in an unfavourable net energy balance in 

the S oysters. Temperature increase, spawning and/or other adverse factors could enhance this 

imbalance. Bourles (2004) showed that the respiration rates increased by a factor of nearly 2 

over 48 h during a partial spawning. Such increases in energy demand when stored glycogen 

are at a low level in summer (Maurer and Comps, 1986; Li et al., 2000; Berthelin et al., 2000) 

could weaken the organism.  

 

4.4. Energy storage and fluxes  

Possible differences in the storage and dynamics of total glucose and AEC were 

investigated. Results showed that these parameters decreased in a similar pattern and level for 

the R and S groups during the period preceding summer mortality whatever the dietary ration 

supplied.  

Total glucose and AEC described apparent energy stores but not fluxes. However, the 

first molecular results showed that some S oyster genes coding for glucose 6P (hexokinase, 

phosphoglucomutase and phosphoenolpyruvatecarboxy kinase) had significantly lower 

mRNA abundance compared with results from R oysters during the period immediately 

preceding summer mortality. This was not observed in other months (Bacca pers. comm.) and 

suggests a difference in glucose flux regulation between the two groups in the month before 

the mortality episode. This difference might not be permanent in the S oyster, but could result 

from a specific response of these oysters to an external temporal factor such as a stress or 

infection. Glucose 6P plays a major role in metabolism, especially to rapidly provide energy 

to meet cell requirements. When stored glycogen is nearly used up and energy demand 

increases with temperature and reproductive activity, a difference in glucose uptake capacity 

from food or from amino acid neoglucogenesis could be critically important for coping with 

stress or pathogens.  

 

4.5. Hemocyte characteristics in R and S groups  

Oyster hemocyte responses were investigated during the critical period preceding 

summer mortality. Bacterial species may have various, even opposing, effects on the immune 

response of bivalve hemocytes (Bramble and Anderson, 1997; Lambert and Nicolas, 1998; 

Cheng, 2000; Canesi et al., 2002; Lambert et al., 2003). It is therefore difficult to interpret the 

different hemocyte activities observed during the period preceding the mortality event or to 

conclude there was possibly a better immune response of R hemocytes compared to S. 

However, a comparison of hemocyte activities between R and S oysters from the controlled 

diet experiment, showed differences in the dynamics of several hemocyte parameters. S 

oysters had a higher adhesive capacity than R oysters as early as April and May, a higher 

level of ROS in May–June, and of hyalinocyte concentration in July just before the mortality 

episode. The most striking result regarding hemocyte activities was the large difference 

between R and S for ROS production in May and June. ROS production of S oysters was 

from 1.5 to >3 times that of R oysters depending on the diet and hemocyte type. Although 

production of ROS after activation by phorbol myristate acetate (PMA) (Nakayama, 

Maruyama, 1998; Arumugam et al., 2000; Takahashi, Mori, 2000; Goedken, De Guise, 2004) 

or during phagocytosis of zymosan particles (Bachère et al., 1991; Le Gall et al., 1991; 

Bramble and Anderson, 1998; Lambert and Nicolas, 1998; Lambert et al., 2001) has been 
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frequently used to estimate bivalve hemocyte competence in internal defence, in this study 

ROS production by hemocytes was measured after 2 h incubation in sterile seawater without 

any addition of PMA or zymosan. Our result could reflect a physiological disorder of the S 

oysters, due to a bacterial or viral infection or to an environmental stress. Since ROS are 

known to be microbicidal, they are also detrimental to oyster cells. The final increase in 

circulating hemocytes from S oysters before mortality could be linked to infection. Such 

results have been reported in bivalves infected with protozoans: Haplosporidium nelsoni 

(Ford et al., 1993), Martelia refringens (Carballal et al., 1998), Perkinsus atlanticus  (Ordas et 

al., 2000), Bonamia ostreae (Cochennec-Laureau et al., 2003); and bacteria: Vibrio sp. 

(Paillard et al., 1996), Vibrio tapetis (Oubella et al., 1996). However, other factors like 

environmental parameters (temperature, salinity, etc.) or physiological status (reproduction, 

stress, etc.) could modulate the hemocyte parameters and consequently the immune system of 

bivalves (Fisher et al., 1990; Oliver and Fisher, 1995; Fisher et al., 1996; Carballal et al., 

1998; Fisher et al., 2000; Oliver et al., 2001; Auffret et al., 2002).  

 

4.6. Effect of stress  

These differences in hemocyte parameters over time suggest that S and R oysters react 

differently to environmental stress or infection. This stimulation is detectable between one 

and a half months before mortality event when gametogenesis and temperature increased. 

Furthermore, in the field, a strong negative effect associated with sediment proximity was 

traced through a decrease in oyster Walne and Mann index 1 month before mortality occurred, 

and correlated with mortality rate (Soletchnik et al. 2005). This could be due to stress by toxic 

compounds (H2S, NH3–NH4
+
) from the sediment during this period (Knoery et al., pers. 

comm.). Several markers were tested to investigate differences in R and S oyster stress 

response. A significant difference was observed between S and R for HSP70 and catalase 

activity during an adaptation from 13 °C to 19 °C before the hypoxia stress experiment. This 

difference increased dramatically under hypoxia but did not affect R oysters. These 

observations suggest a higher susceptibility of S oysters compared to R ones to some 

uncontrolled experimental stress or specifically to hypoxia. The rapid temperature increase or 

the handling of oysters during the experiment preparation could be such an event. Increasing 

the temperature and food for 15 days in this period (December) is also a classic method to 

induce broodstock gametogenesis. This seems to be an important aspect for understanding the 

specific response of S oysters to stress as they invest more in gametogenesis than R oysters. It 

is possible that these two events had a detrimental effect on the general metabolic regulations 

(Piano et al., 2005). The very low level of gene expression coding for glucose 6P metabolism 

in S oysters 1 month before mortality in the feeding experiment can also reflect such a general 

disturbance. The difference in catalase response between the two groups could have some 

consequence in ROS detoxification processes that are generally associated to stress (Lacoste 

et al., 2002). It could explain the high level of ROS observed in the S oysters 2 months before 

mortality in the feeding experiment. It will be necessary to clarify the possible link between 

these two parameters with new experiments.  

 

4.7. Stress and gametogenesis  

Interactions between stress and reproduction described in the literature can help to 

explain the detrimental effects of temperature and gametogenesis for S oysters. Two aspects 

can be considered. On one hand, an immediate temporary increase in dopamine and 

noradrenaline was reported after acute mechanical stress on C. gigas (Lacoste et al., 2001a) 

with successive inhibition and activation of hemocyte activities (ROS production and 

phagocytosis) for 2 h before these returned to their baseline (Lacoste et al., 2002). Under 
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chronic stress, the levels of dopamine and noradrenaline appeared to be maintained above the 

baseline for a longer time (Lacoste et al., 2001b). On the other hand, spawning can be induced 

by thermal shock in bivalves (Barber and Blake, 1991) but there is conflicting evidence for 

the involvement of catecholamines in reproduction especially for spawning (Matsunami and 

Nomura, 1986; Osada et al., 1992; Smith et al., 1998). While Fong et al. (1993) showed that 

among catecholamines, dopamine and noradrenaline reduced the positive serotonine-induced 

spawning in the zebra mussel, Pani and Croll (2000) showed that dopamine concentration was 

significantly depressed in the hemolymph of scallops which had spawned compared with 

unspawned controls. These observations lead us to conclude that high dopamine levels 

associated with stress could inhibit spawning. Such inhibition was observed for the S oysters 

during gametogenesis when a sediment effect was recorded in the field, and under 

experimental conditions, when the higher diet induced more gametogenesis in S than in R 

oysters. Inversely, partial spawnings were observed for S oysters instead of a major spawning. 

This could result from rapid fluctuations in noradrenaline and dopamine levels, depending on 

stress duration and intensity, changing ratio of serotonine/dopamine or related receptors. 

Moreover the high ROS content of S oysters and the NH4
+
 from the sediment could also 

contribute to spawning induction. This interpretation would suggest that the difference in 

spawning strategy of S oyster is associated with a specific interaction between stress and 

gametogenesis leading to more partial spawning in S than in R oysters, as observed in the 

field and experimental data. New experiments will be necessary to study these events and 

mechanisms by comparison of the two groups.  

 

4.8. R and S response to experimental infection  

Experimental infections were performed either by injection or by bathing using 

pathogenic strains isolated following summer mortality events: V. splendidus (LGP 31 and 32 

Gay et al., 2004a,b; Gay, 2004) and V. aestuarianus (Labreuche et al., 2006). When bacteria 

were injected into the muscle, R and S oysters had similar mortality rates, suggesting that they 

have no specific difference in their defence capacity when cellular barriers are broken by 

injection, or that they cannot resist such a high concentration of bacteria. This method was 

therefore not suitable for studying the summer mortality mechanism.  

A difference in R and S oyster susceptibility was only reproduced under certain 

conditions using the bath method with V. aestuarianus. A stress (thermal shock) was 

necessary prior to the bacterial challenge, and enough gametogenesis had to have taken place 

to distinguish R and S reproduction intensity. This was the case when a vibrio challenge was 

performed in May on 15 month old oysters from the field (Rivière d'Auray), and in the 

controlled experiment with the high diet. The infection process was not successful for the 4 

month old spat challenged in May, probably due to their lower gametogenesis at that period, 

compared with oysters of 18 months. In the light of the discussion above, these results suggest 

that stress and high gametogenesis intensity would induce partial spawnings mostly in S and 

would facilitate pathogen colonisation in S oysters compared with R ones.  

 

4.9. Partial spawning and the infection process  

Partial spawning, which characterized S oysters, could play a role in a differential 

infection process, as pathogen transmission between moribund and uncontaminated oysters 

was favoured during spawning events in experimental conditions with a huge increase in 

vibrios associated with organic matter output at spawning (Le Roux, 2004). A survey of 

vibrios in oyster hemolymph from the field showed that in some cases there was a significant 

increase just before a mortality event (Rivière d'Auray), but only minor differences were 

observed between R and S oysters. Bacterial increase in hemolymph was also observed after 
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normal major spawning of oysters in Marennes a month after the mortality period and with no 

associated mortality. However hemolymph microflora was highly diverse in both cases 

(Nicolas, unpublished). These results demonstrated that bacteria can colonise oyster 

hemolymph in the last month before mortality at the same time as partial spawning events or 

later, during full spawning. However would only be detrimental if there were pathogenic 

strains in the microflora. In the field, preliminary observations are being undertaken to check 

the environmental microflora composition and diversity in the surrounding seawater, sediment 

and oyster palleal cavity when partial spawnings are observed. S oysters demonstrating partial 

spawning earlier than R oysters would also be infected before R oysters, and probably to a 

greater extent because vibrio number increased on gametic organic matter.  

 

5. Conclusion  

A difference in the reproductive status of R and S oysters appeared to be a key factor 

in the differential response to infection. But even if the energy decrease associated with 

reproduction intensity and temperature plays a role in summer mortality, the measured 

differences in reproduction intensity and in related respiration rates were quite small. These 

could not explain phenotypic differences between R and S except if other events, such as 

stress or spawning events, accentuate the energetic imbalance. After a temperature increase 

associated to gametogenesis S oysters appeared highly susceptible to stress compared to R 

oysters. This high sensitivity to hypoxia is interesting as the sediment effect could correspond 

to low partial hypoxia and consequently H2S diffusion and toxicity. Catalase lower and 

constant level in S group compared to R one, whatever the further stress conditions could 

explain the ROS increase in stressed S oysters. The low response to further stress would be 

the consequence of the first perturbation. Further studies are necessary to measure 

catecholamines in R and S groups and detect a possible hormonal imbalance and a resulting 

spawning depression due to stressors. For the moment our data suggest that spawning 

inhibition of S oysters results from their specific stress reaction. These results also suggest 

that the partial spawning characterizing mature S oysters could occur specifically in this group 

due to competition between such spawning inhibition and a possible spawning induction by 

high ROS levels and/or NH4
+
 from the sediment. The partial spawnings of S oysters would 

increase respiration and energetic imbalance and thus open a physical possibility for pathogen 

contamination. S oysters would be contaminated earlier than R ones when pathogens were 

present in the microflora. The final increase in hyalinocyte concentration, observed just before 

the mortality event, would have resulted from this last infection process. Perturbations in 

absorption efficiency were detected earlier in S oysters and could be associated with specific 

infection of the digestive gland affecting cellular integrity, as observed in Arcachon (Maurer 

and Comps 1986) or with a sediment effect on ingestion rate. The specific decrease in glucose 

metabolism could be a secondary event of this infection. At present we cannot exclude the 

possibility of another infection mechanism or lethal metabolic disturbance resulting from the 

regulation conflict between catecholamines and S oyster-specific control of reproduction and 

immunity, and further investigations are necessary to draw conclusions about this aspect.  

 

Towards an integrated approach: Today, molecular tools allow us to examine 

differences in gene expression and related proteins or peptides. The first steps have been 

performed to produce a SSH library (Huvet et al., 2004) and prepare macro-arrays then micro-

arrays to screen available EST expression levels in different biological situations (Boulot, pers. 

comm.). The first results provided a number of candidate genes that should be validated using 

real time PCR and tested with more experiments. The high heritability of resistance to 

summer mortality would suggest that a very limited number of genes are directly concerned 
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and this is an important factor considering the complexity of the interactions between oysters, 

their environment and opportunistic pathogens.  
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Tables and figures 

 
Table 1: Specific primers used for gene expression analysis. 

 
 

 
Table 2: R and S group mortality, initial and final individual weights and daily yields (means and standard 

deviations) observed after the summer period for the second and third generations in Rivière d'Auray 
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Table 3 : Comparison of hemocyte characteristics from oysters belonging to resistant R and susceptible S groups 

during an experimental survey (May, June and July) around the mortality event observed mid-July 
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Fig. 1. Controlled diet experiment: cumulative mortality rate percentage for R and S oysters fed the 4% (CN1) or 

12% (CN3) diet. 

 

 

 

 

 

 
Fig. 2. Semi-quantitative estimation of gonad area percentage determined by histology in R and S oysters placed 

in the Rivière d'Auray site in 2002 (means and SD, * for significant difference between groups p<0.05). 
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Fig. 3. Controlled diet experiment: semi-quantitative estimation of gonad area percentage by histology for R and 

S oysters (a) fed the 4% diet or (b) fed the 12% diet (means and SD). 
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Fig. 4. Controlled diet experiment: (a) food consumption rate (J h
−1

 g
−1

); (b) absorption efficiency percentage; (c) 

oxygen consumption (J h
−1

 g
−1

); (d right), total glucose percentage (mg glucose mg DW
−1

); (d left), Adenylic 

Energy Charge (AEC) for R and S oysters fed the 4% (CN1) or 12% (CN3) diet (means and SD). 
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Fig. 5. Quantity (relative to G6PDH mRNA) of hexokinase (HK), phosphoglucomutase (PGM), pyruvate kinase 

(PK), phosphoenolpyruvate kinase (PEPCK), glycogen synthase (GS), and glycogen phosphorylase (GP) 

mRNAs in resistant R oysters (white bar) and susceptible S oysters (black bar) in labial palps in the critical 

period (June). Comparisons were made using a t-test at the 5% level, *indicates groups that are statistically 

different. 

 

 

 
Fig. 6. (a) Heat-shock protein 70 concentration performed in the gills of R and S oysters exposed in normoxia 

(left), and hypoxia (right) (* significant difference between R and S p<0.05). (b) Catalase activity analysed in 

gills of R and S oysters exposed in normoxia (left) and hypoxia (right) (* significant difference between R and S 

p<0.05). 
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Fig. 7. Infection experiments. Left: Mortality of susceptible (S) and resistant (R) oysters in 2 generations aged 4 

and 15 months and placed in Auray site from February to May and then challenged by bathing with Vibrio 

aestuarianus. Right: Mortality of resistant (R) and susceptible (S) oysters fed with 2 levels of microalgal diet 

(4% low level; 12% high level) during 2 months and challenged by bathing with V. aestuarianus. 

 

 
Fig. 8. Occurrence of bacteria in hemolymph of healthy oysters (R: resistant group, S: susceptible group) from 

May to September in the Rivière d'Auray site (2002). In September the bacterial concentrations were below 10
2
 

cell ml
−1

). 

 

 


