Excited-state dynamics of dGMP measured by steady-state and femtosecond fluorescence spectroscopy. - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Physical Chemistry A Année : 2010

Excited-state dynamics of dGMP measured by steady-state and femtosecond fluorescence spectroscopy.

Résumé

The room-temperature fluorescence of 2'-deoxyguanosine 5'-monophosphate (dGMP) in aqueous solution is studied by steady-state and time-resolved fluorescence spectroscopy. The steady-state fluorescence spectrum of dGMP shows one band centered at 334 nm but has an extraordinary long red tail, extending beyond 700 nm. Both the fluorescence quantum yield and the relative weight of the 334 nm peak increase with the excitation wavelength. The initial fluorescence anisotropy after excitation at 267 nm is lower than 0.2 for all emission wavelengths, indicating an ultrafast S(2) --> S(1) internal conversion. The fluorescence decays depend strongly on the emission wavelength, getting longer with the wavelength. A rise time of 100-150 fs was observed for wavelengths longer than 450 nm, in accordance with a gradual red shift of the time-resolved spectra. The results are discussed in terms of a relaxation occurring mainly on the lowest excited (1)pi pi*-state surface toward a conical intersection with the ground state, in line with recent theoretical predictions. Our results show that the excited-state population undergoes a substantial "spreading out" before reaching the CI, explaining the complex dynamics observed.
Fichier principal
Vignette du fichier
Gustavsson_JPCA_Soep_Festschrift_revised_with_TOC.pdf (625.64 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00472739 , version 1 (13-04-2010)

Identifiants

Citer

F.A. Miannay, T. Gustavsson, A. Bányász, D. Markovitsi. Excited-state dynamics of dGMP measured by steady-state and femtosecond fluorescence spectroscopy.. Journal of Physical Chemistry A, 2010, 114 (9), pp.3256-3263. ⟨10.1021/jp909410b⟩. ⟨hal-00472739⟩
95 Consultations
185 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More