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The detection of the quantum dot charge state using a quantum point contact charge detector has
opened a new exciting route for the investigation of quantum dot devices in recent years. In par-
ticular, time-resolved charge detection allowed the precise measurement of quantum dot shot noise
at sub-femtoampere current levels, and the full counting statistics of the current. The technique
can be applied to different material systems and holds promise for the future application in quan-
tum dot based quantum information processing implementations. We review recent experiments
employing this charge detection technique, including the self-interference of individual electrons and
back-action phenomena.

I. INTRODUCTION

Quantum dots are semiconductor nanostructures of
sizes ranging between a few to a few hundred nanome-
ters in which electrons, holes, or excitons are confined
so strongly in all three spatial directions that the charg-
ing energy and the quantum confinement energy are of
similar magnitude. The term quantum dot was coined1

as an extrapolation from one-dimensional confinement in
quantum wells, via two-dimensional confinement in quan-
tum wires to complete three-dimensional confinement in
quantum dots. This happened at a time when nanofab-
rication technology made such rapid progress that the
control over semiconductor nanostructure devices was
tremendously improved enabling the measurement of the
Coulomb blockade effect in electron transport experi-
ments at liquid Helium temperatures and below. Since
then the charge states2, and recently also the spin states
of quantum dots3 were heavily investigated experimen-
tally. The suggestion to use semiconductor quantum
dots as spin-qubits4 lead to the development of well-
controlled few-electron quantum dots5,6,7,8, also called
artificial atoms.

II. TIME AVERAGED CHARGE DETECTION

A. Overview

Monitoring quantum dot charging with individual elec-
trons using a quantum point contact charge detector was
introduced in 1993 by Field and coworkers9. This early
experiment was designed to detect the oscillatory elec-
trostatic potential variations of a quantum dot tuned
through Coulomb blockade oscillations. The technique
was later used in experimental designs aiming at con-
trolled dephasing of electrons in an interferometer10,
and at the measurement of the charge distribution in a
Kondo-correlated few-electron quantum dot7. In the lat-
ter experiment it was demonstrated that a charge detec-
tor allows to determine the absolute number of electrons
in a few-electron quantum dot, even if the direct current

through the dot is too small to be measured. The ap-
plication of the technique was then extended to double
quantum dot devices11,12,13, where it can serve to estab-
lish the regime, where each of the two quantum dots is oc-
cupied only with a single electron12,13. At that time, also
the theory of quantum measurement with quantum point
contact detectors was investigated14,15,16,17,18,19,20,21,22.

B. Principle of operation

The inset of Figure 1 shows a scanning force micro-
scope image of a sample fabricated on the basis of a
Ga[Al]As heterostructure containing a two-dimensional
electron gas 34 nm below the surface23. The surface has
been patterned by local anodic oxidation to form a quan-
tum dot structure, an adjacent quantum point contact,
and in-plane gates P, G1, and G2. The oxide lines, ap-
pearing bright in the image, deplete the electron gas be-
low. The structure allows to drive a current through two
separate electronic circuits as indicated by the white ar-
rows. On one hand, the quantum dot current Idot is mea-
sured. It exhibits Coulomb blockade with intermittent
resonances at gate voltages VG2 where the electron num-
ber in the dot is increased by one. On the other hand, the
conductance GQPC of the quantum point contact is mea-
sured. No direct current can flow from one circuit to the
other. Whenever a negatively charged electron is added
to the quantum dot, the conductance of the quantum
point contact is reduced by ∆GQPC as a result of the re-
pulsive Coulomb potential created in the quantum point
contact (see dashed lines). The overall slope of GQPC is
the result of direct capacitive coupling between the quan-
tum point contact and the gate G2. For a given geometry,
the best sensitivity of the charge detector is achieved,
if it is operated at the point of maximum slope in the
GQPC vs. VP characteristic at a conductance between
complete pinch-off and the first conductance plateau at
2e2/h (not shown). The charge detector interacts most
strongly with the quantum dot system, if it is situated
as close as possible to the dot, and if metallic top gates,
which screen the interaction, are either entirely avoided
(as in the structure shown in the inset of Fig. 1), or at
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FIG. 1: Operation principle of a quantum dot charge detec-
tor. The inset shows the quantum dot sample tunable with
gates G1 and G2. The charge sensor is capacitively coupled to
the dot, and tunable with gate P. The upper panel shows the
current Idot through the quantum dot exhibiting three con-
ductance resonances as a function of the voltage VG2 applied
to G2. The lower panel shows the conductance GQPC of the
quantum point contact detecting the addition of individual
electrons to the quantum dot.

least minimized in area. The signal-to-noise in the mea-
sured quantum point contact current can be maximized
by increasing the source–drain bias voltage, however, the
upper limit is given by the magnitude of the quantization
energy transverse to the current flow which is typically
of the order of 1meV in Ga[Al]As devices. As a con-
sequence, typical source–drain voltages are well below
1mV, and typical currents stay below 100 nA. The noise
in the detector circuit is usually governed by the noise of
the low-frequency current–voltage converter which, con-
nected to the highly capacitive wiring of a dilution re-
frigerator, can suffer from a considerable capacitive noise
gain.
Measuring the quantum dot current alone does not al-

low to extract the strengths of the tunneling coupling of
quantum dot states to source and drain contacts ΓS and
ΓD. In the single-level transport regime of the quantum
dot, the additional measurement of the quantum point
contact conductance gives additional information allow-
ing to extract ΓS and ΓD for ground states, and in favorite
cases even for excited states24,25.
Quantum point contact charge detectors have been em-

ployed for the measurement of charge rearrangements
within a quantum dot at high magnetic fields and con-
stant electron number, where spatially separate edge
channels, so-called Landau shells, exist26. Different Lan-
dau shells couple with different capacitance to the charge
detector and can thereby be distinguished by the detec-
tor.
Naturally, a quantum point contact charge detector is

also sensitive to undesirable charging of impurity sites in
the vicinity of the quantum dot system of interest. Such
charge rearrangements are known to spoil conventional
conductance measurements of a quantum dot. Using a
dot–quantum point contact arrangement in a scanning
gate experiment, such impurity centers could be localized
in real space, and their density could be estimated27.
The principle of charge detection is not limited to

the Ga[Al]As material system. The technique has, for
example, been successfully applied to quantum dots in
InAs nanowires29, in Si/SiGe30, and to quantum dots in
graphene31. In the graphene experiment, the constric-
tion used for charge detection does, however, not ex-
hibit conductance quantization, but the strong poten-
tial fluctuations in the constriction rather lead to lo-
calization of charge carriers which manifests itself in
conductance resonances measured as a function of the
plunger gate voltage. The steep slopes of these reso-
nances gives excellent charge sensitivity, similar to charge
detection experiments with quantum dots32 or single-
electron transistors33,34.

III. TIME-RESOLVED CHARGE DETECTION

First time-resolved charge detection measurements
on quantum dots were not performed with quantum
point contact detectors, but with radio-frequency single-
electron transistors35,36,37. Time-resolved measurements
with quantum point contact charge detectors started
with tuning up the bandwidth of conventional low-
frequency setups23. As mentioned above, for a given
cryostat wiring, the capacitive noise gain of the current–
voltage amplifier limits the achievable bandwidth. Using
such setups, bandwidths of up to 30–40kHz have been re-
ported in the literature38,39, limiting the time resolution
to the order of ten microseconds.
In measurements with time-independent gate voltages,

the charge detector witnesses electrons tunneling into and
out of the quantum dot in real time. This manifests
itself in random switching of the detector conductance
between two distinct levels as shown in Fig. 2(a). When
the conductance switches downwards, an electron has en-
tered the dot, if it switches upwards, an electron has left
the dot. In most cases the analysis assumes that the
quantum dot is in the single-level transport regime. In
this case, the time-separations between tunneling-in and
tunneling-out events follow the exponential decay laws

pin/out(t)dt = Γin/oute
−Γin/outtdt
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FIG. 2: (a) Time resolved signal of a quantum point contact
detector measured close to a conductance resonance of the
quantum dot. The signal switches randomly by ∆GQPC be-
tween two distinct levels. (b) Schematic energy diagram of
the quantum dot showing the situation Vdot = 0. (c) The
same for Vdot ≫ kBT .

with characteristic tunneling-in an tunneling-out rates
Γin/out. This decay law has been confirmed

experimentally23,39,42. The autocorrelation function of
such a two-level random signal has been calculated by
Machlup in 195440. The interpretation of the rates Γin

and Γout depends on the source–drain bias voltage Vdot

applied to the quantum dot.
If Vdot = 0 [see Fig. 2(b)], the charge detector delivers

the signal of the equilibrium fluctuations (thermal noise)
of charge carriers23,41. In this case, Γin = Γf(∆E/kBT ),
and Γout = Γ[1− f(∆E/kBT )], with Γ = ΓS + ΓD being
the total dot–lead coupling, f(x) = [exp(x) + 1]−1 the
Fermi–Dirac distribution function, ∆E the difference be-
tween the electrochemical potential in the leads and that
in the dot, and T the electron temperature in the leads.
A shortcoming of the charge detection technique applied
in this way is that the detector is insensitive to whether
the tunneling electron originated from the source or from
the drain contact. Tunneling rates can be individually
determined, if the respective other barrier is deliberately
pinched off. In addition, this measurement delivers the
electron temperature T of the leads, if the lever arm of
the gate is known from Coulomb blockade diamond mea-
surements. It is straightforward to see how the analysis
will change, if the involved dot level is spin degenerate39.
In contrast, if Vdot ≫ kBT , but only a single quan-

tum state is in the bias window [see Fig. 2(c)], the rates
Γin/out obtained from a time trace can be interpreted di-

rectly as the tunneling rates ΓS and ΓD
39,41. In this case,

the electron tunneling into the dot will always originate
from the source contact, and it will always tunnel out
to the drain. A detailed analysis of the energy depen-
dence of tunneling rates was performed by MacLean and

FIG. 3: Distribution pe(t) of times needed for one electron to
traverse the quantum dot. Symbols are measured data points,
solid lines are predictions of theory. The two distributions
corresponding to different coupling asymmetries a (see text)
are plotted on different vertical scales for clarity.

coworkers42. The case of more than a single energy level
in the bias window was investigated by Gustavsson and
coworkers in Ref. 41.
On the next level, correlations between subsequent

tunneling-in and tunneling-out events at Vdot ≫ kBT can
be considered. For example, if we assume that such pairs
of subsequent in/out events (in the following we call the
pair event for simplicity) are statistically independent,
we find the statistical distribution

pe(t)dt = dt

∫ t

0

dt′pin(t
′)pout(t− t′)

=
ΓinΓout

Γin − Γout

(

e−Γint − e−Γoutt
)

dt.

Figure 3 shows measurements of this distribution func-
tion for two different coupling asymmetries a = (Γin −
Γout)/(Γin + Γout). For almost symmetric coupling (a =
0.07) of the dot to the source and drain lead, there is
a pronounced suppression of the distribution for small
times. This is a direct consequence of the correlation
between subsequently tunneling electrons brought about
by the Coulomb blockade effect. The second electron has
to wait with tunneling in until the first electron has tun-
neled out of the dot. This suppression becomes narrower
in time for strongly asymmetric coupling (a = 0.90), be-
cause the system approaches the limit of a single barrier
device in which no Coulomb blockade exists.
Counting electrons traversing quantum dots under the

condition Vdot ≫ kBT is a direct way to measure the elec-
trical current. While the method finds its upper bound at
the few femtoampere level as a result of the finite band-
width of the detector circuit, the lower bound of measur-
able currents is essentially given by the stability of the
sample (which can be more than months for a good one),
and by the patience of the observer. The acuracy of the
current measurement scales with the number of counts N
as 1/

√
N . As a result, attoampere current levels can be
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measured with a one percent accuracy within one hour,
0.2 aA within one day.

A different class of time-resolved charge detection ex-
periments that we will not treat in detail here, are pulsed
gate measurements. The time-resolution of the quantum
point contact charge detector allows to realize a so-called
single-shot charge readout of a quantum dot qubit38. Us-
ing this technique, the spin of an electron injected into a
quantum dot can be measured (spin-to-charge conversion
technique). In addition these experiments give access to
the spin relaxation time T1 in quantum dots. The relax-
ation times between Zeeman-split levels of a one-electron
quantum dot were measured to be of the order of 1ms at a
magnetic field of 8T38. In the most recent experiments43

it was found that T1 is dominated by spin–orbit mediated
coupling to phonons, a mechanism that can be modified
by gate voltages that influence the orbital confinement
of the electron. The values of T1 could be changed by
more than one order of magnitude with maximum val-
ues of more than 1 s. In Ref. 44 singlet–triplet relaxation
times of several milliseconds were found in a two-electron
quantum dot using the same technique. A theoretical
discussion of the single-shot readout method is given in
Ref. 45.

Time-resolved charge detection techniques have also
been applied to other material systems, such as quantum
dots in InAs nanowires46, and they have been extended
to double quantum dot systems47,48,49. Double quantum
dots are of particular interest for several reasons that will
become more transparent below. At this point we high-
light the fact that they allow bidirectional electron count-
ing, i.e., the direction of electron tunneling can be deter-
mined on the single electron level47. Using two quantum
point contact charge detectors coupled to a double quan-
tum dot, cross correlation techniques can be applied to
significantly improve the signal-to-noise ratio for charge
detection50. This allows to reduce the invasiveness of the
detection process, and may help to increase the available
detection bandwidth in setups that are noise-limited.

Time-resolved charge detection can be made consider-
ably faster by using amplifier setups with larger band-
widths. The low-frequency setups described above suf-
fer from the unavoidable cable capacitances at the input
of the current–voltage amplifier. Significant bandwidth
increase to 1MHz has been achieved with a cryogenic
preamplifier51 operating at a temperature of 1K52. This
allows mounting the amplifier closer to the sample, thus
reducing the capacitive load, and the low temperature re-
duces the amplifier noise. The dissipated amplifier power
of 30µW can easily be cooled away. However, an even
stronger increase in measurement bandwidth has been
demonstrated with radio-frequency (RF) quantum point
contact setups53,54,55,56. Within this approach, the quan-
tum point contact impedance, which is about 25 kΩ at
the operating point, is matched to the 50Ω impedance of
the coaxial cables with a suitable L−C matching circuit.
Resistance changes of the quantum point contact are seen
as changes in the reflected RF-power. The reflected signal

is split from the incoming wave by a directional coupler,
and can then be amplified with a commercial cryogenic
RF-amplifier. Müller and coworkers reported a charge
detection bandwidth of 10MHz corresponding to a time
resolution of 50ns limited by their demodulation setup
at a carrier frequency of about 200MHz. Later, twice
this value was reported in Ref. 55 for a carrier frequency
around 300MHz. In the ultimate limit, the noise per-
formance of the quantum point contact charge detec-
tor is limited by its own shot noise, as demonstrated
in Ref. 56. In the following we estimate the maximum
bandwidth for a shot noise limited quantum point con-
tact charge detector: the shot noise itself is given by
∆In =

√

2eIQPC∆f . The amplitude of the switching

signal is estimated to be ∆IS ≈ sIQPC ≈ sVQPCe
2/h

with s ≈ 3% being a reasonable estimate for the rela-
tive change of the quantum point contact conductance,
and VQPC ≈ 1mV. Counting is possible for ∆In ≪ ∆IS,
giving a maximum bandwidth well below 100MHz. It
seems therefore that Ref.56 was already reasonably close
to the maximum bandwidth. Room for improvement is,
of course, in the coupling strength between quantum dot
and detector. In systems such as InAs nanowire quan-
tum dots read out with a GaAs charge detector in an
underlying two-dimensional electron gas, the s can reach
values well above 50%46.

IV. SHOT NOISE AND FULL COUNTING

STATISTICS

An alternative way of analyzing time-resolved single-
electron tunneling traces such as that shown in Fig. 2(a)
is called full counting statistics. In order to do this anal-
ysis, a time trace of length T is divided into a reason-
ably large number of shorter segments of equal length
∆T . A histogram is then plotted for the distribution of
the number N of events found in the segments (an event
is, for example, a down-switch of GQPC). An example
of such a histogram, similar to those reported by Gus-
tavsson in Ref. 39 is shown in Fig. 4. The mean value
(first moment) 〈N〉 calculated with this histogram gives
the mean current Idot = e〈N〉/∆T through the quantum
dot. However, the width of the histogram, characterized
by its second central moment (variance) 〈(N−〈N〉)2〉 is a
measure for the fluctuations 〈∆I2〉 = e2〈(N−〈N〉)2〉/∆T
of the quantum dot current, meaning its shot noise. The
shot noise for quantum dots has been calculated in Ref.57

and later discussed in the framework of full counting
statistics58. While the shot noise of a single barrier
device is expected to follow poissonian statistics with
〈N〉 = 〈(N − 〈N〉)2〉 (the mean equals the variance), for
quantum dots the shot noise is expected to be suppressed
as a result of the Coulomb interaction-mediated correla-
tions between tunneling electrons [see also the suppres-
sion of the distribution in Fig. 3 at short times]. From
Fig. 4 a variance 〈(N − 〈N〉)2〉 ≈ 3 can be estimated,
compared to a mean 〈N〉 ≈ 6, implying a reduction of
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FIG. 4: Histogram of the full counting statistics of a quantum
dot. The solid line is the theoretical prediction for the given
rates Γin and Γout.

the width by a factor F = 1/2 compared to the pois-
sonian case. The quantity F is called the Fano factor.
Given the histogram shown in Fig. 4, even higher central
moments, such as the skewness (3rd central moment) or
the kurtosis (4th central moment) can be experimentally
determined. In Ref. 59 it was possible to determine all
cumulants up to the fifths reliably from the experiment.
In order to achieve this accuracy, systematic corrections
due to the finite bandwidth of the detector circuit had to
be taken into account60.
The full counting statistics can be found theoretically

from a master equation approach. For example, in the
single-level transport regime, the quantum dot system
may be described by a two-state system with state 0
denoting zero, state 1 denoting one excess electron in
the dot. We measure the current by counting the num-
ber N of electrons that transmit through the dot–drain
barrier. We consider the case Vdot ≫ kBT as depicted
in Fig. 2(c), such that tunneling-in is only possible from
the source (rate ΓS), and tunneling-out only through the
drain (rate ΓD). The master equation is then given by

dp0(t|N)/dt = −ΓSp0(t|N) + ΓDp1(t|N − 1)

dp1(t|N)/dt = −ΓDp1(t|N) + ΓSp0(t|N)

Here, pn(t|N) is the probability that at time t, the sys-
tem is found in state n, given that N electrons have been
transferred into the drain lead since t = 0. At t = 0
we have the initial conditions p0(t = 0|N = 0) = 1,
and pn(t = 0|N 6= 0) = 0. The rate equation can be
solved using the discrete Fourier transform pn(t|χ) =
∑

N pn(t|N) exp(iNχ), where χ is called the counting
field. One finds the linear differential equation

d

dt

(

p0(t|χ)
p1(t|χ)

)

=

(

−ΓS ΓDe
iχ

ΓS −ΓD

)(

p0(t|χ)
p1(t|χ)

)

,

which has the general solution pn(t|χ) =
∑1

j=0 cnj exp[λj(χ)t] with the λj(χ) being the eigenval-
ues of the coefficient matrix. For times t large compared

to the correlation time (ΓS + ΓD)
−140, the solution is

governed by the eigenvalue with the smallest negative
real part (say, λ0) giving the slowest decay. The full
counting statistics, i.e., the probability that N electrons
have been transferred through the dot after time ∆T is
given by

PN (∆T ) =

1
∑

n=0

pn(∆T |N) =
1

2π

∫

dχe−iNχ
1

∑

n=0

pn(∆T |χ).

The logarithm of its Fourier transform is the cumulant
generating function S(χ), which has the large ∆T limit
S∆T (χ) = λ0(χ)∆T . The mean current is given by the
first cumulant 〈N〉 = −idS/dχ|χ=0, the shot noise by the
second cumulant 〈(N − 〈N〉)2〉 = −d2S/dχ2|χ=0. The
resulting full counting statistics, which has been worked
out by Bagrets and Nazarov58, is plotted as a solid line
in Fig. 4, and shows excellent agreement with the mea-
sured histogram. Finite bandwidth corrections60 have
been taken into account. More details about the anal-
ysis of full counting statistics data can be found in the
review61, and in the overview article62. A theoretical dis-
cussion of the joint current probability distribution de-
scribing the connection between the acquisition of infor-
mation by detection and the uncertainty in the system
can be found in Ref. 63.

V. SELF-INTERFERENCE OF INDIVIDUAL

ELECTRONS DETECTED BY ELECTRON

COUNTING

We continue by discussing an experiment employ-
ing electron counting for the measurement of the self-
interference of individual electrons64,65. These measure-
ments may be seen as a solid-state implementation of
the double-slit interference experiment66 conducted with
individual electrons by Tonomura in 198967. The basic
idea in these single-electron interference experiments is
the appearance of the interference pattern as a result of
building up the statistics of a large number of detection
events.
Figure 5(a) shows the sample used for this experiment.

It is based on a shallow two-dimensional electron gas em-
bedded in a Ga[Al]As heterostructure patterned by local
anodic oxidation. The structure consists of two quan-
tum dots as indicated by the dashed lines which are con-
nected in series between a source (S) and drain (D) con-
tact. In contrast to conventional double quantum dot
systems there are two tunneling barriers connecting dot 1
and 2, thereby allowing two spatially separate, parallel
current paths that we denote the upper and lower path
in the following. These two paths, together with the two
dots, enclose an area through which a magnetic flux can
be threaded in the experiment by applying an external
magnetic field normal to the plane of the electron gas.
The quantum point contact charge detector is capaci-
tively coupled to the double quantum dot system, and its
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FIG. 5: (a) Scanning force microscope image of the double
quantum dot with integrated charge read-out used for the
self-interference experiment. (b) Schematic energy diagram
of the double quantum dot system in the situation in which
interference can be observed. The dashed arrows indicate
the cotunneling-in process. Black and gray dashed arrows
indicate the two alternative paths that enclose a magnetic
flux Φ = BA used to tune their relative phase.

conductance GQPC is read out via its own independent
circuit. In-plane gates L, R, T, allow to tune the double
dot system, and the gate G1 is used to set the operating
point of the charge detector quantum point contact.

Using these gates, the system is carefully tuned into
the state indicated schematically by the energy diagram
in Fig. 5(b). The strengths of the tunneling coupling to
source and drain, ΓS and ΓD, were determined from mea-
surements of the thermal noise and tuned to be below
15 kHz, well below the bandwidth of the detector circuit.
The tunneling coupling Γc ∝ |tc1+ tc2|2 between the two
dots was measured to be a few gigahertz, i.e., beyond the
time-resolution of the detector circuit. A finite source–
drain bias voltage VDQD applied to the double quantum
dot system ensured eVDQD ≫ kBT . Quantum dot 1 is
tuned to a nonresonant situation in which an electron can
traverse only by second order cotunneling processes from
the source contact into quantum dot 2. In this dot the
electron stays for a sufficiently long time to be detected.
Then it will leave dot 2 into the drain contact.

It is important to realize that the amplitude for the
cotunneling process from the source contact into dot 2 is
the sum of two amplitudes of the spatially separate up-
per and lower paths. In the presence of a magnetic field
B within the area A enclosed by the two paths and the
two quantum dots, the relative phase of these two am-
plitudes can be tuned, such that the cotunneling-in rate
Γin has the oscillatory Aharonov–Bohm contribution68

Γin ∝ cos(eBA/~). The most crucial condition for the
interference experiment to work is that the tunneling cou-
pling tc1 ≈ tc2, a condition which turned out to be hard to
achieve experimentally. The tunneling-in rate Γin can be
determined from detector time traces like that shown in
Fig. 2(a) on the basis of single-electron tunneling events.
In contrast, the tunneling-out rate Γout = ΓD which can
similarly be determined is independent of B.

With the oscillatory modulation of Γin with magnetic
field, the full counting statistics PN (∆T ) becomes an os-
cillatory function of magnetic field. This implies that the

FIG. 6: Number of electrons that have traversed the double
quantum dot interferometer (counts) measured at different
magnetic fields B. Time traces of different lengths ∆T were
used as the basis for the plotted histograms in (a), (b), and
(c). In (c) it is indicated that adjacent interference maxima
have a spacing one flux quantum h/e per area A enclosed by
the interfering paths.

counting experiment contains also the Aharonov–Bohm
effect in the shot noise of the current through the quan-
tum dot. In Fig. 6 we show the number of electrons
traversing the double dot system (counts) within a given
time span ∆T at different magnetic fields B. It can be
seen in Fig. 6(a) that after short times, only a random
pattern of counts is visible. Waiting ten times longer,
in (b) the interference pattern can be seen to be still
masked by significant statistical fluctuations. After a
time of ∆T = 1 s, the interference pattern is fully de-
veloped and statistical fluctuations are relatively weak.

Comparing our experiment with the interference ex-
periment of Tonomura and coworkers67, there are im-
portant differences. In our experiment, the electrons are
guided by the potential landscape created by sample fab-
rication along predefined paths, whereas Tonomura used
an open geometry where the electrons were only slightly
deflected by a biprism. Furthermore, in our experiment
the observation of the electron’s arrival cannot be made
with a position-sensitive electron counting system. Here
we rather use the magnetic field via the Aharonov–Bohm
effect68 to change the relative phase of paths that are
fixed in space, and detect the arriving electrons at a fixed
location (dot 2). As a consequence of the generalized
Onsager symmetry relations in mesoscopic transport69

the observed Aharonov–Bohm oscillations are necessar-
ily even in magnetic field. In contrast to the original
thought experiment by Aharonov and Bohm, but similar
to previous Aharonov–Bohm interference experiments in
metallic rings70 and semiconductor nanostructures71,72,
the magnetic field is not excluded from the spatial region
of the electron’s paths. However, Lorentz force effects
have no significant influence, as long as the classical elec-
tronic cyclotron diameter is large compared to the area
enclosed by the flux.

The visibility of the oscillations observed in Fig. 6(c) is
close to 100%. This implies that indeed tc1 = tc2 is met
very well in the experiment, but also decoherence effects
are not significant. We argue that this is due to the fact
that the detector is not sensitive to the path that the
electron took on the time scale of the fast cotunneling
process64. This is in contrast to controlled dephasing
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experiments that use a charge detector to obtain ‘which
path’ information10,73,74,75.
Finally we remark, that the sample used for this study

of electron interference was used in the same regime to
investigate cotunneling processes by counting in detail48.
It was possible to demonstrate the experimental equiva-
lence of cotunneling and sequential tunneling into molec-
ular states. In addition, the shot noise in the cotunneling
current could be resolved.

VI. BACK-ACTION

It is a property of all quantum measurements that the
detector unavoidably disturbs the measured system, a
phenomenon called detector back-action. An equivalent
way of looking at the same thing is to exchange the role of
the measured system and the detector. We therefore ask
the question, in which way the quantum dot (or double
quantum dot) can detect electrons traversing the quan-
tum point contact. It has been established in previous
experiments that the shot noise of the quantum point
contact current can couple into a system with coherent
dynamics and act as a source for decoherence10,73,75.
We have performed complementary experiments using

double quantum dot devices as a frequency selective de-
tector to observe the shot noise in the quantum point
contact76. The principle of the double dot detector is
shown in Fig. 7(a). No source–drain bias voltage is ap-
plied to the quantum dot. As a consequence, there is
no net electron flow between the two contacts in ther-
modynamic equilibrium. The double dot may contain N
electrons in dot 1 and M electrons in dot 2. The lev-
els of the two dots are aligned in such a way that the
(N,M) charge state is the ground state of the system.
The (N − 1,M + 1) excited state belonging to the same
total electron number in the double dot system is sepa-
rated by an energy ∆ which is larger than the thermal
energy kBT . In this situation the double quantum dot
is susceptible to energy quanta such as photons with an
energy hν = ∆. Absorbing such an energy quantum
excites the system into the state (N − 1,M + 1), from
which there are two decay routes: on one hand, an energy
quantum with energy hν = ∆ can be reemitted bringing
the system back into the ground state. On the other
hand, the system can decay into the state (N − 1,M),
if one electron tunnels from dot 2 into the drain lead
[see Fig. 7(a)]. In this case, another tunneling event will
most likely follow, where an electron enters dot 1 from the
source contact. This sequence of processes corresponds
to the net transfer of a single electron from source to
drain by virtue of the absorption of an energy quantum.
This means that energy quanta absorbed by the quan-
tum dot in this configuration can drive a net current
at zero applied source–drain bias voltage. It turns out
that energy quanta from a thermal bath, such as a pho-
ton bath, or the phonon bath of the host crystal, cannot
drive this process, if these baths are in thermodynamic

FIG. 7: (a) Schematic energy diagram showing the state of
the double quantum dot in which it can be used to detect in-
cident energy quanta with spectral resolution. (b) Number of
electrons leaving the double dot system per second measured
as a function of ∆ and the quantum point contact source–
drain voltage VQPC.

equilibrium with the electronic system in the source- and
drain leads. However, it has been shown that this process
can be driven, if the phonon bath temperature exceeds
the temperature of the electron system in the contacts77,
or if nonequilibrium photons originating from the quan-
tum point contact shot noise impinge onto the double
quantum dot system76. If the energy separation ∆ of the
two involved states is changed, the frequency of the ab-
sorbed quanta can be changed. In principle, this allows
the measurement of the spectral density of the incident
energy quanta.

The particular experiments that were performed along
these lines differ in principle. The experiment of Ref. 76

uses the same quantum point contact detector that cre-
ates the shot noise to detect the tunneling of electrons
from the double dot system into the leads in a time-
resolved fashion. This detection method does not mea-
sure the induced double quantum dot current, but merely
monitors charge leaving any of the dots into any of the
two contacts. The result of this experiment is shown in
Fig. 7(b). We first consider a cross section through the
data along constant VQPC ≈ 300µV. The count rate is
maximum at ∆ = 0 and decays, if |∆| is made larger.
Along a cross section at constant ∆ ≈ 100µeV, we no-
tice that counts are only observed, if |eVQPC| > ∆. This
is compatible with the idea that the maximum energy
a single electron can dissipate when traversing the quan-
tum point contact is |eVQPC|. Only if this energy exceeds
∆, the double quantum dot can be excited. The dashed
line following the onset of the signal therefore gives the
avoided crossing of the two involved quantum dot energy
levels brought about by the finite tunneling coupling Γc of
these states. The smallest separation at ∆ = 0 is twice
the symmetric–antisymmetric energy splitting δSAS. A
detailed analysis of the data76 shows good agreement
with a circuit model by Aguado and Kouwenhoven78 that
couples quantum point contact shot noise to the dou-
ble quantum dot system. Later experiments performed
on a single quantum dot defined in an InAs nanowire
strongly coupled to a quantum point contact in an un-
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derlying Ga[Al]As heterstructure two-dimensional elec-
tron gas, confirmed the model of shot noise coupling79.
The experiment in Ref. 77, however, measures the time

averaged double quantum dot current directly. In this ex-
periment, the quantum point contact charge detector was
only weakly Coulomb-coupled to the double quantum dot
such that time-resolved charge detection was not possi-
ble. Furthermore the quantum point contact was oper-
ated on the first conductance plateau at GQPC = 2e2/h,
where shot noise is suppressed. Therefore, the current
shown in Fig. 8 driven through the double quantum dot
device at zero applied source–drain bias voltage cannot
be explained by coupling to the shot noise of the quantum
point contact. However, the experiment makes clear that
the observed current is directly related to the strength of
the quantum point contact current IQPC. Similar ex-
periments have been conducted in Ref.80 and interpreted
in terms of a double dot quantum ratchet driven by the
quantum point contact.
In contrast to the experiment described before, where

a maximum number of counts was detected at ∆ = 0, the
measured IDQD is zero at ∆ = 0 and shows a pronounced
maximum at finite detuning ∆. If ∆ is very small, the
avoided crossing of the two energy levels brought about
by the finite coupling Γc between the two dots leads to
a situation where electrons tend to tunnel with similar
probability into the source and into the drain contact.
This situation results in zero current. In contrast, large
positive ∆ leads to a current flowing preferentially from
source to drain, whereas large negative ∆ leads to a cur-
rent in the opposite direction explaining the observed
sign change of IDQD with ∆.
It turns out that the data shown in Fig. 8 is in accor-

dance with a model77 that takes coupling of the double
quantum dot to a phonon bath into account. For sim-
plicity, the occupation of states in the phonon bath is as-
sumed to be described by the equilibrium Bose–Einstein
distribution function at a temperature Tph. However, it
is implicitly assumed that Tph can be increased by driv-
ing a higher current through the quantum point contact.
The double quantum dot absorbs phonons from the bath
at the particular energy ∆. The high energy cut-off of
IDQD seen in Fig. 8 is the result of the decreasing phonon
occupation at higher energies. The solid line in Fig. 8
shows the result of the model calculation where Tph was
taken as the fitting parameter.

VII. CONCLUDING REMARKS

Within the past five years the use of quantum point
contact charge detectors in research related to semicon-
ductor nanostructures has seen an unprecedented rise in
popularity. Experiments with these detectors have given
completely new insights into the physics of quantum dots,
and they have allowed to access parameter regimes that

were inaccessible before. They can be easily integrated
on chip, are weakly invasive, and allow to explore even

FIG. 8: Current driven through a double quantum dot at zero
source–drain bias voltage as a result of heating the phonon
bath with a quantum point contact. The solid curve is the re-
sult of a model calculation with the phonon bath temperature
being the only fitting parameter.

the spin degree of freedom via spin-to-charge conversion.
Currently quantum point contact charge detectors are
state-of-the-art devices for qubit research. On the basis
of these developments we are confident to anticipate the
development of further fascinating experiments leading
to intriguing results and enlightening insights into the
world of quantum dots in particular, and nanostructures
in general.
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