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Abstract: Workflow management systems allow the users to develop complex applications at a higher 
level, by orchestrating functional components without handling the implementation details. Although a 
wide range of workflow engines are developed in enterprise environments, the open source engines 
available for scientific applications lack some functionalities or are too difficult to use for non-specialists. 
Our purpose is to develop a workflow management platform for distributed systems, that will provide 
features like an intuitive way to describe workflows, efficient data handling mechanisms and flexible fault 
tolerance support. We introduce here an architectural model for the workflow platform, based on the 
ActiveBPEL workflow engine, which we propose to augment with an additional set of components.  

 

1. INTRODUCTION 

Distributed applications, both in the academic and enterprise 
environments, are becoming more and more complex, 
requiring the orchestration of multiple services or programs 
into workflows. Workflow systems are built in order to assist 
the user in developing complex applications at a higher level, 
by organizing the components and specifying the 
dependencies among them.  

Nowadays, commercial workflow engines provide a wide 
range of features suitable for enterprise applications. For 
scientific applications, even though a number of open source 
workflow systems are available, many of them are too 
difficult to use for non-specialists (some of them lack a 
graphical interface), or are restricted to a specific type of 
applications or on a single middleware platform; these 
problems have been impeding the adoption of workflow-
based solutions in the scientific community. 

Our purpose is to develop a workflow management platform 
for distributed systems, targeted to scientific applications, 
that will provide solutions for the following aspects:  

• an intuitive way to describe workflows, based on 
ontologies specific to the application domains, 
allowing the user to work with abstract components  

• flexible workflow structure, allowing the 
orchestration of services and also of plain executable 
programs efficient mechanisms for data handling, as 
scientific applications 

• usually produce significant amounts of data; the 
mechanisms will be based on the data replication 
services provided by the underlying middleware 

• comprehensive fault tolerance support, with 
configurable policies; as semantics and side effects 
vary from one application to another, we believe that 

the users should be able to select from multiple fault 
tolerance approaches the one that is the most 
suitable for a particular workflow 

The workflow management platform will have three main 
components: a high-level module that will provide a user 
interface for defining abstract workflow, and that will 
manage domain-specific ontologies; a middle-level module 
that will have the role of a workflow engine; and a low-level 
module that will be in charge of scheduling the workflow 
activities and services onto the distributed system's physical 
resources, relying upon the available middleware. 

Our focus in this work is on the middle-level module, the 
workflow engine. We have started by studying the facilities 
offered by the most commonly used workflow engines for 
scientific applications, from the point of view of the 
requirements presented above. Although some workflow 
engines provide advanced features for abstract workflows, 
data management or fault tolerance, they lack functionality in 
what concerns the other aspects. As a consequence, we 
consider the approach of starting from an existing open 
source workflow engine and implementing additional 
functions that are required for the purposes of our project. 
The engine we have studied is ActiveBPEL, one of the most 
widely used engines for WS-BPEL. We introduce here an 
architectural model of the modified ActiveBPEL engine,  
augmented with a new set of modules that will implement the 
additional functions. 

The following part of this paper, Section 2, presents the 
related work in the field of workflow engines using Grids. 
Section 3 introduces the state-of-the-art data management 
functionalities in the existing workflow engines. In Section 4 
we present the most commonly used fault tolerance 
mechanisms and our approach for this aspect. Section 5 
introduces our proposed extensions to the ActiveBPEL 
architecture, and in Section 6 we summarize the conclusions 
of this study and the future work directions. 



 
 

     

 

2. RELATED WORK 

In this section we present a summary about interoperability 
between some of the workflow engines most used in 
scientific applications and middleware platforms. Condor 
DAGMan (Thain et.al., 2005) submits jobs directly to the 
Condor scheduler; it doesn’t offer support for other 
middleware. 

Karajan (Laszewski et.al., 2005) provides interoperability 
through the use of ”providers” that allow middleware 
selection at runtime: GT2, GT3, GT4 or Condor. It has also 
support for SSH protocol. Authentication is done with either 
user certificates (personal mode) or host certificates (shared 
mode). 

In Taverna (Hull et.al., 2006) and ActiveBPEL workflow are 
seen as web services. The difficulty of implementation is 
hidden, users are presented a high-level interface. 
Interoperability for Taverna is limited to MyGrid, while 
ActiveBPEL can submit jobs to any middleware offering web 
services. 

Triana (Taylor et.al., 2006) is middleware agnostic; supports 
P2P, web services and Grids. GridLab GAT (Grid 
Application Toolkit), Triana’s API for accessing Grid 
services, is written in such a way that new modules can be 
added, to achieve interoperability with different middleware 
platforms. Triana jobs do not have web interfaces, 
communication is done only through the input/output files, 
and submission is performed by a resource manager 
(GRAM1 or GRMS2). Triana can generate files entry for 
Pegasus / Condor.  

Pegasus (Singh et. al., 2005) sends its workflow to Condor 
DAGMAN / CondorG, in order to submit remote jobs. 
Pegasus users don’t access DAGMan directly, except for 
optimization and troubleshooting.  

Swift (Zhao et.al., 2007) uses Globus Toolkit to submit jobs 
in Grid. For authentication and authorization on remote sites, 
it uses Grid Security Infrastructure (GSI). 

P-GRADE Grid portal (Kertesz et.al, 2006) hides the details 
of low-level access to Grid resources, offering an interface 
which can be used with Globus Toolkit 2, Globus Toolkit 4, 
LCG-2 and gLite. Access to various Grids can also be done 
simultaneously, if the user certificates for those Grids are 
valid. 

Many workflow engines work over a single type of 
middleware, besides those that enable web service 
orchestration (using WS-BPEL, for example) and should 
work with any middleware providing web services. This is 
one of the main reasons for choosing WS-BPEL as the 
specification language for our platform. We therefore 
analysed from the functional point of view the existing 
workflow languages. We noticed that WS-BPEL and Karajan 
are the most complex languages supporting a large number of 
basic models. We chose WS-BPEL for our proposed engine 
since it is a standardized  language that provides support for 
many features and it is very expressive.  

3. DATA HANDLING IN SCIENTIFIC WORKFLOWS 

The workflow lifecycle consists of multiple phases in which 
data has a central role: a workflow generation phase where 
the analysis is defined, the workflow planning phase where 
resources needed for execution are selected, the workflow 
execution part, where the actual computations take place, and 
the result, metadata, and provenance storing phase. During 
workflow creation, appropriate input data and workflow 
components need to be discovered. During workflow 
mapping and execution data need to be staged-in and staged-
out of the computational resources. As data are produced, 
they need to be archived with enough metadata and 
provenance information so that they can be interpreted and 
shared among collaborators. 

During workflow creation, scientists specify the applications 
or workflows they want to run and the input data sets for 
these computations using unique logical identifiers or 
metadata, independent of where these data sets or analysis 
codes may be physically located in the distributed 
environment. Discovery of data sets, application codes, 
workflow templates, etc., is often done by querying various 
catalogs. Metadata catalogs store attributes that describe the 
contents of data sets. Provenance catalogs (Miles et. al., 
2007a) store information about computations and workflows 
to provide a detailed record of how analyses are run, 
including information about inputs to computations, 
application parameters used, calibration values for 
equipment, versions of workflow and analysis software used, 
etc. A challenging aspect of setting up these discovery 
catalogs is the need for communities to agree on standards for 
specifying metadata and provenance. Efforts to facilitate this 
are underway (Miles et. al., 2007b). 

In the workflow planning stage, the logical identifiers for 
applications and data must be mapped to resources in the 
distributed environment. For data sets that are inputs to 
workflows or analysis, this requires discovering the location 
of one or more copies of the desired data sets, selecting 
among them, and often copying or staging the data sets onto 
resources where computations will run. A scheduler is 
responsible for selecting among available data sets, selecting 
appropriate computational resources to run each task of a 
workflow, and orchestrating the movement of data sets and 
the execution of workflow tasks. Schedulers or workflow 
mappers need to be able to optimize the workflows based on 
some user-specified criteria. A major challenge in todays 
applications is the physical management of data in the 
distributed environment. Typically, as mentioned, replica 
location or metadata catalogs record mappings from logical 
identifiers for data to one or more physical locations where 
copies of the data sets are stored. Based on knowledge of the 
state of resources (the latency, bandwidth and load of storage 
systems, network bandwidth among nodes, etc.) that may be 
provided by information services, the workflow planner 
selects among available data replicas. In particular, the 
planner may try to select copies of the data that are close to 
the computational resources where workflow tasks will run, 
with respect to network latency or other metrics. It may be 
advantageous for workflow planning and execution services 



 
 

     

 

to coordinate with data placement services, whose role is to 
move data asynchronously with respect to workflow 
execution with the goal of improving the execution time of 
workflows. For example, a workflow engine might provide 
hints to a data placement service about required data sets as 
well as the expected ordering of data set access, based on 
knowledge or dependencies in the workflow. 

Based on these hints, the placement engine can 
asynchronously stage some of the data required by the 
workflow engine onto shared storage resources near where 
the workflow tasks will execute. Workflows rely on a variety 
of data transfer mechanism over the wide area. These include 
such tools as GridFTP, the Fast Data Transfer (FDT) service, 
and others. In order to support the data transfer needs of their 
users and load balance the requests, many grid installations 
deploy multiple data movement servers targeting the same 
storage system. 

In the workflow execution stage, an execution manager (ex: 
DAGMan) keeps track of tasks that must run and the 
dependencies among them. Earlier tasks in the workflow may 
produce intermediate data products that are consumed by 
tasks that run later. These intermediate data products may 
need to be staged from the resource where the earlier task ran 
to the resource on which the later task will run. The workflow 
execution system delays execution of a particular task until 
all its input data products are available on the computational 
resources where the task will run. 

We briefly present as follows a few popular workflow 
engines from the point of view of their data handling 
characteristics. 

Condor DAGMan Stork (Kosar et.al, 2004) was developed as 
a a batch scheduler specialized in data placement and data 
movement which understands the semantics and 
characteristics of data placement tasks and implements 
techniques specific to queuing, scheduling, and optimization 
of these type of tasks. Stork acts like an I/O control system 
(IOCS) between the user applications and the underlying 
protocols and data storage servers. The users can easily add 
support for their favorite storage system, data transport 
protocol, or middleware. Stork can interact with higher level 
planners and workflow managers, allowing the users to 
schedule both CPU resources and storage resources together. 

Pegasus (Deelman et.al., 2005) enables scientists to construct 
workflows in abstract terms without worrying about the 
details of the underlying cyberinfrastructure or the particulars 
of the lowlevel specifications required by the 
cyberinfrastructure middleware. As part of the mapping, 
Pegasus automatically manages data generated during 
workflow execution by staging them out to user-specified 
locations, by registering them in data catalogs, and by 
capturing their provenance information. Pegasus dynamically 
discovers the available resources and their characteristics, 
and queries for the location of the data (potentially replicated 
in the environment). 

Swift uses for data management Virtual Data System (Foster 
et. al., 2003) - a framework which provides a suite of 

components and services for data-intensive sciences that 
enables scientists to systematically and efficiently describe, 
discover, and share large scale data and computation 
resources. A common data model is used to describe data 
types and representations, and the recipes for derivations of 
data are specified in a declarative manner. Requests for data 
products can be transparently mapped into computation 
and/or data access operations across multiple Grid computing 
and storage locations. 

4. FAULT TOLERANCE APPROACHES 

Due to the heterogeneous and distributed nature of Grid 
systems, faults inevitably happen. The reasons for faults in a 
Grid environment are manifold: the geographically 
widespread nature encompassing multiple autonomous 
administrative domains, variations in the configuration of the 
different systems, overstrained resources that may stop 
responding or show unpredictable behavior, faults in the 
network infrastructure that connects the systems, hardware 
failures and systems running out of memory or disk space are 
just some of the possible sources of faults.  

The taxonomy by (Yu et.al., 2005) introduces a general view 
of existing workflow managing solutions. A part of it focuses 
on fault tolerance, where they use a task and workflow-level 
division. These categories can be further extended, keeping 
the scope on fault tolerance, detailing description and 
comparison of their properties. (Hwang et. al., 2003) 
proposes a multi-layered approach for fault tolerance in 
workflows. They also segment the techniques into task-level 
and workflow-level techniques. The former tries to hide 
faults that happen during the execution of single tasks at the 
workflow-level, while the latter manipulates the structure of 
the workflow to deal with faults dynamically. 

Besides these, several layers cand be identified where 
detection as well as recovery and prevention may exist: 

• Hardware level - lowest loevel, machine crashes 
and network connectivity errors can happen. 

• Operating Systems level - tasks may run out of 
memory or disk space, or exceed CPU time limits or 
disk quota. Other faults like network congestion or 
file nonexistence can also happen. 

• Middleware level - non-responding services 
probably caused by too many concurrent requests. 
Authentication, file staging or job submission 
failures can happen, and submitted jobs could hang 
in local queues, or even be lost before reaching the 
local resource manager. 

• Tasks level - job-related faults can happen, like 
deadlock, livelock, memory leak, uncaught 
exceptions,  missing shared libraries or job crashes, 
even incorrect output results could be produced. 

• Workflow level - failures can occur in data 
movement or infinite loops in dynamic workflows. 
Incorrect or not available input data could also 
produce faults. 



 
 

     

 

• User level - user-definable exceptions and assertions 
which can cause errors. 

Regarding fault prevention and recovery from faults, we can 
distinguish among three abstraction levels. The treatment 
mechanisms can act at Task, Workflow or User-level.  

• At the Task level, recovery is used when a failed job 
is restarted on the same remote resource or 
resubmitted to another one. Generally it is simple to 
implement this technique; upon detecting a failure, 
the task is rescheduled to either the same or to 
another resource for another try. Resubmission can 
cause significant overheads if the following tasks 
have to wait for the completion of the failed task. 
Saving checkpoint and restarting later or even 
migrating jobs can be a good prevention and 
recovery mechanism. This technique stores all the 
intermediate data of a task that is needed to restore 
the task to the current state. This allows for 
migration of a task to another system in case of 
failure: it can resume execution from the last 
checkpoint, unlike simple resubmissions, where jobs 
should be started over from the beginning. Task 
replication can prevent resource failures, while 
alternate task creation can recover from internal task 
failures (in this case another task implementation is 
executed). On failures of the task manager itself, 
recovery means restarting the service or choosing 
another one. Finally resource reliability 
measurements can also prevent job execution faults.  

• At Workflow level, redundancy, data and workflow 
replication can prevent faults. Redundancy, 
sometimes called replication in related work, 
executes one task concurrently on several resources, 
assuming that one of the tasks will finish without a 
failure. It can cause overhead by occupying more 
resources than necessary, but guarantees failure-free 
execution as long as at least one task does not fail. 
Light- and Heavy-weight checkpointing can also be 
used for both prevention and recovery. Generally 
this technique can be used to save an intermediate 
state of a whole workflow for a restart at a later 
point in time. Light-weight checkpointing saves only 
the current location of the intermediate data, not the 
data itself. It is fast, but restarting can only work as 
long as the intermediate data is available at its 
original location. Heavy-weight checkpointing saves 
all the intermediate data to a place, where it can be 
kept as long as it is needed.  

• At the User level, user-defined exceptions can be 
taken into account to validate proper execution. The 
questionnaire also contained two tables for this 
section: the first is used to tell whether the listed 
mechanism is supported or not, the second is for 
naming the service that handles the faults.  

Studying several workflow managers’ (Pegasus, Askalon, P-
GRADE, Triana) fault tolerance, prevention and recovery 
capabilities at all these levels (Plankensteiner et.al., 2007) 

observed that Hardware-level faults (Machine crashed/down, 
Network down) can generally be successfully detected by 
current workflow systems. When it comes to the other 
categories, the situation is quite different. On the OS-level, 
only 37% of the faults (Disk quota exceeded, Out of memory, 
Out of disk space, File not found, Network congestion, CPU 
time limit exceeded) are currently detected on average. 

Detection of the faults on middleware level (Authentication 
failed, Job submission failed, Job hanging in the queue of the 
local resource manager, Job lost before reaching the local 
resource manager, Too many concurrent requests, Service not 
reachable/not responding, File staging failure) is more 
common, an average of 62.8% of these faults can be detected 
by current Grid workflow systems, which is almost the same 
within Workflow-level faults (Infinite loop, Input data not 
available, Input error, Data movement failed) with 62.5%. 
The worst fault detection can be seen on the Task-level 
(Memory leak, Uncaught exception, Deadlock/Livelock, 
Incorrect output data, Missing shared libraries, Job crashes) 
and User-level (User-definable exceptions, User-definable 
assertions), where only 30% (task-level) and 25% (user-level) 
of the faults are detected on average. 

While the workflow paradigm, emerged from the field of 
business processes, has been proven to be the most successful 
paradigm for creating scientific applications for execution 
also on Grid infrastructures, most of the current Grid 
workflow management systems still cannot deliver the 
quality, robustness and reliability that are needed for 
widespread acceptance as tools used on a day-to-day basis for 
scientists from a multitude of scientific fields. 

Therefore our approach aims a configurable mechanism for 
fault tolerance: users can select whether they want to re-
execute a job, to save partial results, to replicate job 
execution, to create a ”compensation” mechanism (ex: 
exception handling). This approach is determined by the 
different semantics of workflows, in some case re-execution 
being a good solution but in other cases this can cause side 
effects. 

5. THE ARCHITECTURE AND FUNCTIONALITY OF 
THE WORKFLOW MANAGEMENT PLATFORM 

As we have shown in the previous sections, although several 
open source workflow engines are available for executing 
scientific applications in distributed environments, most of 
them lack important features concerning fault tolerance, 
abstract workflows, data handling and user interface. We note 
however that some of the existing engines are based on 
highly expressive languages and provide advanced process 
management, transaction handling, database persistence and 
other mechanisms. As a consequence, we chose the solution 
is of starting from an open source workflow engine and 
building additional modules to satisfy our requirements. 

The workflow language we propose for the platform is WS-
BPEL, which is a widely adopted standard in industry and, 
more recently, in academic environments. In what concerns 
the base workflow engine, we propose ActiveBPEL, which is 
the most frequently used open source BPEL engine and has 



 
 

     

 

been integrated in several research projects; some of the 
projects, like the one presented in (Subramaninan et.al., 
2008) , also augmented WS-BPEL with additional modules. 
We briefly describe as follows the ActiveBPEL architecture 
and the extensions we intend to implement for our project. 

 

Fig. 1. ActiveBPEL-based workflow engine architecture. The 
new modules with which we propose to extend ActiveBPEL 
are depicted in green. 

ActiveBPEL runs on top of the Apache Tomcat servlet 
container, and uses an embedded version of Apache Axis for 
message communications. Figure 1 presents the main 
components of ActiveBPEL (in blue) and our proposed 
extensions (in green). Among the services used in 
ActiveBPEL for handling processes, which are named 
Managers, the most important one is the Process Manager. 
The Process Manager oversees the instantiation and 
execution of processes and activities. When a process is 
deployed, the engine analyzes the BPEL sources and 
generates an internal representation of the process; then, 
when the user requires the execution of the process, a new 
instance is created by the Process Manager. The Process 
Manager is also responsible with instantiating activities and 
associating them with states (inactive, executing, finished, 
faulted etc.) during their life cycle. The Queue Manager 
handles incoming messages and events addressed to the 
process activities, by building a queue with the activities that 
are waiting for messages. The Work Manager schedules 
asynchronous operation, based on ”work objects” which are a 
specialized alternative to threads. We also mention the Time 
Manager, which provides support for timed operations (like 
suspending or waiting), and the Transaction Manager, which 
implements methods for working with transactions. 

We propose to introduce the following new components in 
the ActiveBPEL engine: 

• Concrete Workflow Generator, which will 
transform abstract workflows into concrete 
workflows 

• Service Finder, which will map service port types 
with sets of corresponding available services 

• Fault Tolerance Manager, which will apply the 
policies specified by the user for handling faults 

• Data Manager, which will implement efficient data 
handling mechanisms. 

5.1. Support for Abstract Workflow Specifications 

The Concrete Workflow Generator will have as inputs the 
abstract workflows specified by the users with the aid of the 
Workflow Specification component; its role will be to 
perform the mapping between abstract functional components 
and web service port types or executable programs. As we 
focus on scientific applications we are concerned about the 
particular design of these workflows which typically requires 
the involvement of at least two domains: one from the 
scientific field of interest (e.g. high energy physics, molecular 
biology) and another from computer science - understanding 
the process of composing the workflow and encoding the 
derivation in a format that the engine can execute. Because 
these domain have distinct terminology to describe workflow 
elements, including requirements, clear specification and 
effective mapping are a challenge.  

Our approach for abstract workflow specification uses 
ontologies, as they are used to describe knowledge about a 
domain such that its representation can be interpreted and 
reaseoned about by a computer. We use ontologies first as an 
explicit specification of abstract concepts and later to support 
the composition and matching of services. 

While domain expert's workflow descriptions are more often 
abstract, our engine  needs a concrete specification of an 
executable workflow. We therefore opted for the use of 
BPEL for Semantic Web Services (BPEL4SWS) (Nitzsche 
et. al., 2007) as a means to increase productivity during the 
design of workflows in support of scientific applications. 
BPEL4SWS introduces the desired level of abstraction for 
modeling workflows that is consistent with the target domain. 
It is thereby used by our Concrete Workflow Generator 
component to automatically generate executable workflows, 
that is, workflow implementations.  

In our proposed architecture, BPEL4SWS uses Semantic 
Web Service Frameworks to define a communication channel 
between two partner services instead of using the partner link 
which is based on WSDL 1.1. It enables describing activity 
implementations in a much more flexible manner based on 
ontological descriptions of service requesters and providers. 
The specification introduces an extension to BPEL to enable 
describing interaction using semantic Web service 
Frameworks instead of using WSDL 1.1. Semantic Web 
services (SWS) can be considered an integration layer on top 
of Web services; they use ontologies as data model and they 
have a rich conceptual model. There are efforts towards 
standardizing this conceptual model within the Reference 
Ontology for Semantic Service Oriented Architectures 
(RO4SSOA). In addition to the SWS based interaction, 
BPEL4SWS makes use of annotated data types to enhance 
data handling by means of ontological mediators and uses 
ontological reasoning to evaluate conditions. Our Concrete 



 
 

     

 

Workflow Generator component receives a BPEL4SWS 
specification as input and translates it into WS-BPEL, used 
by the ActiveBPEL engine to execute the workflow.  

5.2. Dynamic Web Services Composition 

The Service Finder will contact the scheduling component in 
order to discover web services (ports) that correspond to the 
port types specified in the workflow, using a find-and-bind 
approach similar with the one presented in (Miles et. al., 
2007a). We aim at transparently adapting existing composite 
services to encapsulate autonomic behavior (Kephart et. al., 
2003). That is, making composite services adaptable to 
changes in their execution environment (e.g., failure in a 
partner Web service). Although this is a major concern in the 
field of composite services, it is often not addressed in the 
specification of composition languages. 

Our Service Finder component maps the abstract nodes onto 
matching services iteratively during the processing of the 
workflow. Each time the workflow engine reaches a transition 
related to an abstract (non-executable) operation, it calls a 
special workflow refinement service. This service refines the 
workflow description by searching for matching service 
candidates, which fulfill the requirements defined by the 
profile of the abstract nodes. The decision of whether a 
service matches the requirements is done by rules that depend 
on several properties, such as functionality (e.g., service 
produces certain class of output data or side effect), 
performance (e.g., operation should complete within 1h), or 
reliability (e.g., only services which have been operational 
during the last 72h should be taken into account). If it is 
possible to find matching service candidates, the refinement 
service attaches a list of the corresponding interface 
descriptions URLs (e.g. wsdl URLs) to the abstract transition. 
Next, the binding consists of the selection of one service 
instance out of the list of available service candidates at 
runtime. In order to optimize this dynamic selection, the 
system uses input from the scheduling component of the 
platform, which takes into account the recorded as well as the 
current monitoring information about the services and the 
Grid infrastructure.  

5.3. Fault Tolerance  

The Fault Tolerance Manager’s role is to attempt the 
recovery after an activity failure, by applying one of the 
available policies: re-try the activity, find an alternative 
service to invoke, save the partial results; activity replication 
is another approach that the user will be able to choose. A 
significant drawback of existing workflow systems is their 
poor support for exception handling. Our component aims at 
identifying the specific error conditions which occurred and 
taking consequent actions. Hence, the Fault Tolerance 
Manager distinguishes and reports the exceptions to which is 
confronted: failures of invoked applications, communication 
failures, lack of response from a user, missed deadlines, and 
unexpected behavior of applications. This is achieved by 
subscribing to the Queue Manager of the ActiveBPEL engine 
and inspecting all error related messages. 

The usual failure-handling procedure in most systems is to 
stop process execution and report the failure to an 
administrator. However, as workflow applications become 
larger and more complex, manual failure resolution becomes 
less and less feasible because of the demand for human 
resources, with their high cost and slow answer time. Clearly, 
we need automatic exception handling, especially for scalable 
systems. Therefore, our approach automatically applies the 
hierarchy of policies defined by users. Thus, the Actions 
module of the Fault Manager component is able to take 
action when some configurable condition is met. This way, 
when a given threshold is reached, an alert e-mail can be sent, 
or a program can be run, or an instant message can be issued. 
Actions represent the first step towards the automation of the 
management decisions in scientific workflows.  

5.4. Data Management Functionalities 

For the efficient management of the workflow data, we 
propose to introduce the Data Manager component, which 
will contact the underlying middleware in order to find 
mappings between logical and physical file names, and will 
generate metadata that will allow making associations 
between files and the applications that produced or modified 
them. We extend ActiveBPEL with disk usage 
optimization techniques by implementing the algorithm 
presented in (Ramakrishnan et. al., 2007). Hence, we 
minimize the disk space footprint of scientific workflows by 
removing data as soon as it is no longer needed and 
scheduling the workflow tasks by first taking into account the 
data requirements of the workflow and the data space 
availability at the resources.  

6. CONCLUSIONS AND FUTURE WORK 

As we have shown above, from studying the existing 
workflow languages and platforms we have concluded that 
most of the current platforms do not provide a complete 
coverage for aspects like abstract workflow specification, 
data management, fault tolerance and interoperability with 
multiple middleware systems. Our goal is to develop a 
workflow platform that can offer all these functionalities, and 
we believe that the best approach for achieving this goal is to 
introduce an additional set of components to an existing open 
source workflow engine. We chose the ActiveBPEL engine 
due to the fact that it is based on the WSBPEL language, 
which has the advantages of standardization and high 
expressivity, and also due to its large community of users. 
The next steps in this project are to elaborate more detailed 
specifications for the proposed workflow engine components, 
to define their interface with the platform’s lower and higher 
levels and then to start the implementation. Performance is 
also an important concern, so we intend to apply a benchmark 
based method for comparing our platform with other similar 
engines. 
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