N
N

N

HAL

open science

Programming Sensor Networks Using REMORA
Component Model
Amirhosein Taherkordi, Frédéric Loiret, Azadeh Abdolrazaghi, Romain

Rouvoy, Quan Le-Trung, Frank Eliassen

» To cite this version:

Amirhosein Taherkordi, Frédéric Loiret, Azadeh Abdolrazaghi, Romain Rouvoy, Quan Le-Trung, et
al.. Programming Sensor Networks Using REMORA Component Model.
Conference on Distributed Computing in Sensor Systems (DCOSS’10), Jun 2010, Santa Barbara,

California, United States. pp.15. hal-00471516

HAL Id: hal-00471516
https://hal.science/hal-00471516
Submitted on 8 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

6th IEEE International

https://hal.science/hal-00471516
https://hal.archives-ouvertes.fr

Programming Sensor Networks Using
REMORA Component Model

Amirhosein Taherkordj Frécéric Loire€, Azadeh Abdolrazaghj
Romain Rouvoy?, Quan Le-Trung, and Frank Eliassén

1 University of Oslo, Department of Informatics
P.O. Box 1080 Blindern, N-0314 Oslo
{am r host, azadeha, rouvoy, quanl e, frank} @fi . ui 0. no
2 INRIA Lille — Nord Europe, ADAM Project-team,
University of Lille 1, LIFL CNRS UMR 8022,
F-59650 Villeneuve d’Ascq
{frederic.loiret, romain.rouvoy}@nria.fr

Abstract. The success of high-level programming modeldiiiteless Sensor Net-
works (WSNSs) is heavily dependent on factors such as ease of programatidg
well-structuring, degree of code reusability, and required softwareldgment effort.
Component-based programming has been recognized as an effggpiroach to meet
such requirements. Most of componentization efforts in WSNs werteirtefe due to
various reasons, such as high resource demand or limited scope. df tis paper,

we present RMORA, a new approach to practical and efficient component-based pro-
gramming in WSNs. RMORA offers a well-structured programming paradigm that
fits very well with resource limitations of embedded systems, including WENs
thermore, the special attention to event handling@vRRA makes our proposal more
practical for WSN applications, which are inherently event-driven.eMomportantly,

the mutualism between®&0ORA and underlying system software promises a new di-
rection towards separation of concerns in WSNs. Our evaluation rebolis that a
well-configured RMORA application has an acceptable memory overhead and a neg-
ligible CPU cost.

Key words: Wireless sensor networks, component model, event-driven.

1 Introduction

The recent increase in the number and size of WSN applicatiakgshigh-level program-
mingan essential need to the development of WSN platforms. Hawiaie concept is still
immature in the context of WSNs for various reasons. Firtlyexisting diversities in WSN
hardware and software platforms have brought the same ofdkversity to programming
models for such platforms [1]. Moreover, developers’ ekiperin state-of-the-art program-
ming models become useless in WSN programming as the walblesied discipline of
program specification is largely missing in this area. Sdothe structure of programming
models for WSNs are usually sacrificed for resource usagéegftig, thereby, the outcome
of such models is usually a piece of tangled code maintagnadly by its owner. Finally, ap-
plication programming in WSNSs typically requires learniogitlevel system programming
languages, which imposes a significant burden on the prageam
Softwarecomponentizatiohas been recognized as a well-structured programming model
able to tackle the above concerns. Separation of concemduylmreusability, controlling
cohesion and coupling, and provision of standard API areesofrthe main features of
component-based software engineerfag3]. Although using this paradigm in earlier em-
bedded systems was relatively successful [4—7], most oéffioets in the context of WSNs
remain inefficient or limited in the scope of usaN¥ OS programming model, isC [8],

2 A. Taherkordi et al.

is perhaps the most popular component model for WSNs. Wherea8€ Bases WSN pro-
gramming, this component model is tightly bound to thevO'S platform. Other proposals,
such as ®eNCoM [14] and THINK [20], are either too heavyweight for WSNs, ot able
to support event-driven programming, which is of high imtpoce in WSNSs.

In this paper, we presents#RORA, a lightweight component model designed for resource-
constraint embedded systems, including WSNs. The strongaalien promoted by this
model allows a wide range of embedded systems to exploit difegrent software lev-
els fromOperating SysterfOS) to application. To achieve this goalERORA provides a
very efficient mechanism for event management, as embedgsitations are inherently
event-driven. RMORA components are described in XML as an extension ofStevice
Component ArchitecturéSCA) model [10] in order to make WSN applications compli-
ant with the state-of-the-art componentization standakdsitionally, the C-like language
for component implementation inEMORA attracts both embedded system programmers
and PC-based developers to programming for WSNs. Finallj&RA features a coher-
ent mechanism for componenstantiationandproperty-based component configuration
order to facilitate lightweight event-driven programming/NSNs.

We demonstrate the promising result of deployingM®RA components on Contiki—
a leading operating system for WSNs [11]. The efficient use @iti features, such as
process management and event distribution [12], on the and,land the abstraction layer
linking REMORA to Contiki, on the other hand, promise a very effective andege ap-
proach towards practical high-level programming in WSNSs.

The rest of the paper is organized as follows. In Section &,stpecification of the
REMORA component model is presented. Section 3 describes lEWMORA is implemented,
while the evaluation results are reported in Section 4 oholy the assessment of a real
REMORA-based deployment. A survey of existing approaches ancastiston on RMORA
future work are presented in Section 5 and Section 6, reispbct

2 REMORA Component Model

In this section, we first discuss the primary design conde@EMORA and then we explain
the specifications of this component model. The design jpleg of REMORA include:
XML-based Component Description.To achieve simplicity and generality, we adopt XML
to describe components. The XML schema iBMRORA conforms to theService Compo-
nent Architecturéd SCA) notations in order to accelerate standardizatiomoflmonent-based
programming in WSNs. As SCA is originally designed for laggale systems-of-systems,
REMORA extends SCA with its own architectural concerns to achiegdistic component-
based programming in WSNSs.
C-like Language for Component Implementation. REMORA components are written in
a C-like language enhancing the C language with featuregppast component-based and
structured programming. This enhancement also attratitsdmobedded systems program-
mers and PC-based developers towards high-level prognagnmWWSNs.
OS Abstraction Layer. The REMORA component framework is integrated with underlying
operating system through a well-defined OS-abstractioarlayhis thin layer can easily
be developed for all WSN operating systems supporting thenQuiage like Contiki. This
feature ensures portability ofERIORA components towards different OSs. The abstraction
of REMORA becomes more valuable when the component framework isyeasifigured
to reuse OS-provided features, such as event processirtgsinscheduling.
Event Handling. Besides the support of events at operating system level bedded sys-
tems, we also need to consider event handling at the agplickatyer. REMORA proposes
a high-level support of event generation and event handlitdped, the event-processing
model of REMORA is one of its key features.

To describe our component model, we first define the basicstersed throughout
this paper. Figure 1 illustrates the development procefeafORA-based applications. A

REMORA Component Model 3

REMORA application consists of a set oERIORA Components, containing descriptions and
implementations of software modules. ThENRORA engineprocesses the components and
generates standard C code deployable within tae&RA framework The framework is an
OS-independent module supporting the specification of trerRA component model. Fi-
nally, the REMORA application is deployed on the target sensor node throug)REVMORA
runtime which is an OS-abstraction layer integrating the apgbceto the system software.

REMORA Components REMORA Deployable T
Engine Components Application)
o4 W L —
7 REMORA Framework z
il oig Operating System || .
Implementation °
Sensor Hardware

Fig. 1: Development process of RMORA -based applications.

2.1 Component Specification

A REMORA component contains two main artifacts: compordgascriptionand component
implementationThe component description is an XML document describireggpecifi-
cations of the component includisgrvicesreferencesproducedEventsonsumedEvents
andproperties A service describes the operations provided by the comypowdile a refer-
ence indicates the operations required by the compondwise, a producedEvent iden-
tifies an event type generated by a component, whereas armned&yvent specifies compo-
nent’s interest on receiving a particular event. The corepbimplementation is a C-like
program containing three types of operatiofgperations implementing the component’s
servicesji) operations processing events, dijdcomponent’s private operations.
To overview the RMORA specification, we first
. . . ILeds
present the RMORA-based implementation of the tradi - ’ISensAPP
tional blink application, then we discusseERIORA fea- | T____E: t itoggle
(O Service > Produce DProperty

tures in details. Figure 2 depicts the components involve

in this application which are in charge linkinga LED S reference 3} consume

on sensor node every three seconds. Fig.2: A simple REMORA-
We here focus on thelink component and describepased application.

it according to the RMORA component model. Figure 3

shows the XML description of this componemtink provides an Sensor App interface

to start application execution and requiresl &reds interface to switch LEDs on and off,

which is implemented by thieeds component. It also exposes a property tggl e a LED

on the sensor node. ABlink produces no event, th& oducer tag is empty, while it is

subscribed to receivBmerEvent and process it in thei mer Expi r ed function.

<componentType name="app.BlinkApp">
<service name="iSensorApp">
<interface.remora name="core.boot.api.ISensorApp"/>
</service>
<reference name="iLeds">
<interface.remora name="core.peripheral.api.ILeds"/>
</reference>
<property name="toggle" type="xsd:short">0</property>
<producer/>
<consumer operation="timerExpired">
<event.remora type="core.sys.TimerEvent" name="aTimeEvent"/>
</consumer>
</componentType>

Fig. 3: XML description of Blink component.

Figure 4 presents the excerpt of tBénk implementation. This C-like code imple-
ments the only function of théSensor App interface (unAppl i cati on) and handles
TimerEvent within the ti mer Expi r ed function. In ther unAppl i cati on function, we
specify that theTimerEvent generator {Ti meEvent . producer) is configured to gener-
ate periodicallyTimerEvent every three seconds. The last command in this function id use
to notify theTimerEvent generator to start time measurement. When time is explisayr

4 A. Taherkordi et al.

sets the attributes a@fTimeEvent (e.g, latency) and then the B1ORA framework calls the
ti mer Expi r ed function.

void runApplication () {
aTimeEvent.producer.configure (3*CLOCK_SECOND, 1/*periodic*/);
aTimeEvent.observation.start () ;
}
void timerExpired () {
if (this.toggle == 0) {
iLeds.onLeds (LEDS_RED) ;
this.toggle = 1;
telse{
iLeds.offlLeds (LEDS RED) ;
this.toggle = 0;
}
printf ("Time elapsed after interval: %d", aTimeEvent.latency);

}

Fig. 4: C-like implementation of Blink component.

Services and Reference€omponents offer their function asrvicesand may also depend
on services provided by other components, so caldéerencesA service consists of an
interface described in a separate XML with a name and the associatratims. Figure 5
presents the simplifiedLeds interface used by thelink component as a reference.

<interface.remora name="core.peripheral.api.ILeds">
<operation name="getLeds" return="xsd:unsignedByte"/>
<operation name="onLeds">
<in name="leds" type="xsd:unsignedByte"/>
</operation>
<operation name="offLeds">
<in name="leds" type="xsd:unsignedByte"/>
</operation>
</interface.remora>

Fig. 5: A simplified description of | Leds interface.

Component Properties.Properties are the editable parameters provided by eachaom
nent, converting components from a dead unit of functidy&ti an active entity tractable
during the application lifespan. In particular, this entement occurs in event producer
components, where we need to retain the state of the evedtiggnto generate accurate
events,e.g, the Timer component in the Blink application. Properties also enablapo-
nents to become eithstatelesor stateful A component is stateful if and only if it defines
a propertye.g, theBlink component is stateful, whilleeds is a stateless component.
Component Implementation.REMORA components are implemented by using a dialect of
C language with a set of new commands. This C-like languageisly proposed to support
the unique characteristics ofeRIORA, namely, component instantiation, event processing,
and property manipulation. Therefore, for pure comporeased programming without the
above features, the programmer can almost rely on C featdfesmplicitly introduced a
few of these commands within th&ink component implementation, while the complete
description of commands is available in [22].

2.2 Component Instantiation

Component instantiation is essentially proposed to maeéggently event producer com-
ponents. The RMORA engine greatly benefits from component instantiation wirgdrg
one producer to several consumers. For example, in the Blpmiication, the producer
(Timer) of TimerEvent should be instantiated per consumer component, whil&seeBut-
tonEvent generator is a single-instance component publishing anteweall subscribed
components when the user button on a sensor node is pressed.

Component instantiation is based on two principie3the component’s code is always
single-instance, anid) the component’sontextis duplicated per new instance. By compo-
nent context, we mean thiata structuregequired to handle the properties independently
from the component’s code. Thus, &RORA component becomesdatically reconfig-
urable and reusablentity and the memory overhead is kept very low by avoidindeco
duplication.

REMORA Component Model 5

REMORA proposes threenultiplicity typesfor the component’ contextraw-instance
(stateless componengingle-instanceand multiple-instancesThe REMORA engine fea-
tures an algorithm determining the multiplicity type of argaonent based o} whether
the component owns any properiiy, whether the component is an event producer,iand
the number of components subscribed to a specific event. Wieemtiltiplicity type is
determined, the BMORA engine statically allocates memory to each componentriosta

2.3 Event Management

The REMORA design comprehensively supports event-based interactietween compo-
nents. The event design principles igfRORA include:
Event Attributes. An event type in our approach can have a set of attributes spiétific
types. By defining attributes, the event producer can pethé event-specific information
to the event consumeg,g, thel at ency attribute ofTimerEvent in the Blink application.
Application Events vs OS EventsEvents in REMORA are eitherapplication-level events
or OS-eventsApplication events are generated by theMORA framework (likeTimer in
the Blink application), while the latter are generated by. ®8e REMORA runtime fea-
tures mechanisms to observe OS-events, translate thewoimesponding application-level
events, and publish them througleRORA components.
Event Observation Interface. This interface is proposed to specify the time period during
which events should be observed by producers, the listening period of a TCP/IP event
is the whole application lifespamtomaticobservation), while a Timer event is observed
according to the user-configured timmgnualobservation). RMORA proposes thevent
observation interfacén order to control the manual observations. This genetieriace
includes operations, such asart, pause, resunme, andt er mi nat e. If an event type
is manually observable, the associated event producetdshoplement this interface. By
doing that, the event consumer can handle the lifecyclesobbservation process by calling
operations in this interface without being aware of the eisgéed event producer.
Event Configuration Interface. An event type can have an interface enabling the event
consumer to configure event generation. Each componena@ragan event should imple-
ment the associated configuration interface identified énsghecification of the event. This
interface is designed to decouple completely the consuntettee producer.
Single Event Producer per Event Type.An event type in RMORA is produced byone
and only onecomponent. Instead of imposing the high overhead of defieusgt channels
and binding manually event consumers and producers, HnoRA frameworkautowires
producers and consumers. We believe that this constragd dot affect event-related re-
quirements of applications. In case of having two produgergerating one event type, we
can define a new event type, extended from the original ef@ndne of the producers.
Event Casting.Events in our proposal can be eitharicast or multicast Unicast is a one-
to-one connection between an event producer and an evestioen €.g, TimerEvent),
while a multicast event may be of interest to more than onepoorant €.g, UserButton-
Event). The REMORA framework distinguishes between these two types in ordienpoove
the efficiency of processing and distributing events. We aksed to clear how multiplicity
type of components on the one side, and unicast events arnitastilevents on the other
side are related. To this end, we define two invariants:
Invariantl: The consumer of a unicast event should be a raw-instancengiesinstance
component.
Invariant2: The producer of a multicast event should be a raw-instancgiragle-instance
component.

These invariants are mainly proposed to boost the efficiefieyent processing in the
ReEMORA framework. We do not support other event communication reelsesince it im-
plies to reify at runtime the source and the destination afhamt and to maintain complex
routing tables within the BMORA framework, which will induce significant overheads in

6 A. Taherkordi et al.

term of memory footprints and execution time. We believes¢hevariants do not limit
event-related logic of embedded applications.

Events Description.Similar to components, events have their own descriptiovhich are

in accordance to the event specification iBMORA, discussed above. Figure 6 presents a
simplified events description document of the Blink appl@ma This document consists of
two outer tagsevent . r enor a andevent . os, corresponding to the application events and
the OS-events, respectively.

<eventType>
<event.remora type="core.sys.TimerEvent" observation="manual" castType="unicast">
<attribute name="latency" type="xsd:int"/>
<configInterface>
<operation name="configure">
<in name="interval" type="xsd:int"/>
<in name="periodic" type="xsd:short"/>
</operation>
</configInterface>
</event.remora>
<event.os/>
</eventType>

Fig. 6: Application events description.

2.3.1 Event Management lllustration

Figure 7 illustrates the event management mechanism ingolitad in REMORA. We ex-
plain the mechanism based on the steps labeled in the figurendthe first two steps, the
event consumer can configure event generation and congnt ebservation by calling the
associated interfaces realized by the event producer coempoT hese steps in our sample
application are achieved in tigtink component (event consumer) by the code below:

aTi meEvent . producer. confi gur e(3* CLOCK.SECOND, 1);

aTi neEvent . observation.start();

Note that the programmer is not aware of thi@erEvent producer. She/he only knows
that theTimerEvent generator is expected to implement ttenf i gur e function defined in
the description offimerEvent (cf. Figure 6). TheTimerEvent producer should also imple-
ment the observation interface as the observation typgénafrEvent is manual.

Whereas the above steps are initiated by the programmer gettigwio steps are per-
formed by the RMORA framework. Step 3 is dedicated pwlling the producer compo-
nent to observe event occurrence. The event producer iscoioyl the RRMORA framework
through adispatcherfunction in the producer. In fact, the event observatioruogdn this
function. The polling process is started, paused, resuaraiierminated based on the pro-
grammer’s configuration for the event observation, pertminim step 2.

For application-level events, theeRIORA framework is in charge of calling periodically
this function, while for OS-events, BMORA invokes this function whenever an OS-event
is observed by the RMORA runtime. The RMORA runtime listens to only application-
requested OS-events, and delivers the relevant ones tmathewwork. The RMORA frame-
work then forwards the event to the corresponding OS-evelyzer component by calling
its dispatcher function.

Finally, in step 4, upon detecting an event in the dispat@inastion, the producer com-
ponent creates the associated event, fills the requireithaéts, and publishes it to the
ReEMORA framework. The framework in turn forwards the event to theeresting com-
ponents by calling their event handler function.

2.4 Components Assembly and Deployment

A typical WSN application may contain several implementadi@f a certain component
type due to the existing heterogeneity in such platformscdiafigure an application ac-
cording to the target platform, BMORA introduces componen@ssemblyequivalent to
compositecomponent in SCA). This XML document lists the applicati@amponents, as
well as bindings between their references and servicesird&i§ shows the configuration
of Blink application in which there is only one binding froBfink to thelLeds component

REMORA Component Model 7

Event Producer
Event
. ~_ realize Conf. Interface Consumer

Attribute 1 i O il i

Attribute n realize ~N Obsrv. Interface &
T y_ _ _dispatcher o]
1 1, !
0 <o '
1 | I
... RewomaFramework _______ | l

'i']" 'i' OS-events
REMORA Runtime |
Fig. 7: Event management mechanism in RMORA .

implementing thd Leds interface for the MSP430 microcontroller. Note that thergve
binding betweemlink andTimer is created automatically by theeERIORA framework.

<composite name="app.BlinkAppConfigurer">
<component name="ledControl">
<implementation.remora implementer="cmu.telosb.peripheral.Leds"/>
</component>
<component name="blink">
<implementation.remora implementer="app.BlinkApp"/>
</component>
<component name="timer">
<implementation.remora implementer="core.sys.Timer"/>
</component>
<wire source="blink/iLeds" target="ledControl/iLeds"/>
</composite>

Fig. 8: Blink application configuration.
Figure 9 demonstrates the four main phases of applicatiplogi@ent. The RMORA

Development Box encompasses specification-supportiifgcsg, as well agxternal Types
Definition—a set of C header files containing application’s type deingi It should be
noted that the component implementation can call OS liesatirough a set of system
APIs implemented by BMORA runtime components. Therefore, there is no hard-coded
dependencies betweereRORA implementers and the native API of the underlying OS.
In the next phase, the EMORA engine reads the elements of the development box and
also OS libraries in order to generate theNRORA framework including the source code
of components and OS-support code (for deployment). Thepslication object file will be
created through OS-provided facilities and finally deptbge sensor nodes.

RemorA Development Box ReMORA Engine RemORA Application
import enerate
S ** RS n || os |
Events Interface External Types ZJ o é_) support
Description | | Description Definition
4 o :'\j make
i include ™,
> b
Component l Application l
Description .
REMORA Runtime |

<xml> C-likecode
Components Component
Configuration Implementation
) Sensor Node
Fig. 9: REMORA -based development process.
3 Implementation

In this section, we discuss the key technologies, techsicaed methods used for the im-
plementation of RMORA. We structure this section according to the phases propfased
REMORA-based application development.

Operating System

System APIs l Sensor Hardware l

3.1 REMORA Engine

The REMORA engine is designed to analyze the implementations of cosmgerand gener-
ate the equivalent C code, as well as OS-support code. Tlieesisgvritten in Java because
of its cross-platform capabilities, as well as its strongmart for XML processing. Addi-
tionally, the object-oriented nature of Java simplifiesdbmplex process of code analyzing
and code generation. We briefly discuss the key design isguke engine below.

The first concern of the RMORA engine is the mechanism for parsing the C-like imple-
mentation of components. To this end, we have developedseparodule, which is orig-

8 A. Taherkordi et al.

inally generated by ANTLR—a widely used open-source parseemator [13]. We have
modified the generated parser to extraeM®RA-required information, such as name, sig-
nature, and body of implementation functions.

Dealing with events, component instantiation and compboenfiguration is the other
key part of the RMORA engine. This unit deduces the multiplicity type of compdsemd
generates the necessary data structures. It also featseesfavell-defined techniques, such
asin-component call graph analyzendcross-component call trackeo support stateful
components. The former concept is concerned with discogeantext-dependent functions
of a component, and the latter tracks the interactions lEtwemponents in order to retain
the state of components. Finally, the major task of this isaid embed framework-support
patches in the component implementation.

3.2 REMORA Framework

The REMORA framework is mainly designed to facilitate event managertesks, includ-
ing schedulinganddispatching To explain these tasks, we first introduce tgqueuedata
structures supporting our event model. The first queue ifcdestl to the event producer
components (PQ), while the second one is designed to maitt@ievent consumers (CQ).
We discuss here how thegRiorRA framework is built based on these data structures.

Schedulingin REMORA refers to all arrangements required énqueueand dequeue
event producers and event consumers. In particular, the coaicern isvhento enqueue/de-
queue a component amthoshould perform these tasks. ThelRoRrRA framework addresses
these issues based on the observation model of events. &opéx if an event iautomat-
ically observable, the associated producer component and alltiseribed consumers are
enqueued by the framework core during the applicationigtarhile in amanualobser-
vation, producer and consumer are placed respectively iafQCQ when the consumer
component calls thet art function of observation interface.

Figure 10 illustrates théispatchingmechanism in the framework including the sup-
porting data structures. IRolling, the REMORA framework continuously polls the Event-
Producer components througlispatcher—the globally known callback function. When-
ever a producer dispatches an evexits(Event), the framework casts this event to the ac-
tual event type, which is eith@rCastEvent(unicast event) oMCastEvent(multicast event).
UCastEvent will be directly forwarded to the subscribed consumer tigtothe callback
function pointer stored in th&/CastEvent. If a MCastEvent is generated, the framework
delivers it to all the interesting components formerly esued. For OS-events, the same
procedure is followed except the polling phase, which idquared by the operating sys-

tem.
Polling
J EventProducer 1 |-H EventProducer 2 |-E> w
produce y
)

AbstEvent

Forwarding Unicast Event

MCastEvent | MCastConsumer |+ —>| MCastConsumer |o|
L3 L

""""" Distributing Multicast Event J
Fig. 10: REMORA event processing mechanism.

3.3 REMORA Runtime

The current implementation of theERIORA runtime is a Contiki-compliargrocessunning
together with all otheautostartprocesses of Contiki. This process undertakes two tasks:
periodically scheduling the RwoRrRA framework (for polling event generator components)
to run, andii) listening to the OS-events and delivering the relevant coéke REMORA
framework. By relevant, we mean theeRORA runtime recognizes those OS-events that
are of interest to the application. To achieve such filterthg source code of this part is
generated by the BMORA engine according to the events description (cf. Sectioh &.3

REMORA Component Model 9

target application and then imported to theNRORA runtime. By doing that, we provide a
lightweight event distribution mechanism interpretindyosipplication-specific OS-events.

Additionally, the application code may need to use OS-ptedilibraries. RMORA pro-
poses system ARIrappercomponents for this purpose. In fact, these componentgakele
all high-level system calls to the corresponding OS-lexmttionse.g, thecur r ent Ti me()
function call in the system API is delegated to the Contikidtioncl ock_ti ne() . We of-
fer this API to fully decouple the application componentsnir OS modules and ensure
the portability of REMORA. If an application is not expected to be ported to other ptatf
types, the OS libraries can be directly called within the ponent implementation.

4 Evaluation

In this section, we first demonstrate and assess a reloRA-based application, then we
focus on the general performance figures @vi®RA.

4.1 A Real REMORA-based Deployment

Our real application scenario is a network-lespplication suiteconsisting of a set of mini
applications bundled together. This suite is basicallygiesd to provide services, such as
code propagatoandweb facilitiesin WSNs. We focus here on the first one and design it
based on the RMORA approach.

Code propagation becomes a very important need in WSNs whemeee to update
remotely the running application’s software [27]. The cqutepagator application is re-
sponsible for receiving all segments of a running applicesi object code over the network
and loading the new application image afterwards. The codpagator exploits the TCP
and UDP protocols to propagate code over the network. At fiGP is used to transfer new
code, block by block, to the sink node connected to the coglesitory machine, and then
UDP is used to broadcast wirelessly new code from a sink rodéher sensor nodes in the
network. When all blocks are received, the code propagagaisithe new application.

Figure 11 shows the components involved in the first part ofagplication scenario.
TCPListener is a core component listening to TCP events. This multipktainces event gen-
erator is created for each TCP event consumer componentimiijine listening port number.
For exampleCodePropagator receives data from port 651@ddePr opPor t), while We-
bListener is notified for allTCPEvents on port 80 (webPor t). CodePropagator stores all
blocks of new code in the external flash memory through #ie e interface implemented
by theFileSystem component. When all blocks are receiveddePropagator loads the new
application by calling the Loader interface from theELFLoader component. These two
interfaces are system APIs that delegate all applicatwatirequests to the OS-specific
libraries. Thel Net interface, implemented by thigetwork component, is also the other
system API providing the low-level network primitivesT@PListener.

ELFLoader

)
- FileSystem
————— >

IFile |

. ISensorApp

TCPEvent

-H
e
(o]
o
o
1]
‘ |

codePropPort[|
ELFFileName|[|
ELFFileId[|
fileOffset[]

Fig. 11: Code propagation application architecture.

As mentioned before, we adopt Contiki as our OS platform sessthe RMORA com-
ponent model. Contiki is being increasingly used in bothdecaia and industrial applica-
tions in a wide range of sensor node types. Additionally, t&ois written in the standard
C language and henceERORA can be easily ported to this platform. Finally, the great
support of Contiki on event processing and process managenaivate us to design and

10 A. Taherkordi et al.

implement the RMORA runtime on this OS. Our hardware platform is the popular 38lo
mote equipped with a 16-bit TI MSP430 MCU witi K B ROM and10K B RAM.

The concrete separation of concerns in this applicatioheditst visible advantage of
using REMORA. The second improvement is teasyreuse ofTCPListener for other TCP-
required applications, which is not the case in a non-coraptired implementation. In
particular, for each new application, we only need to intéa® thecontextof TCPListener
and configure its properties (like port number) accordipgly, WebListener in Figure 11.

Table 1 reports the memory requirement &NRORA and Contiki programming model
(protothread$ for implementing the code propagation application. Ascated in the table,
the REMORA-based development does not impose additional data memeriiead, while
it consumes extra32 bytes of code memory, which is essentially related to the obs
framework and runtime modules. This cost is paid once an@lfpregardless of the size
and the number of applications running on the sensor node.cbde memory cost can
be even further reduced by removing system ARistork, FileSystem, andELFLoader)
and calling directly the Contiki's libraries withiGodePropagator. Note that the overhead
of TCPListener can also be decreased when this component is shared forehaf ogher
applicationse.g, WebListener. Therefore, we can conclude that the memory overhead of
REMORA is negligible compared to the high-level features it pregito the end-user.

Table 1: The memory requirement of code propagation application in EMORA-based and
Contiki-based implementations.

Code Data

Programming Memory |[Memory
Model (bytes)| (bytes)
Contiki [722 72

Code Propagation Components
CodePropagator 252 36
TCPListener 310 0
System API Components
ELFLoader 38 0
REMORA|Network 92 0
FileSystem 68 0
REMORA Core

Framework and Runtime 494 14

Total 1254 50
REMORA overhead +532 -22

The rest of this section is devoted to the assessment of tiopeaformance figures of
REMORA, namely, memory footprints and CPU usage.

4.2 Memory Footprint

High memory usage has been one of the main reasons behinctesstulness of component-
based proposals for embedded systems.HM&RA, we have made a great effort to main-
tain memory costs as low as possible. The first step of thista#f to avoid creating meta-
data structures, which are not beneficial in a static depémtnDistinguishing unicast events
and multicast events has also led to a significant reduatiareimory footprints as RMORA
does not need to create any supporting data structure foastrevents.

The memory footprints in RMORA is categorized into a minimum overhead and a dy-
namic overhead. The former is paid once and for all, regasddé the amount of memory is
needed for the application components, while the latteeddp on the size of application.
Table 2 shows the minimum memory requirements 8fMRRA, which turn out to be quite
reasonable with respect to both code and data memory. Asonedtbefore, our sensor
node, TelosB, is equipped wittg K B of program memory antl0 K’ B of data memory. As
Contiki consumes roughl4 K B (without pIP support) of both these memoriegNRORA

REMORA Component Model 11

has a very low memory overhead considering the providedtitfasiand the remaining space
in the memory.

Table 3 shows the memory requirement of different types odufes in the RMORA
framework. The exact memory overhead &NRORA depends on how an application is con-
figured,e.g, an application, containing one single instance eventywedand one unicast
event, needs extra6 bytes g8 + 8 + 10) of both data and code memory. Ordinary com-
ponents do not impose any memory overhead BsI®RA does not create any meta data
structures for them. For other types of modulegM®RA keeps the data memory over-
heads very low as this memory in our platform is really scavée also believe that the code
memory overhead is not significant since a typical WSN apitinas small in size and it
may contain up to a few tens of components, including orgicamponents. It should be
noted that componentization itself reduces the memoryaibggnaximizing the reusability
degree of system functionalities like the one discusseldrcode propagation application.

Table 3: The memory requirement of dif-
ferent entities in REMORA.

Table 2: The minimum memory require- Code Data
ment of REMORA. . Memory Memory
Coda Daa Ent|-ty (bytes)| (bytes)
Memory|Memory Ordinary Component 0 0
Module (bytes) (bytes) Event \Slng_le Ins. 38 8
ProducefMultiple Ins. 42 10
Framework Corg 374 4 -

: Event |Unicast 0 10

Runtime Core 120 10 -
Total 794 12 Multicast 0 10
Multicast Event Consumer 30 6
OS Event 28 4
System API 4 0

4.3 CPU Usage

As energy cost of RMORA core is limited to only the use of the processing unit, we focu
on the processing cost of our approach and show tiEatdRA keeps the CPU usage at a
reasonable level, and in some configurations it even redd&&$ usage compared to the
Contiki-based application development.

To perform the evaluation, we set up a Blink application inakha varying number of
mirror components (1 to 15) switch LEDs on and off every sécdrhe two implementa-
tions of this application, Contiki-based an@RORA-based, were compared according to a
CPU measurement metric. The metric was to measure the arabtimte required by one
REMORA component and one Contiki process to switch LEDs six tintegettimes on and
three times off. With the less number of switches, we canribaet the exact timing differ-
ences as our hardware platform provides a timing accuratlyeadrder of one millisecond.

We started our evaluation by deploying an application like dbne presented in Sec-
tion 2.1 and measuring the CPU usage based on our metricclmest evaluation step, we
added a mirroBlink component to the application and measured again the timeeXperi-
ment was continued fdr5 times. We made the same measurement for a Contiki-based Blin
application and added a new Contiki Blink process in eagh $tigure 12 shows the evalu-
ation result of our scenario. When we have 8figk component/process, the CPU overhead
of both approaches is almost the same, indicating that thed®A runtime and frame-
work impose no additional processing overhead. When the auoficomponents/process
increases towardss, reduction in CPU usage is achieved in two dimensions.

Firstly, the number of CPU cycles forsRORA is slightly less than for the Contiki appli-
cation. This difference reaché8 milliseconds when Contiki undertakes runnihgBlink
processes. Therefore, we can conclude tlE8RA does not impose additional processing
overhead affecting the performance of the system. SecotiglyCPU usage of RMORA
application is reduced when the numberBlihk components is increased. This improve-

12 A. Taherkordi et al.

ment is achieved because the number of context switchesbetthe RMORA runtime
and the RMORA framework is significantly decreased when there are monet@reducer
componentsTimer) in PQ.

To clarify this issue, we assume that the application rugiime is7" and Contiki pe-
riodically allocates CPU to the BMORA runtime in this period. In each allocation round,
the runtime module invokes the event manager in tem&RA framework to poll the ap-
plication level event producers. Given that there Erproducers in PQ, the polling process
consumeds xt; of CPU, where; is the average processing cost of one element. Therefore,
the frequency of event manager calling (equal to the numbeomtext-switches) is in the
order of T/K xt;. Therefore, as the value &f is increased the number of context-switches
is decreased accordingly. Figure 13 shows the changes imutinéer of context-switches
when the number ofimer components is increased16. As a result, the maximum perfor-
mance in EMORA relies on the average number of event producer componeqtseaad
during the application lifespan, while in the worst casede/\few producers in the queue)
REMORA does not impose any additional processing cost.

T T T T T T 11000 T T T —— T T
6000 |- * * » * o . Context-switch overhead ----x---

"""""""""""""""""""""""""" 10000 |

5900 [T 9000

(ms)

8000
5800

7000

CPU Usage

5700 6000

Number of context-switches

5000 | *

5600 ~

4000 -
Remora ----x--
Contiki -~

‘ ‘ ‘ ‘ ‘ 3000 ‘ ‘ ‘ ‘ ‘ ‘

4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

Number of components Number of components
Fig.12: The ReEMORA-based implementationFig. 13: As the number of producer components
does not impose additional CPU overhead comin the queue is increased, the number of context

pared to the Contiki-based implementation. switches is significantly decreased.

5500
2

5 Existing Approaches

In this section, we survey the existing component-basedoagpes for node-level pro-
gramming on embedded system and WSNs. Most of these compaoelgis mainly aim
at building entire operating systems as an assembly of coengs.

In the area of WSNs, NSC [8] is perhaps the best known component model being
used to develop iINYOS [9]. As mentioned earlier, the main downside a9 is that it
is tightly bound to the TNYOS platform. Moreover, although 8¢C efficiently supports
event-driven programming, events ireSC are not considered as independent entities with
their own attributes and specifications. Therefore, théibtpmodel of event-related com-
ponents is not well-described as it is not essentially diesdrbased on the specification of
events. Additionally, the unique features oERORA, such as multiplicity in component
instance and property-based reconfiguration of compotteintg significant improvements
to component-based programming in WSNs comparedasON

Coulson et al. in [14] propose ®ENCOM as a generic component-based programming
model for building system applications without dependemeyany target-specific platform
environment. The authors express that they have tried td @RrENCOM with negligible
overhead for supporting features specific to a developmea, daowever it is a generic
model and basically developed for platforms without resewronstraints and tends to be
complex for embedded systems. To evaluate@CoM, we deployed a sampleeaconap-
plication [15], includingradio, Timer andBeacon components, on a TelosB node with Con-
tiki. Based on our measurements, the memory footprint af &piplication is significantly
high, so that it consumek 618 bytes of code memory arz bytes of data memory.

REMORA Component Model 13

The OSGi model [16] is a framework targeting powerful emheztidevices, such as
mobile phones and network gateways along with enterprisepoters. OSGi features a
secure execution environment, support for runtime recardigpn, lifecycle management,
and various system services. While OSGi is suitable for pfmvembedded devices, the
smallest implementation, Concierge [17] consumes mome&h& B of memory, making it
inappropriate for resource-constrained platforms.

OSKIT [18] is a set of ready-made components for building opegagiystems. OSK
is developed with a language callediK [19]. In contrast to MsC, KNIT is not limited
to OSKIT. OSKit has adapted the Microsoft COM model and is not primdocused on
embedded systems.

The THINK framework [20] is an implementation of theRECTAL [21] component
model applied to operating systems. The choice of the THINKEwork is motivated by
the fact that it allows fine-grained reconfiguration of comgats. Although the experiments
on deploying THINK components on WSNs have been quite promisi terms of memory
usage [23], the lack of application-level event supporhéhain hurdle for using THINK
in WSNs. LooClI [24] is another component-based approach, providingsdly-coupled
component infrastructure focusing on an event-based mgnaiodel for WSNs. However,
the Java-based implementation adaCl limits its usage to the SunSPOT sensor node.

6 Discussion, Conclusion and Future Direction

We presented RMORA, a novel programming abstraction for resource-constca@mebed-
ded systems. The main motivation behind proposiremBRA is to simplify high-level
event-driven programming in WSNs by a component-based apprdvoreover, involving
PC-based developers in WSN programming and consideringtdle af-the-art technolo-
gies for component development are two other challenge®saseld by RMORA. The spe-
cial consideration paid to the event abstraction BEM®RA makes it a practical and efficient
approach for WSN applications development. The other keyifes of REMORA include:
applicability on a wide range of embedded OSs, rich supdarbmponent reusability and
instantiation, and reduced effort and resource usage in W8&tgmming.

Careful restrictions on the B1ORA component model, including the lack of dynamic
memory allocation and avoiding M-to-N communications begw event producers and
event consumers bring significant improvements to thecstigployments in WSNSs. Since
one of our main future directions is to support dynamic congmt reconfiguration in RMORA [25—
27], we encounter a new major challenge on how to efficienttywiple such a feature in
REMORA so that the overhead of dynamic memory allocation is cdsefuinimized.

As mentioned earlier, the current goal G RORA is to be exploited only in application-
level programming. However, we believe that the efficiergpsrt of event processing in
REMORA potentially enables it to componentize system level fumzlities. In the Blink
application, we implicitly demonstrated this capability tedeveloping th&imer compo-
nent, which is essentially developed at the OS level. Toegidprecisely this issue, we need
to enhance the currenteRIORA implementation with features likeoncurrency suppoyt
task schedulingandinterrupts handling

In our current implementation, aBRORA process cannot be preempted by any other
process in the operating system. This issue becomes tritieen a component execution
takes a long time to complete and it causes large averagmgvéiines for other processes
waiting for the CPU. The event handling model cfFRORA can be used to provide preemp-
tion by defining a new event type per preemption-requiredtgafiapplication, while in this
case the component implementation and the event managée@mne quite complicated.
This concern will also be considered in the future extersimm REMORA. In particular,
we intend to promote the native Contiki macros, handlingess lifecycle, to the RMORA
application level. In this way, the B1ORA component becomes preemptable by explicitly
yielding the running process.

14 A. Taherkordi et al.

Beside the fact that RMORA provides a strong abstraction for single node program-
ming, the same level of programming abstraction is expett@dcur at the network level.
This challenge opens up another key area for future work: teomake REMORA compo-
nents distributed by the provision of a well-defined remat@cation mechanism.

Acknowledgments. This work was partly funded by the Research Council of Norway
through the project SWISNET, grant number 176151.

References

1. Sugihara, R., Gupta, R.K.: Programming models for sensor mnetwé survey. ACM. Trans.
Sensor Networks 4(2), 1-29 (2008)
2. C. Szyperski. Component Software: Beyond Object-Orientedr@mging. Second edition,
ACM, Press and Addison-Wesley, New York, N.Y. (2002)
3. F. Bachmann, L. et al.: Technical Concepts of Component-Bag&diare Engineering, 2nd Edi-
tion. Carnegie Mellon Software Engineering Institute (2000)
4. Ommering, R., Linden, F., Kramer, J., Magee, J.: The Koalapoomant model for consumer
electronics software, IEEE Computer, vol. 33, no. 3 (2000)
5. Winter, M. et al.: Components for embedded software: the PEC@®agh. In Proc. of the
CASES’02, ACM Press, NY (2002)
6. Hansson, H., Akerholm, M., Crnkovic, ., Torngren, M.: S@@M-a component model for safety-
critical real-time systems. In Proc. of the IEEE Euromicro Confer¢2064)
7. Plsek, A, Loiret, F., Merle, P., Seinturier, L.: A Component Feaork for Java-Based Real-Time
Embedded Systems. In Proc. of the ACM/IFIP/USENIX 9th Middlewaf®g)
8. Gay, D. et al.: The nesC Language: A Holistic Approach to NetwoBethedded Systems, In
Proc. of the SIGPLAN Conference on Prog. Language Design apd (2003)
9. Levis, P. et al.: TinyOS: An Operating System for Sensor Netw@tkeient Intelligence (2005)
10. http:// ww. oasi s- opencsa. or g/ sca
11. Dunkels, A., Gonvall, B., Voigt, T.: Contiki - a lightweight and flexible operating systemtfioy
networked sensors, in Proc. of 1st Wkshp. on Embedded Netw&w#wesors (2004)
12. Dunkels, A., Schmidt, O., Voigt, T., Ali, M.: Protothreads: Simplifyievent-Driven Program-
ming of Memory-Constrained Embedded Systems, Proc. ACM Se(&)36)
13. ANTLR. Websiteht t p: // www. antlr. org
14. Coulson, G. et al.: A generic component model for building syswsftware. ACM Trans. Com-
puter Systems, 1-42 (2008)
15. WISEBED. htt p: // www. wi sebed. eu/ wi ki / pmni Ki . php?n=Mai n. Gsaappl
16. The OSGi Alliance. The OSGi framework. http://www.0sgi.org, 1999
17. Rellermeyer, J., Alonso, G., Concierge: A Service Platform gsdrrce-Constrained Devices, in
ACM SIGOPS Operating Systems Review, Vol. 41, No. 3, June 20024p- 258
18. Ford, B., Back, G., Benson, G., Lepreau, J., Lin, A., Skiv@.: The Flux OSKit: A Substrate for
Kernel and Language Research, Operating Systems Principles) (1997
19. Reid, A., Flatt, M., Stoller, L., Lepreau, J., Eide, E.: Knit: ComgainComposition for Systems
Software, Operating Systems Design and Implementation (OSDI) (2000)
20. Fassino, J.-P., Stefani, J.-B., Lawall, J., Muller, G.: ThinkoAware framework for component-
based operating system kernels. In Proc. of the USENIX AnnualéZente (2002)
21. Bruneton, E., Coupaye, T., Leclercq, M., &xa, V., Stefani, J., B.: TheRACTAL component
model and its support in Java. Softw., Pract. Exper. (2006)
22. REMORA. Websiteht t p: // f ol k. ui 0. no/ am rhost/renora
23. Lobry, O., Navas, J., Babau, J.: Optimizing Component-BaseleHded Software, 2nd IEEE
Workshop on Component-Based Design of Resource-ConstraireedCEYMPSAC-09, (2009)
24. Hughes, D. et al.: LooCl: A loosely-coupled component infuastire for networked embedded
systems, Mobile computing Multimedia, (2009)
25. Taherkordi, A. et al.: WK |IT: A Distributed Middleware to Support Application-level Adapta-
tion in Sensor Networks, In Proc. of DAIS’09, LNCS vol. 5523, Podt1¢2009)
26. Taherkordi, A., Rouvoy, R., Le-Trung, Q., Eliassen, F.: Af-B8eaptive Context Processing
Framework for Wireless Sensor Networks, In Proc. of ACM MidSe8sBelgium, (2008)
27. Mottola, L. et al.: Selective Reprogramming of Mobile Sensor Nets/tirrough Social Commu-
nity Detection, In Proc. of EWSN'’10, Portugal, (2010)

