
HAL Id: hal-00473288
https://hal.science/hal-00473288

Submitted on 14 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Grid Platform for Scientific Workflows
Management

Alexandru Costan, Corina Stratan, Eliana-Dina Tirsa, Mugurel Ionut
Andreica, Valentin Cristea

To cite this version:
Alexandru Costan, Corina Stratan, Eliana-Dina Tirsa, Mugurel Ionut Andreica, Valentin Cristea.
Towards a Grid Platform for Scientific Workflows Management. Proceedings of the 17th Interna-
tional Conference on Control Systems and Computer Science (CSCS) (ISSN: 2066-4451), May 2009,
Bucharest, Romania. pp.37-44. �hal-00473288�

https://hal.science/hal-00473288
https://hal.archives-ouvertes.fr

Towards a Grid Platform for Scientific Workflows Management

Alexandru Costan*, Corina Stratan*
Eliana Tîrşa*, Mugurel Ionut Andreica*, Valentin Cristea*

*University Politehnica of Bucharest, Splaiul Independenţei 313, Bucharest, Romania
e-mail: {alexandru.costan,corina.stratan,eliana.tirsa,mugurel.andreica,valentin.cristea}@ cs.pub.ro

Abstract: Workflow management systems allow the users to develop complex applications at a higher
level, by orchestrating functional components without handling the implementation details. Although a
wide range of workflow engines are developed in enterprise environments, the open source engines
available for scientific applications lack some functionalities or are too difficult to use for non-specialists.
Our purpose is to develop a workflow management platform for distributed systems, that will provide
features like an intuitive way to describe workflows, efficient data handling mechanisms and flexible fault
tolerance support. We introduce here an architectural model for the workflow platform, based on the
ActiveBPEL workflow engine, which we propose to augment with an additional set of components.

1. INTRODUCTION

Distributed applications, both in the academic and enterprise
environments, are becoming more and more complex,
requiring the orchestration of multiple services or programs
into workflows. Workflow systems are built in order to assist
the user in developing complex applications at a higher level,
by organizing the components and specifying the
dependencies among them.

Nowadays, commercial workflow engines provide a wide
range of features suitable for enterprise applications. For
scientific applications, even though a number of open source
workflow systems are available, many of them are too
difficult to use for non-specialists (some of them lack a
graphical interface), or are restricted to a specific type of
applications or on a single middleware platform; these
problems have been impeding the adoption of workflow-
based solutions in the scientific community.

Our purpose is to develop a workflow management platform
for distributed systems, targeted to scientific applications,
that will provide solutions for the following aspects:

• an intuitive way to describe workflows, based on
ontologies specific to the application domains,
allowing the user to work with abstract components

• flexible workflow structure, allowing the
orchestration of services and also of plain executable
programs efficient mechanisms for data handling, as
scientific applications

• usually produce significant amounts of data; the
mechanisms will be based on the data replication
services provided by the underlying middleware

• comprehensive fault tolerance support, with
configurable policies; as semantics and side effects
vary from one application to another, we believe that

the users should be able to select from multiple fault
tolerance approaches the one that is the most
suitable for a particular workflow

The workflow management platform will have three main
components: a high-level module that will provide a user
interface for defining abstract workflow, and that will
manage domain-specific ontologies; a middle-level module
that will have the role of a workflow engine; and a low-level
module that will be in charge of scheduling the workflow
activities and services onto the distributed system's physical
resources, relying upon the available middleware.

Our focus in this work is on the middle-level module, the
workflow engine. We have started by studying the facilities
offered by the most commonly used workflow engines for
scientific applications, from the point of view of the
requirements presented above. Although some workflow
engines provide advanced features for abstract workflows,
data management or fault tolerance, they lack functionality in
what concerns the other aspects. As a consequence, we
consider the approach of starting from an existing open
source workflow engine and implementing additional
functions that are required for the purposes of our project.
The engine we have studied is ActiveBPEL, one of the most
widely used engines for WS-BPEL. We introduce here an
architectural model of the modified ActiveBPEL engine,
augmented with a new set of modules that will implement the
additional functions.

The following part of this paper, Section 2, presents the
related work in the field of workflow engines using Grids.
Section 3 introduces the state-of-the-art data management
functionalities in the existing workflow engines. In Section 4
we present the most commonly used fault tolerance
mechanisms and our approach for this aspect. Section 5
introduces our proposed extensions to the ActiveBPEL
architecture, and in Section 6 we summarize the conclusions
of this study and the future work directions.

2. RELATED WORK

In this section we present a summary about interoperability
between some of the workflow engines most used in
scientific applications and middleware platforms. Condor
DAGMan (Thain et.al., 2005) submits jobs directly to the
Condor scheduler; it doesn’t offer support for other
middleware.

Karajan (Laszewski et.al., 2005) provides interoperability
through the use of ”providers” that allow middleware
selection at runtime: GT2, GT3, GT4 or Condor. It has also
support for SSH protocol. Authentication is done with either
user certificates (personal mode) or host certificates (shared
mode).

In Taverna (Hull et.al., 2006) and ActiveBPEL workflow are
seen as web services. The difficulty of implementation is
hidden, users are presented a high-level interface.
Interoperability for Taverna is limited to MyGrid, while
ActiveBPEL can submit jobs to any middleware offering web
services.

Triana (Taylor et.al., 2006) is middleware agnostic; supports
P2P, web services and Grids. GridLab GAT (Grid
Application Toolkit), Triana’s API for accessing Grid
services, is written in such a way that new modules can be
added, to achieve interoperability with different middleware
platforms. Triana jobs do not have web interfaces,
communication is done only through the input/output files,
and submission is performed by a resource manager
(GRAM1 or GRMS2). Triana can generate files entry for
Pegasus / Condor.

Pegasus (Singh et. al., 2005) sends its workflow to Condor
DAGMAN / CondorG, in order to submit remote jobs.
Pegasus users don’t access DAGMan directly, except for
optimization and troubleshooting.

Swift (Zhao et.al., 2007) uses Globus Toolkit to submit jobs
in Grid. For authentication and authorization on remote sites,
it uses Grid Security Infrastructure (GSI).

P-GRADE Grid portal (Kertesz et.al, 2006) hides the details
of low-level access to Grid resources, offering an interface
which can be used with Globus Toolkit 2, Globus Toolkit 4,
LCG-2 and gLite. Access to various Grids can also be done
simultaneously, if the user certificates for those Grids are
valid.

Many workflow engines work over a single type of
middleware, besides those that enable web service
orchestration (using WS-BPEL, for example) and should
work with any middleware providing web services. This is
one of the main reasons for choosing WS-BPEL as the
specification language for our platform. We therefore
analysed from the functional point of view the existing
workflow languages. We noticed that WS-BPEL and Karajan
are the most complex languages supporting a large number of
basic models. We chose WS-BPEL for our proposed engine
since it is a standardized language that provides support for
many features and it is very expressive.

3. DATA HANDLING IN SCIENTIFIC WORKFLOWS

The workflow lifecycle consists of multiple phases in which
data has a central role: a workflow generation phase where
the analysis is defined, the workflow planning phase where
resources needed for execution are selected, the workflow
execution part, where the actual computations take place, and
the result, metadata, and provenance storing phase. During
workflow creation, appropriate input data and workflow
components need to be discovered. During workflow
mapping and execution data need to be staged-in and staged-
out of the computational resources. As data are produced,
they need to be archived with enough metadata and
provenance information so that they can be interpreted and
shared among collaborators.

During workflow creation, scientists specify the applications
or workflows they want to run and the input data sets for
these computations using unique logical identifiers or
metadata, independent of where these data sets or analysis
codes may be physically located in the distributed
environment. Discovery of data sets, application codes,
workflow templates, etc., is often done by querying various
catalogs. Metadata catalogs store attributes that describe the
contents of data sets. Provenance catalogs (Miles et. al.,
2007a) store information about computations and workflows
to provide a detailed record of how analyses are run,
including information about inputs to computations,
application parameters used, calibration values for
equipment, versions of workflow and analysis software used,
etc. A challenging aspect of setting up these discovery
catalogs is the need for communities to agree on standards for
specifying metadata and provenance. Efforts to facilitate this
are underway (Miles et. al., 2007b).

In the workflow planning stage, the logical identifiers for
applications and data must be mapped to resources in the
distributed environment. For data sets that are inputs to
workflows or analysis, this requires discovering the location
of one or more copies of the desired data sets, selecting
among them, and often copying or staging the data sets onto
resources where computations will run. A scheduler is
responsible for selecting among available data sets, selecting
appropriate computational resources to run each task of a
workflow, and orchestrating the movement of data sets and
the execution of workflow tasks. Schedulers or workflow
mappers need to be able to optimize the workflows based on
some user-specified criteria. A major challenge in todays
applications is the physical management of data in the
distributed environment. Typically, as mentioned, replica
location or metadata catalogs record mappings from logical
identifiers for data to one or more physical locations where
copies of the data sets are stored. Based on knowledge of the
state of resources (the latency, bandwidth and load of storage
systems, network bandwidth among nodes, etc.) that may be
provided by information services, the workflow planner
selects among available data replicas. In particular, the
planner may try to select copies of the data that are close to
the computational resources where workflow tasks will run,
with respect to network latency or other metrics. It may be
advantageous for workflow planning and execution services

to coordinate with data placement services, whose role is to
move data asynchronously with respect to workflow
execution with the goal of improving the execution time of
workflows. For example, a workflow engine might provide
hints to a data placement service about required data sets as
well as the expected ordering of data set access, based on
knowledge or dependencies in the workflow.

Based on these hints, the placement engine can
asynchronously stage some of the data required by the
workflow engine onto shared storage resources near where
the workflow tasks will execute. Workflows rely on a variety
of data transfer mechanism over the wide area. These include
such tools as GridFTP, the Fast Data Transfer (FDT) service,
and others. In order to support the data transfer needs of their
users and load balance the requests, many grid installations
deploy multiple data movement servers targeting the same
storage system.

In the workflow execution stage, an execution manager (ex:
DAGMan) keeps track of tasks that must run and the
dependencies among them. Earlier tasks in the workflow may
produce intermediate data products that are consumed by
tasks that run later. These intermediate data products may
need to be staged from the resource where the earlier task ran
to the resource on which the later task will run. The workflow
execution system delays execution of a particular task until
all its input data products are available on the computational
resources where the task will run.

We briefly present as follows a few popular workflow
engines from the point of view of their data handling
characteristics.

Condor DAGMan Stork (Kosar et.al, 2004) was developed as
a a batch scheduler specialized in data placement and data
movement which understands the semantics and
characteristics of data placement tasks and implements
techniques specific to queuing, scheduling, and optimization
of these type of tasks. Stork acts like an I/O control system
(IOCS) between the user applications and the underlying
protocols and data storage servers. The users can easily add
support for their favorite storage system, data transport
protocol, or middleware. Stork can interact with higher level
planners and workflow managers, allowing the users to
schedule both CPU resources and storage resources together.

Pegasus (Deelman et.al., 2005) enables scientists to construct
workflows in abstract terms without worrying about the
details of the underlying cyberinfrastructure or the particulars
of the lowlevel specifications required by the
cyberinfrastructure middleware. As part of the mapping,
Pegasus automatically manages data generated during
workflow execution by staging them out to user-specified
locations, by registering them in data catalogs, and by
capturing their provenance information. Pegasus dynamically
discovers the available resources and their characteristics,
and queries for the location of the data (potentially replicated
in the environment).

Swift uses for data management Virtual Data System (Foster
et. al., 2003) - a framework which provides a suite of

components and services for data-intensive sciences that
enables scientists to systematically and efficiently describe,
discover, and share large scale data and computation
resources. A common data model is used to describe data
types and representations, and the recipes for derivations of
data are specified in a declarative manner. Requests for data
products can be transparently mapped into computation
and/or data access operations across multiple Grid computing
and storage locations.

4. FAULT TOLERANCE APPROACHES

Due to the heterogeneous and distributed nature of Grid
systems, faults inevitably happen. The reasons for faults in a
Grid environment are manifold: the geographically
widespread nature encompassing multiple autonomous
administrative domains, variations in the configuration of the
different systems, overstrained resources that may stop
responding or show unpredictable behavior, faults in the
network infrastructure that connects the systems, hardware
failures and systems running out of memory or disk space are
just some of the possible sources of faults.

The taxonomy by (Yu et.al., 2005) introduces a general view
of existing workflow managing solutions. A part of it focuses
on fault tolerance, where they use a task and workflow-level
division. These categories can be further extended, keeping
the scope on fault tolerance, detailing description and
comparison of their properties. (Hwang et. al., 2003)
proposes a multi-layered approach for fault tolerance in
workflows. They also segment the techniques into task-level
and workflow-level techniques. The former tries to hide
faults that happen during the execution of single tasks at the
workflow-level, while the latter manipulates the structure of
the workflow to deal with faults dynamically.

Besides these, several layers cand be identified where
detection as well as recovery and prevention may exist:

• Hardware level - lowest loevel, machine crashes
and network connectivity errors can happen.

• Operating Systems level - tasks may run out of
memory or disk space, or exceed CPU time limits or
disk quota. Other faults like network congestion or
file nonexistence can also happen.

• Middleware level - non-responding services
probably caused by too many concurrent requests.
Authentication, file staging or job submission
failures can happen, and submitted jobs could hang
in local queues, or even be lost before reaching the
local resource manager.

• Tasks level - job-related faults can happen, like
deadlock, livelock, memory leak, uncaught
exceptions, missing shared libraries or job crashes,
even incorrect output results could be produced.

• Workflow level - failures can occur in data
movement or infinite loops in dynamic workflows.
Incorrect or not available input data could also
produce faults.

• User level - user-definable exceptions and assertions
which can cause errors.

Regarding fault prevention and recovery from faults, we can
distinguish among three abstraction levels. The treatment
mechanisms can act at Task, Workflow or User-level.

• At the Task level, recovery is used when a failed job
is restarted on the same remote resource or
resubmitted to another one. Generally it is simple to
implement this technique; upon detecting a failure,
the task is rescheduled to either the same or to
another resource for another try. Resubmission can
cause significant overheads if the following tasks
have to wait for the completion of the failed task.
Saving checkpoint and restarting later or even
migrating jobs can be a good prevention and
recovery mechanism. This technique stores all the
intermediate data of a task that is needed to restore
the task to the current state. This allows for
migration of a task to another system in case of
failure: it can resume execution from the last
checkpoint, unlike simple resubmissions, where jobs
should be started over from the beginning. Task
replication can prevent resource failures, while
alternate task creation can recover from internal task
failures (in this case another task implementation is
executed). On failures of the task manager itself,
recovery means restarting the service or choosing
another one. Finally resource reliability
measurements can also prevent job execution faults.

• At Workflow level, redundancy, data and workflow
replication can prevent faults. Redundancy,
sometimes called replication in related work,
executes one task concurrently on several resources,
assuming that one of the tasks will finish without a
failure. It can cause overhead by occupying more
resources than necessary, but guarantees failure-free
execution as long as at least one task does not fail.
Light- and Heavy-weight checkpointing can also be
used for both prevention and recovery. Generally
this technique can be used to save an intermediate
state of a whole workflow for a restart at a later
point in time. Light-weight checkpointing saves only
the current location of the intermediate data, not the
data itself. It is fast, but restarting can only work as
long as the intermediate data is available at its
original location. Heavy-weight checkpointing saves
all the intermediate data to a place, where it can be
kept as long as it is needed.

• At the User level, user-defined exceptions can be
taken into account to validate proper execution. The
questionnaire also contained two tables for this
section: the first is used to tell whether the listed
mechanism is supported or not, the second is for
naming the service that handles the faults.

Studying several workflow managers’ (Pegasus, Askalon, P-
GRADE, Triana) fault tolerance, prevention and recovery
capabilities at all these levels (Plankensteiner et.al., 2007)

observed that Hardware-level faults (Machine crashed/down,
Network down) can generally be successfully detected by
current workflow systems. When it comes to the other
categories, the situation is quite different. On the OS-level,
only 37% of the faults (Disk quota exceeded, Out of memory,
Out of disk space, File not found, Network congestion, CPU
time limit exceeded) are currently detected on average.

Detection of the faults on middleware level (Authentication
failed, Job submission failed, Job hanging in the queue of the
local resource manager, Job lost before reaching the local
resource manager, Too many concurrent requests, Service not
reachable/not responding, File staging failure) is more
common, an average of 62.8% of these faults can be detected
by current Grid workflow systems, which is almost the same
within Workflow-level faults (Infinite loop, Input data not
available, Input error, Data movement failed) with 62.5%.
The worst fault detection can be seen on the Task-level
(Memory leak, Uncaught exception, Deadlock/Livelock,
Incorrect output data, Missing shared libraries, Job crashes)
and User-level (User-definable exceptions, User-definable
assertions), where only 30% (task-level) and 25% (user-level)
of the faults are detected on average.

While the workflow paradigm, emerged from the field of
business processes, has been proven to be the most successful
paradigm for creating scientific applications for execution
also on Grid infrastructures, most of the current Grid
workflow management systems still cannot deliver the
quality, robustness and reliability that are needed for
widespread acceptance as tools used on a day-to-day basis for
scientists from a multitude of scientific fields.

Therefore our approach aims a configurable mechanism for
fault tolerance: users can select whether they want to re-
execute a job, to save partial results, to replicate job
execution, to create a ”compensation” mechanism (ex:
exception handling). This approach is determined by the
different semantics of workflows, in some case re-execution
being a good solution but in other cases this can cause side
effects.

5. THE ARCHITECTURE AND FUNCTIONALITY OF
THE WORKFLOW MANAGEMENT PLATFORM

As we have shown in the previous sections, although several
open source workflow engines are available for executing
scientific applications in distributed environments, most of
them lack important features concerning fault tolerance,
abstract workflows, data handling and user interface. We note
however that some of the existing engines are based on
highly expressive languages and provide advanced process
management, transaction handling, database persistence and
other mechanisms. As a consequence, we chose the solution
is of starting from an open source workflow engine and
building additional modules to satisfy our requirements.

The workflow language we propose for the platform is WS-
BPEL, which is a widely adopted standard in industry and,
more recently, in academic environments. In what concerns
the base workflow engine, we propose ActiveBPEL, which is
the most frequently used open source BPEL engine and has

been integrated in several research projects; some of the
projects, like the one presented in (Subramaninan et.al.,
2008) , also augmented WS-BPEL with additional modules.
We briefly describe as follows the ActiveBPEL architecture
and the extensions we intend to implement for our project.

Fig. 1. ActiveBPEL-based workflow engine architecture. The
new modules with which we propose to extend ActiveBPEL
are depicted in green.

ActiveBPEL runs on top of the Apache Tomcat servlet
container, and uses an embedded version of Apache Axis for
message communications. Figure 1 presents the main
components of ActiveBPEL (in blue) and our proposed
extensions (in green). Among the services used in
ActiveBPEL for handling processes, which are named
Managers, the most important one is the Process Manager.
The Process Manager oversees the instantiation and
execution of processes and activities. When a process is
deployed, the engine analyzes the BPEL sources and
generates an internal representation of the process; then,
when the user requires the execution of the process, a new
instance is created by the Process Manager. The Process
Manager is also responsible with instantiating activities and
associating them with states (inactive, executing, finished,
faulted etc.) during their life cycle. The Queue Manager
handles incoming messages and events addressed to the
process activities, by building a queue with the activities that
are waiting for messages. The Work Manager schedules
asynchronous operation, based on ”work objects” which are a
specialized alternative to threads. We also mention the Time
Manager, which provides support for timed operations (like
suspending or waiting), and the Transaction Manager, which
implements methods for working with transactions.

We propose to introduce the following new components in
the ActiveBPEL engine:

• Concrete Workflow Generator, which will
transform abstract workflows into concrete
workflows

• Service Finder, which will map service port types
with sets of corresponding available services

• Fault Tolerance Manager, which will apply the
policies specified by the user for handling faults

• Data Manager, which will implement efficient data
handling mechanisms.

5.1. Support for Abstract Workflow Specifications

The Concrete Workflow Generator will have as inputs the
abstract workflows specified by the users with the aid of the
Workflow Specification component; its role will be to
perform the mapping between abstract functional components
and web service port types or executable programs. As we
focus on scientific applications we are concerned about the
particular design of these workflows which typically requires
the involvement of at least two domains: one from the
scientific field of interest (e.g. high energy physics, molecular
biology) and another from computer science - understanding
the process of composing the workflow and encoding the
derivation in a format that the engine can execute. Because
these domain have distinct terminology to describe workflow
elements, including requirements, clear specification and
effective mapping are a challenge.

Our approach for abstract workflow specification uses
ontologies, as they are used to describe knowledge about a
domain such that its representation can be interpreted and
reaseoned about by a computer. We use ontologies first as an
explicit specification of abstract concepts and later to support
the composition and matching of services.

While domain expert's workflow descriptions are more often
abstract, our engine needs a concrete specification of an
executable workflow. We therefore opted for the use of
BPEL for Semantic Web Services (BPEL4SWS) (Nitzsche
et. al., 2007) as a means to increase productivity during the
design of workflows in support of scientific applications.
BPEL4SWS introduces the desired level of abstraction for
modeling workflows that is consistent with the target domain.
It is thereby used by our Concrete Workflow Generator
component to automatically generate executable workflows,
that is, workflow implementations.

In our proposed architecture, BPEL4SWS uses Semantic
Web Service Frameworks to define a communication channel
between two partner services instead of using the partner link
which is based on WSDL 1.1. It enables describing activity
implementations in a much more flexible manner based on
ontological descriptions of service requesters and providers.
The specification introduces an extension to BPEL to enable
describing interaction using semantic Web service
Frameworks instead of using WSDL 1.1. Semantic Web
services (SWS) can be considered an integration layer on top
of Web services; they use ontologies as data model and they
have a rich conceptual model. There are efforts towards
standardizing this conceptual model within the Reference
Ontology for Semantic Service Oriented Architectures
(RO4SSOA). In addition to the SWS based interaction,
BPEL4SWS makes use of annotated data types to enhance
data handling by means of ontological mediators and uses
ontological reasoning to evaluate conditions. Our Concrete

Workflow Generator component receives a BPEL4SWS
specification as input and translates it into WS-BPEL, used
by the ActiveBPEL engine to execute the workflow.

5.2. Dynamic Web Services Composition

The Service Finder will contact the scheduling component in
order to discover web services (ports) that correspond to the
port types specified in the workflow, using a find-and-bind
approach similar with the one presented in (Miles et. al.,
2007a). We aim at transparently adapting existing composite
services to encapsulate autonomic behavior (Kephart et. al.,
2003). That is, making composite services adaptable to
changes in their execution environment (e.g., failure in a
partner Web service). Although this is a major concern in the
field of composite services, it is often not addressed in the
specification of composition languages.

Our Service Finder component maps the abstract nodes onto
matching services iteratively during the processing of the
workflow. Each time the workflow engine reaches a transition
related to an abstract (non-executable) operation, it calls a
special workflow refinement service. This service refines the
workflow description by searching for matching service
candidates, which fulfill the requirements defined by the
profile of the abstract nodes. The decision of whether a
service matches the requirements is done by rules that depend
on several properties, such as functionality (e.g., service
produces certain class of output data or side effect),
performance (e.g., operation should complete within 1h), or
reliability (e.g., only services which have been operational
during the last 72h should be taken into account). If it is
possible to find matching service candidates, the refinement
service attaches a list of the corresponding interface
descriptions URLs (e.g. wsdl URLs) to the abstract transition.
Next, the binding consists of the selection of one service
instance out of the list of available service candidates at
runtime. In order to optimize this dynamic selection, the
system uses input from the scheduling component of the
platform, which takes into account the recorded as well as the
current monitoring information about the services and the
Grid infrastructure.

5.3. Fault Tolerance

The Fault Tolerance Manager’s role is to attempt the
recovery after an activity failure, by applying one of the
available policies: re-try the activity, find an alternative
service to invoke, save the partial results; activity replication
is another approach that the user will be able to choose. A
significant drawback of existing workflow systems is their
poor support for exception handling. Our component aims at
identifying the specific error conditions which occurred and
taking consequent actions. Hence, the Fault Tolerance
Manager distinguishes and reports the exceptions to which is
confronted: failures of invoked applications, communication
failures, lack of response from a user, missed deadlines, and
unexpected behavior of applications. This is achieved by
subscribing to the Queue Manager of the ActiveBPEL engine
and inspecting all error related messages.

The usual failure-handling procedure in most systems is to
stop process execution and report the failure to an
administrator. However, as workflow applications become
larger and more complex, manual failure resolution becomes
less and less feasible because of the demand for human
resources, with their high cost and slow answer time. Clearly,
we need automatic exception handling, especially for scalable
systems. Therefore, our approach automatically applies the
hierarchy of policies defined by users. Thus, the Actions
module of the Fault Manager component is able to take
action when some configurable condition is met. This way,
when a given threshold is reached, an alert e-mail can be sent,
or a program can be run, or an instant message can be issued.
Actions represent the first step towards the automation of the
management decisions in scientific workflows.

5.4. Data Management Functionalities

For the efficient management of the workflow data, we
propose to introduce the Data Manager component, which
will contact the underlying middleware in order to find
mappings between logical and physical file names, and will
generate metadata that will allow making associations
between files and the applications that produced or modified
them. We extend ActiveBPEL with disk usage
optimization techniques by implementing the algorithm
presented in (Ramakrishnan et. al., 2007). Hence, we
minimize the disk space footprint of scientific workflows by
removing data as soon as it is no longer needed and
scheduling the workflow tasks by first taking into account the
data requirements of the workflow and the data space
availability at the resources.

6. CONCLUSIONS AND FUTURE WORK

As we have shown above, from studying the existing
workflow languages and platforms we have concluded that
most of the current platforms do not provide a complete
coverage for aspects like abstract workflow specification,
data management, fault tolerance and interoperability with
multiple middleware systems. Our goal is to develop a
workflow platform that can offer all these functionalities, and
we believe that the best approach for achieving this goal is to
introduce an additional set of components to an existing open
source workflow engine. We chose the ActiveBPEL engine
due to the fact that it is based on the WSBPEL language,
which has the advantages of standardization and high
expressivity, and also due to its large community of users.
The next steps in this project are to elaborate more detailed
specifications for the proposed workflow engine components,
to define their interface with the platform’s lower and higher
levels and then to start the implementation. Performance is
also an important concern, so we intend to apply a benchmark
based method for comparing our platform with other similar
engines.

REFERENCES

Deelman, E., Singh, G., Su, M., Blythe, J., Gil, Y.,
Kesselman, C., Mehta, G., Vahi, K., Berriman, G. B.,
Good, J., Laity, A., Jacob, J. C., and Katz, D. S. 2005.

Pegasus: A framework for mapping complex scientific
workflows onto distributed systems. Sci. Program. 13, 3
(Jul. 2005), 219-237.

Foster, I.T., J.-S. V¨ockler, M.Wilde, and Y. Zhao (2003).
The virtual data grid: A new model and architecture for
data-intensive collaboration. In: CIDR.

Hull, D., K. Wolstencroft, R. Stevens, C. A. Goble, M. R.
Pocock, P. Li, and T. Oinn (2006). Taverna: a tool for
building and running workflows of services. In: Nucleic
Acids Research, 34(Web-Server-Issue):729–732.

Hwang, S. and C. Kesselman (2003). Gridworkflow: A
flexible failure handling framework for the grid. In:
HPDC, pages 126–137. IEEE Computer Society.

Kephart, J. O. and Chess, D. M. (2003). The vision of
autonomic computing. IEEE Computer, 36(1):41–50.

Kertész, A., Sipos, G. and Kacsuk, P., Brokering multi-grid
workflows in the P-GRADE portal. In: Euro-Par 2006:
Parallel Processing, vol. 4375, Springer, Berlin. pp. 138-
149.

Kosar, T. and Livny, M. 2004. Stork: Making Data
Placement a First Class Citizen in the Grid. In
Proceedings of the 24th international Conference on
Distributed Computing Systems (Icdcs'04) (March 24 -
26, 2004). ICDCS. IEEE Computer Society,
Washington, DC, 342-349.

G. von Laszewski, M. Hategan, Java CoG Kit
Karajan/Gridant workflow guide, tech. rep., Technical
Report, Argonne National Laboratory, Argonne, IL,
USA, 2005

Miles, S., P. T. Groth, M. Branco, and L. Moreau (2007). The
requirements of using provenance in e-science
experiments. In: Journal of Grid Computing, 5(1):1–25.

Miles, S., Munroe, M. Luck, and L. Moreau (2007).

Modelling the provenance of data in autonomous
systems. In E. H. Durfee, M. Yokoo, M. N. Huhns, and
O. Shehory, editors, AAMAS, page 50. IFAAMAS.

Nitzsche, J., Tammo van Lessen, D. Karastoyanova, and F.
Leymann (2007). BPEL for Semantic Web Services
(BPEL4SWS). Lecture Notes in: Computer Science,
Volume 4805/2007, Pages 179-188.

Plankensteiner, Kassian and Prodan, Radu and Fahringer,
Thomas and Kertesz, Attila and Kacsuk, Peter K. (2007)
Fault-tolerant behavior in state-of-the-art grid workflow
management systems. Technical Report. CoreGRID.

Ramakrishnan, A., G. Singh, H. Zhao, E. Deelman, R.
Sakellariou, K. Vahi, K. Blackburn, D. Meyers, M.
Samidi (2007). Scheduling Data-IntensiveWorkflows
onto Storage-Constrained Distributed Resources. In:
Seventh IEEE International Symposium on Cluster
Computing and the Grid. Pages 401-407.

Singh, G., C. Kesselman, and E. Deelman (2005). Optimizing
gridbased workflow execution. In: Journal of Grid
Computing, 3(3-4):201–219.

Subramanian, S., P. Thiran, N. Narendra, G. K. Mostefaoui,
 and Z. Maamar (2008). On the enhancement of bpel

engines for self-healing composite web services. IEEE
Computer Society.

Taylor, I. 2006. Triana Generations. In Proceedings of the
Second IEEE international Conference on E-Science and
Grid Computing (December 04 - 06, 2006). E-
SCIENCE. IEEE Computer Society, Washington, DC,
143.

Thain, D., T. Tannenbaum, and M. Livny (2005). Distributed
computing in practice: the condor experience. In:
CP&E, 17(2-4):323–356.

Yu, J., and R. Buyya (2005). A taxonomy of workflow
management systems for grid computing. In: Journal
Grid Comput., 3(3-4):171–200.

Zhao Y., Hategan, M., Clifford, B., Foster, I., vonLaszewski,
G., Raicu, I., Stef-Praun, T. and Wilde, M Swift: Fast,
Reliable, Loosely Coupled Parallel Computation IEEE
International Workshop on Scientific Workflows 2007

