
HAL Id: hal-00471516
https://hal.science/hal-00471516

Submitted on 8 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programming Sensor Networks Using REMORA
Component Model

Amirhosein Taherkordi, Frédéric Loiret, Azadeh Abdolrazaghi, Romain
Rouvoy, Quan Le-Trung, Frank Eliassen

To cite this version:
Amirhosein Taherkordi, Frédéric Loiret, Azadeh Abdolrazaghi, Romain Rouvoy, Quan Le-Trung, et
al.. Programming Sensor Networks Using REMORA Component Model. 6th IEEE International
Conference on Distributed Computing in Sensor Systems (DCOSS’10), Jun 2010, Santa Barbara,
California, United States. pp.15. �hal-00471516�

https://hal.science/hal-00471516
https://hal.archives-ouvertes.fr

Programming Sensor Networks Using
REMORA Component Model

Amirhosein Taherkordi1, Fréd́eric Loiret2, Azadeh Abdolrazaghi1,
Romain Rouvoy1,2, Quan Le-Trung1, and Frank Eliassen1

1 University of Oslo, Department of Informatics
P.O. Box 1080 Blindern, N-0314 Oslo

{amirhost,azadeha,rouvoy,quanle,frank}@ifi.uio.no
2 INRIA Lille – Nord Europe, ADAM Project-team,

University of Lille 1, LIFL CNRS UMR 8022,
F-59650 Villeneuve d’Ascq

{frederic.loiret,romain.rouvoy}@inria.fr

Abstract. The success of high-level programming models inWireless Sensor Net-
works (WSNs) is heavily dependent on factors such as ease of programming, code
well-structuring, degree of code reusability, and required software development effort.
Component-based programming has been recognized as an effective approach to meet
such requirements. Most of componentization efforts in WSNs were ineffective due to
various reasons, such as high resource demand or limited scope of use. In this paper,
we present REMORA, a new approach to practical and efficient component-based pro-
gramming in WSNs. REMORA offers a well-structured programming paradigm that
fits very well with resource limitations of embedded systems, including WSNs. Fur-
thermore, the special attention to event handling in REMORA makes our proposal more
practical for WSN applications, which are inherently event-driven. More importantly,
the mutualism between REMORA and underlying system software promises a new di-
rection towards separation of concerns in WSNs. Our evaluation results show that a
well-configured REMORA application has an acceptable memory overhead and a neg-
ligible CPU cost.

Key words: Wireless sensor networks, component model, event-driven.

1 Introduction
The recent increase in the number and size of WSN applicationsmakeshigh-level program-
mingan essential need to the development of WSN platforms. However, this concept is still
immature in the context of WSNs for various reasons. Firstly,the existing diversities in WSN
hardware and software platforms have brought the same orderof diversity to programming
models for such platforms [1]. Moreover, developers’ expertise in state-of-the-art program-
ming models become useless in WSN programming as the well-established discipline of
program specification is largely missing in this area. Secondly, the structure of programming
models for WSNs are usually sacrificed for resource usage efficiency, thereby, the outcome
of such models is usually a piece of tangled code maintainable only by its owner. Finally, ap-
plication programming in WSNs typically requires learning low-level system programming
languages, which imposes a significant burden on the programmer.

Softwarecomponentizationhas been recognized as a well-structured programming model
able to tackle the above concerns. Separation of concerns, module reusability, controlling
cohesion and coupling, and provision of standard API are some of the main features of
component-based software engineering[2, 3]. Although using this paradigm in earlier em-
bedded systems was relatively successful [4–7], most of theefforts in the context of WSNs
remain inefficient or limited in the scope of use. TINYOS programming model, NESC [8],

2 A. Taherkordi et al.

is perhaps the most popular component model for WSNs. Whereas NESC eases WSN pro-
gramming, this component model is tightly bound to the TINYOS platform. Other proposals,
such as OPENCOM [14] and THINK [20], are either too heavyweight for WSNs, or not able
to support event-driven programming, which is of high importance in WSNs.

In this paper, we present REMORA, a lightweight component model designed for resource-
constraint embedded systems, including WSNs. The strong abstraction promoted by this
model allows a wide range of embedded systems to exploit it atdifferent software lev-
els fromOperating System(OS) to application. To achieve this goal, REMORA provides a
very efficient mechanism for event management, as embedded applications are inherently
event-driven. REMORA components are described in XML as an extension of theService
Component Architecture(SCA) model [10] in order to make WSN applications compli-
ant with the state-of-the-art componentization standards. Additionally, the C-like language
for component implementation in REMORA attracts both embedded system programmers
and PC-based developers to programming for WSNs. Finally, REMORA features a coher-
ent mechanism for componentinstantiationandproperty-based component configurationin
order to facilitate lightweight event-driven programmingin WSNs.

We demonstrate the promising result of deploying REMORA components on Contiki—
a leading operating system for WSNs [11]. The efficient use of Contiki features, such as
process management and event distribution [12], on the one hand, and the abstraction layer
linking REMORA to Contiki, on the other hand, promise a very effective and generic ap-
proach towards practical high-level programming in WSNs.

The rest of the paper is organized as follows. In Section 2, the specification of the
REMORA component model is presented. Section 3 describes how REMORA is implemented,
while the evaluation results are reported in Section 4 including the assessment of a real
REMORA-based deployment. A survey of existing approaches and a discussion on REMORA

future work are presented in Section 5 and Section 6, respectively.

2 REMORA Component Model

In this section, we first discuss the primary design conceptsin REMORA and then we explain
the specifications of this component model. The design principles of REMORA include:
XML-based Component Description.To achieve simplicity and generality, we adopt XML
to describe components. The XML schema in REMORA conforms to theService Compo-
nent Architecture(SCA) notations in order to accelerate standardization of component-based
programming in WSNs. As SCA is originally designed for large-scale systems-of-systems,
REMORA extends SCA with its own architectural concerns to achieve realistic component-
based programming in WSNs.
C-like Language for Component Implementation.REMORA components are written in
a C-like language enhancing the C language with features to support component-based and
structured programming. This enhancement also attracts both embedded systems program-
mers and PC-based developers towards high-level programming in WSNs.
OS Abstraction Layer. The REMORA component framework is integrated with underlying
operating system through a well-defined OS-abstraction layer. This thin layer can easily
be developed for all WSN operating systems supporting the C language like Contiki. This
feature ensures portability of REMORA components towards different OSs. The abstraction
of REMORA becomes more valuable when the component framework is easily configured
to reuse OS-provided features, such as event processing andtask scheduling.
Event Handling. Besides the support of events at operating system level in embedded sys-
tems, we also need to consider event handling at the application layer. REMORA proposes
a high-level support of event generation and event handling. Indeed, the event-processing
model of REMORA is one of its key features.

To describe our component model, we first define the basic terms used throughout
this paper. Figure 1 illustrates the development process ofREMORA-based applications. A

REMORA Component Model 3

REMORA application consists of a set of REMORA Components, containing descriptions and
implementations of software modules. The REMORA engineprocesses the components and
generates standard C code deployable within the REMORA framework. The framework is an
OS-independent module supporting the specification of the REMORA component model. Fi-
nally, the REMORA application is deployed on the target sensor node through the REMORA

runtime, which is an OS-abstraction layer integrating the application to the system software.

REMORA Framework

Description

<xml>

Implementation

C-like

REMORA Components

REMORA Runtime

Operating System

Sensor Hardware

ApplicationREMORA

Engine

S
e
n

s
o

r N
o

d
e

Deployable

Components

Fig. 1: Development process of REMORA -based applications.

2.1 Component Specification

A REMORA component contains two main artifacts: componentdescriptionand component
implementation. The component description is an XML document describing the specifi-
cations of the component includingservices, references, producedEvents, consumedEvents,
andproperties. A service describes the operations provided by the component, while a refer-
ence indicates the operations required by the component. Likewise, a producedEvent iden-
tifies an event type generated by a component, whereas a consumedEvent specifies compo-
nent’s interest on receiving a particular event. The component implementation is a C-like
program containing three types of operations:i) operations implementing the component’s
services,ii) operations processing events, andiii) component’s private operations.

BlinkBlink

Reference Consume

ProduceService Property

ISensApp

toggle

ServiceSer

Timer

TimerEvent

Tim

Leds ILeds

Ref

Ser

RefRefRefRefRefRefRefRef

API Tim

Fig. 2: A simple REMORA -
based application.

To overview the REMORA specification, we first
present the REMORA-based implementation of the tradi-
tional blink application, then we discuss REMORA fea-
tures in details. Figure 2 depicts the components involved
in this application which are in charge ofblinkinga LED
on sensor node every three seconds.

We here focus on theBlink component and describe
it according to the REMORA component model. Figure 3
shows the XML description of this component.Blink provides anISensorApp interface
to start application execution and requires anILeds interface to switch LEDs on and off,
which is implemented by theLeds component. It also exposes a property totoggle a LED
on the sensor node. AsBlink produces no event, theproducer tag is empty, while it is
subscribed to receiveTimerEvent and process it in thetimerExpired function.

<componentType name="app.BlinkApp">
<service name="iSensorApp">

<interface.remora name="core.boot.api.ISensorApp"/>
</service>
<reference name="iLeds">

<interface.remora name="core.peripheral.api.ILeds"/>
</reference>
<property name="toggle" type="xsd:short">0</property>
<producer/>
<consumer operation="timerExpired">

<event.remora type="core.sys.TimerEvent" name="aTimeEvent"/>
</consumer>

</componentType>

Fig. 3: XML description of Blink component.

Figure 4 presents the excerpt of theBlink implementation. This C-like code imple-
ments the only function of theISensorApp interface (runApplication) and handles
TimerEvent within the timerExpired function. In therunApplication function, we
specify that theTimerEvent generator (aTimeEvent.producer) is configured to gener-
ate periodicallyTimerEvent every three seconds. The last command in this function is used
to notify theTimerEvent generator to start time measurement. When time is expired,Timer

4 A. Taherkordi et al.

sets the attributes ofaTimeEvent (e.g., latency) and then the REMORA framework calls the
timerExpired function.

void runApplication(){
aTimeEvent.producer.configure(3*CLOCK_SECOND, 1/*periodic*/);
aTimeEvent.observation.start();

}
void timerExpired(){
if (this.toggle == 0){

iLeds.onLeds(LEDS_RED);
this.toggle = 1;

}else{
iLeds.offLeds(LEDS_RED);
this.toggle = 0;

}
printf("Time elapsed after interval: %d", aTimeEvent.latency);

}

Fig. 4: C-like implementation of Blink component.

Services and References.Components offer their function asservicesand may also depend
on services provided by other components, so calledreferences. A service consists of an
interface, described in a separate XML with a name and the associated operations. Figure 5
presents the simplifiedILeds interface used by theBlink component as a reference.

<interface.remora name="core.peripheral.api.ILeds">
<operation name="getLeds" return="xsd:unsignedByte"/>
<operation name="onLeds">

<in name="leds" type="xsd:unsignedByte"/>
</operation>
<operation name="offLeds">

<in name="leds" type="xsd:unsignedByte"/>
</operation>

</interface.remora>

Fig. 5: A simplified description of ILeds interface.

Component Properties.Properties are the editable parameters provided by each compo-
nent, converting components from a dead unit of functionality to an active entity tractable
during the application lifespan. In particular, this enhancement occurs in event producer
components, where we need to retain the state of the event producer to generate accurate
events,e.g., theTimer component in the Blink application. Properties also enablecompo-
nents to become eitherstatelessor stateful. A component is stateful if and only if it defines
a property,e.g., theBlink component is stateful, whileLeds is a stateless component.
Component Implementation.REMORA components are implemented by using a dialect of
C language with a set of new commands. This C-like language ismainly proposed to support
the unique characteristics of REMORA, namely, component instantiation, event processing,
and property manipulation. Therefore, for pure component-based programming without the
above features, the programmer can almost rely on C features. We implicitly introduced a
few of these commands within theBlink component implementation, while the complete
description of commands is available in [22].

2.2 Component Instantiation

Component instantiation is essentially proposed to manageefficiently event producer com-
ponents. The REMORA engine greatly benefits from component instantiation when linking
one producer to several consumers. For example, in the Blinkapplication, the producer
(Timer) of TimerEvent should be instantiated per consumer component, while theUserBut-
tonEvent generator is a single-instance component publishing an event to all subscribed
components when the user button on a sensor node is pressed.

Component instantiation is based on two principles:i) The component’s code is always
single-instance, andii) the component’scontextis duplicated per new instance. By compo-
nent context, we mean thedata structuresrequired to handle the properties independently
from the component’s code. Thus, a REMORA component becomes astatically reconfig-
urable and reusableentity and the memory overhead is kept very low by avoiding code
duplication.

REMORA Component Model 5

REMORA proposes threemultiplicity typesfor the component’ context:raw-instance
(stateless component),single-instance, andmultiple-instances. The REMORA engine fea-
tures an algorithm determining the multiplicity type of a component based on:i) whether
the component owns any property,ii) whether the component is an event producer, andiii)
the number of components subscribed to a specific event. When the multiplicity type is
determined, the REMORA engine statically allocates memory to each component instance.

2.3 Event Management

The REMORA design comprehensively supports event-based interactions between compo-
nents. The event design principles in REMORA include:
Event Attributes. An event type in our approach can have a set of attributes withspecific
types. By defining attributes, the event producer can provide the event-specific information
to the event consumer,e.g., thelatency attribute ofTimerEvent in the Blink application.
Application Events vs OS Events.Events in REMORA are eitherapplication-level events
or OS-events. Application events are generated by the REMORA framework (likeTimer in
the Blink application), while the latter are generated by OS. The REMORA runtime fea-
tures mechanisms to observe OS-events, translate them intocorresponding application-level
events, and publish them through REMORA components.
Event Observation Interface.This interface is proposed to specify the time period during
which events should be observed by producers,e.g., the listening period of a TCP/IP event
is the whole application lifespan (automaticobservation), while a Timer event is observed
according to the user-configured time (manualobservation). REMORA proposes theevent
observation interfacein order to control the manual observations. This generic interface
includes operations, such asstart, pause, resume, andterminate. If an event type
is manually observable, the associated event producer should implement this interface. By
doing that, the event consumer can handle the lifecycle of the observation process by calling
operations in this interface without being aware of the associated event producer.
Event Configuration Interface. An event type can have an interface enabling the event
consumer to configure event generation. Each component producing an event should imple-
ment the associated configuration interface identified in the specification of the event. This
interface is designed to decouple completely the consumer and the producer.
Single Event Producer per Event Type.An event type in REMORA is produced byone
and only onecomponent. Instead of imposing the high overhead of definingevent channels
and binding manually event consumers and producers, the REMORA frameworkautowires
producers and consumers. We believe that this constraint does not affect event-related re-
quirements of applications. In case of having two producersgenerating one event type, we
can define a new event type, extended from the original event,for one of the producers.
Event Casting.Events in our proposal can be eitherunicast, or multicast. Unicast is a one-
to-one connection between an event producer and an event consumer (e.g., TimerEvent),
while a multicast event may be of interest to more than one component (e.g., UserButton-
Event). The REMORA framework distinguishes between these two types in order toimprove
the efficiency of processing and distributing events. We also need to clear how multiplicity
type of components on the one side, and unicast events and multicast events on the other
side are related. To this end, we define two invariants:
Invariant1:The consumer of a unicast event should be a raw-instance or single-instance

component.
Invariant2:The producer of a multicast event should be a raw-instance orsingle-instance

component.
These invariants are mainly proposed to boost the efficiencyof event processing in the

REMORA framework. We do not support other event communication schemes since it im-
plies to reify at runtime the source and the destination of anevent and to maintain complex
routing tables within the REMORA framework, which will induce significant overheads in

6 A. Taherkordi et al.

term of memory footprints and execution time. We believe these invariants do not limit
event-related logic of embedded applications.
Events Description.Similar to components, events have their own descriptions,which are
in accordance to the event specification in REMORA, discussed above. Figure 6 presents a
simplified events description document of the Blink application. This document consists of
two outer tags:event.remora andevent.os, corresponding to the application events and
the OS-events, respectively.
<eventType>
<event.remora type="core.sys.TimerEvent" observation="manual" castType="unicast">
<attribute name="latency" type="xsd:int"/>
<configInterface>
<operation name="configure">
<in name="interval" type="xsd:int"/>
<in name="periodic" type="xsd:short"/>
</operation>

</configInterface>
</event.remora>
<event.os/>
</eventType>

Fig. 6: Application events description.

2.3.1 Event Management Illustration
Figure 7 illustrates the event management mechanism implemented in REMORA. We ex-

plain the mechanism based on the steps labeled in the figure. During the first two steps, the
event consumer can configure event generation and control event observation by calling the
associated interfaces realized by the event producer component. These steps in our sample
application are achieved in theBlink component (event consumer) by the code below:

aTimeEvent.producer.configure(3*CLOCK SECOND, 1);

aTimeEvent.observation.start();

Note that the programmer is not aware of theTimerEvent producer. She/he only knows
that theTimerEvent generator is expected to implement theconfigure function defined in
the description ofTimerEvent (cf. Figure 6). TheTimerEvent producer should also imple-
ment the observation interface as the observation type ofTimerEvent is manual.

Whereas the above steps are initiated by the programmer, the next two steps are per-
formed by the REMORA framework. Step 3 is dedicated topolling the producer compo-
nent to observe event occurrence. The event producer is polled by the REMORA framework
through adispatcherfunction in the producer. In fact, the event observation occurs in this
function. The polling process is started, paused, resumed,and terminated based on the pro-
grammer’s configuration for the event observation, performed in step 2.

For application-level events, the REMORA framework is in charge of calling periodically
this function, while for OS-events, REMORA invokes this function whenever an OS-event
is observed by the REMORA runtime. The REMORA runtime listens to only application-
requested OS-events, and delivers the relevant ones to the framework. The REMORA frame-
work then forwards the event to the corresponding OS-event producer component by calling
its dispatcher function.

Finally, in step 4, upon detecting an event in the dispatcherfunction, the producer com-
ponent creates the associated event, fills the required attributes, and publishes it to the
REMORA framework. The framework in turn forwards the event to the interesting com-
ponents by calling their event handler function.

2.4 Components Assembly and Deployment

A typical WSN application may contain several implementations of a certain component
type due to the existing heterogeneity in such platforms. Toconfigure an application ac-
cording to the target platform, REMORA introduces componentsassembly(equivalent to
compositecomponent in SCA). This XML document lists the application components, as
well as bindings between their references and services. Figure 8 shows the configuration
of Blink application in which there is only one binding fromBlink to theLeds component

REMORA Component Model 7

REMORA Framework

1

2

3
4

REMORARuntime

OS-events

Event Producer

Event

Attribute 1

nt
realize

Attribute n
realize

dispatcher

Event

ConsumerCoConf. Interface

Obsrv. Interface

handler

rea

Fig. 7: Event management mechanism in REMORA .

implementing theILeds interface for the MSP430 microcontroller. Note that the event-
binding betweenBlink andTimer is created automatically by the REMORA framework.

<composite name="app.BlinkAppConfigurer">
<component name="ledControl">

<implementation.remora implementer="cmu.telosb.peripheral.Leds"/>
</component>
<component name="blink">

<implementation.remora implementer="app.BlinkApp"/>
</component>
<component name="timer">

<implementation.remora implementer="core.sys.Timer"/>
</component>
<wire source="blink/iLeds" target="ledControl/iLeds"/>

</composite>

Fig. 8: Blink application configuration.
Figure 9 demonstrates the four main phases of application deployment. The REMORA

Development Box encompasses specification-supporting artifacts, as well asExternal Types
Definition—a set of C header files containing application’s type definitions. It should be
noted that the component implementation can call OS libraries through a set of system
APIs implemented by REMORA runtime components. Therefore, there is no hard-coded
dependencies between REMORA implementers and the native API of the underlying OS.
In the next phase, the REMORA engine reads the elements of the development box and
also OS libraries in order to generate the REMORA framework including the source code
of components and OS-support code (for deployment). Then, application object file will be
created through OS-provided facilities and finally deployed on sensor nodes.

Events

Description

<xml>

Interface

Description

<xml>

External Types

Definition

C code

Component

Description

<xml>

Component

Implementation

C-likecode

Components

Configuration

<xml>

REMORA Development Box REMORA Engine

OS

Libs REMORA Runtime

Operating System

Sensor Hardware

.c .h

REMORA Application

Application

ApplAppl

Sensor Node

make
include

generateimport
OS

support

Remora-based

System APIs

Fig. 9: REMORA -based development process.

3 Implementation
In this section, we discuss the key technologies, techniques, and methods used for the im-
plementation of REMORA. We structure this section according to the phases proposedfor
REMORA-based application development.

3.1 REMORA Engine

The REMORA engine is designed to analyze the implementations of components and gener-
ate the equivalent C code, as well as OS-support code. The engine is written in Java because
of its cross-platform capabilities, as well as its strong support for XML processing. Addi-
tionally, the object-oriented nature of Java simplifies thecomplex process of code analyzing
and code generation. We briefly discuss the key design issuesof the engine below.

The first concern of the REMORA engine is the mechanism for parsing the C-like imple-
mentation of components. To this end, we have developed a parser module, which is orig-

8 A. Taherkordi et al.

inally generated by ANTLR—a widely used open-source parser generator [13]. We have
modified the generated parser to extract REMORA-required information, such as name, sig-
nature, and body of implementation functions.

Dealing with events, component instantiation and component configuration is the other
key part of the REMORA engine. This unit deduces the multiplicity type of components and
generates the necessary data structures. It also features aset of well-defined techniques, such
as in-component call graph analyzerandcross-component call trackerto support stateful
components. The former concept is concerned with discovering context-dependent functions
of a component, and the latter tracks the interactions between components in order to retain
the state of components. Finally, the major task of this partis to embed framework-support
patches in the component implementation.

3.2 REMORA Framework

The REMORA framework is mainly designed to facilitate event management tasks, includ-
ing schedulinganddispatching. To explain these tasks, we first introduce twoqueuedata
structures supporting our event model. The first queue is dedicated to the event producer
components (PQ), while the second one is designed to maintain the event consumers (CQ).
We discuss here how the REMORA framework is built based on these data structures.

Schedulingin REMORA refers to all arrangements required toenqueueand dequeue
event producers and event consumers. In particular, the main concern iswhento enqueue/de-
queue a component andwhoshould perform these tasks. The REMORA framework addresses
these issues based on the observation model of events. For example, if an event isautomat-
ically observable, the associated producer component and all the subscribed consumers are
enqueued by the framework core during the application startup, while in amanualobser-
vation, producer and consumer are placed respectively in PQand CQ when the consumer
component calls thestart function of observation interface.

Figure 10 illustrates thedispatchingmechanism in the framework including the sup-
porting data structures. InPolling, the REMORA framework continuously polls the Event-
Producer components throughdispatcher—the globally known callback function. When-
ever a producer dispatches an event (AbstEvent), the framework casts this event to the ac-
tual event type, which is eitherUCastEvent(unicast event) orMCastEvent(multicast event).
UCastEvent will be directly forwarded to the subscribed consumer through the callback
function pointer stored in theUCastEvent. If a MCastEvent is generated, the framework
delivers it to all the interesting components formerly enqueued. For OS-events, the same
procedure is followed except the polling phase, which is performed by the operating sys-
tem.

Distributing Multicast Event

Forwarding Unicast Event

Polling

Unicast Event UniUniUnicascastt EveEvent nt

callback

EventProducer 1 EventProducer n

g

EventProducer 2 …

AbstEvent

MCastEvent

UCastEvent

calcalcalcalcalcallbalbackckcalcalcalcalcalcalcalcalcallbalbalbalbalbalbackckckckckck

UCastConsumer

MCastConsumer MCastConsumer

produce

…

Fig. 10: REMORA event processing mechanism.

3.3 REMORA Runtime

The current implementation of the REMORA runtime is a Contiki-compliantprocessrunning
together with all otherautostartprocesses of Contiki. This process undertakes two tasks:i)
periodically scheduling the REMORA framework (for polling event generator components)
to run, andii) listening to the OS-events and delivering the relevant onesto the REMORA

framework. By relevant, we mean the REMORA runtime recognizes those OS-events that
are of interest to the application. To achieve such filtering, the source code of this part is
generated by the REMORA engine according to the events description (cf. Section 2.3) of

REMORA Component Model 9

target application and then imported to the REMORA runtime. By doing that, we provide a
lightweight event distribution mechanism interpreting only application-specific OS-events.

Additionally, the application code may need to use OS-provided libraries. REMORA pro-
poses system APIwrappercomponents for this purpose. In fact, these components delegate
all high-level system calls to the corresponding OS-level functions,e.g., thecurrentTime()
function call in the system API is delegated to the Contiki functionclock time(). We of-
fer this API to fully decouple the application components from OS modules and ensure
the portability of REMORA. If an application is not expected to be ported to other platform
types, the OS libraries can be directly called within the component implementation.

4 Evaluation

In this section, we first demonstrate and assess a real REMORA-based application, then we
focus on the general performance figures of REMORA.

4.1 A Real REMORA -based Deployment

Our real application scenario is a network-levelapplication suiteconsisting of a set of mini
applications bundled together. This suite is basically designed to provide services, such as
code propagatorandweb facilitiesin WSNs. We focus here on the first one and design it
based on the REMORA approach.

Code propagation becomes a very important need in WSNs when weneed to update
remotely the running application’s software [27]. The codepropagator application is re-
sponsible for receiving all segments of a running application’s object code over the network
and loading the new application image afterwards. The code propagator exploits the TCP
and UDP protocols to propagate code over the network. At first, TCP is used to transfer new
code, block by block, to the sink node connected to the code repository machine, and then
UDP is used to broadcast wirelessly new code from a sink node to other sensor nodes in the
network. When all blocks are received, the code propagator loads the new application.

Figure 11 shows the components involved in the first part of our application scenario.
TCPListener is a core component listening to TCP events. This multiple-instances event gen-
erator is created for each TCP event consumer component withunique listening port number.
For example,CodePropagator receives data from port 6510 (codePropPort), while We-
bListener is notified for allTCPEvents on port 80 (webPort). CodePropagator stores all
blocks of new code in the external flash memory through theIFile interface implemented
by theFileSystem component. When all blocks are received,CodePropagator loads the new
application by calling theILoader interface from theELFLoader component. These two
interfaces are system APIs that delegate all application-level requests to the OS-specific
libraries. TheINet interface, implemented by theNetwork component, is also the other
system API providing the low-level network primitives toTCPListener.

FileSystem

TCPListener

codePropPort

CodePropagatorCo

TCPEvent

FiFiFiFiFiFi

Web Listener

ELFLoaderELELELELcurrentOffsett

dataLength

TC

th

listenPort

packetNum

rt

TCPEvent

ISensorApp

webPortwewewewewewewewewewewewewewe

ILoader

IFile

Network

INet
ELFFileNameee

ELFFileIddd

fileOffsetetet

Fig. 11: Code propagation application architecture.

As mentioned before, we adopt Contiki as our OS platform to assess the REMORA com-
ponent model. Contiki is being increasingly used in both academia and industrial applica-
tions in a wide range of sensor node types. Additionally, Contiki is written in the standard
C language and hence REMORA can be easily ported to this platform. Finally, the great
support of Contiki on event processing and process management motivate us to design and

10 A. Taherkordi et al.

implement the REMORA runtime on this OS. Our hardware platform is the popular TelosB
mote equipped with a 16-bit TI MSP430 MCU with48KB ROM and10KB RAM.

The concrete separation of concerns in this application is the first visible advantage of
using REMORA. The second improvement is theeasyreuse ofTCPListener for other TCP-
required applications, which is not the case in a non-componentized implementation. In
particular, for each new application, we only need to instantiate thecontextof TCPListener
and configure its properties (like port number) accordingly, e.g., WebListener in Figure 11.

Table 1 reports the memory requirement of REMORA and Contiki programming model
(protothreads) for implementing the code propagation application. As indicated in the table,
the REMORA-based development does not impose additional data memory overhead, while
it consumes extra532 bytes of code memory, which is essentially related to the cost of
framework and runtime modules. This cost is paid once and forall, regardless of the size
and the number of applications running on the sensor node. The code memory cost can
be even further reduced by removing system APIs (Network, FileSystem, andELFLoader)
and calling directly the Contiki’s libraries withinCodePropagator. Note that the overhead
of TCPListener can also be decreased when this component is shared for the use of other
applications,e.g., WebListener. Therefore, we can conclude that the memory overhead of
REMORA is negligible compared to the high-level features it provides to the end-user.

Table 1: The memory requirement of code propagation application in REMORA -based and
Contiki-based implementations.

Code Data
Programming Memory Memory
Model (bytes) (bytes)

Contiki 722 72
Code Propagation Components

CodePropagator 252 36
TCPListener 310 0

System API Components
ELFLoader 38 0

REMORA Network 92 0
FileSystem 68 0

REMORA Core
Framework and Runtime 494 14
Total 1254 50

REMORA overhead +532 -22

The rest of this section is devoted to the assessment of two main performance figures of
REMORA, namely, memory footprints and CPU usage.

4.2 Memory Footprint

High memory usage has been one of the main reasons behind unsuccessfulness of component-
based proposals for embedded systems. In REMORA, we have made a great effort to main-
tain memory costs as low as possible. The first step of this effort is to avoid creating meta-
data structures, which are not beneficial in a static deployment. Distinguishing unicast events
and multicast events has also led to a significant reduction in memory footprints as REMORA

does not need to create any supporting data structure for unicast events.
The memory footprints in REMORA is categorized into a minimum overhead and a dy-

namic overhead. The former is paid once and for all, regardless of the amount of memory is
needed for the application components, while the latter depends on the size of application.
Table 2 shows the minimum memory requirements of REMORA, which turn out to be quite
reasonable with respect to both code and data memory. As mentioned before, our sensor
node, TelosB, is equipped with48KB of program memory and10KB of data memory. As
Contiki consumes roughly24KB (without µIP support) of both these memories, REMORA

REMORA Component Model 11

has a very low memory overhead considering the provided facilities and the remaining space
in the memory.

Table 3 shows the memory requirement of different types of modules in the REMORA

framework. The exact memory overhead of REMORA depends on how an application is con-
figured,e.g., an application, containing one single instance event producer and one unicast
event, needs extra56 bytes (38 + 8 + 10) of both data and code memory. Ordinary com-
ponents do not impose any memory overhead as REMORA does not create any meta data
structures for them. For other types of modules, REMORA keeps the data memory over-
heads very low as this memory in our platform is really scarce. We also believe that the code
memory overhead is not significant since a typical WSN application is small in size and it
may contain up to a few tens of components, including ordinary components. It should be
noted that componentization itself reduces the memory usage by maximizing the reusability
degree of system functionalities like the one discussed in the code propagation application.

Table 2: The minimum memory require-
ment of REMORA .

Code Data
Memory Memory

Module (bytes) (bytes)

Framework Core 374 4
Runtime Core 120 10
Total 494 14

Table 3: The memory requirement of dif-
ferent entities in REMORA .

Code Data
Memory Memory

Entity (bytes) (bytes)

Ordinary Component 0 0
Event Single Ins. 38 8
ProducerMultiple Ins. 42 10
Event Unicast 0 10

Multicast 0 10
Multicast Event Consumer 30 6
OS Event 28 4
System API 4 0

4.3 CPU Usage

As energy cost of REMORA core is limited to only the use of the processing unit, we focus
on the processing cost of our approach and show that REMORA keeps the CPU usage at a
reasonable level, and in some configurations it even reducesCPU usage compared to the
Contiki-based application development.

To perform the evaluation, we set up a Blink application in which a varying number of
mirror components (1 to 15) switch LEDs on and off every second. The two implementa-
tions of this application, Contiki-based and REMORA-based, were compared according to a
CPU measurement metric. The metric was to measure the amountof time required by one
REMORA component and one Contiki process to switch LEDs six times: three times on and
three times off. With the less number of switches, we cannot extract the exact timing differ-
ences as our hardware platform provides a timing accuracy ofthe order of one millisecond.

We started our evaluation by deploying an application like the one presented in Sec-
tion 2.1 and measuring the CPU usage based on our metric. In each next evaluation step, we
added a mirrorBlink component to the application and measured again the time. This experi-
ment was continued for15 times. We made the same measurement for a Contiki-based Blink
application and added a new Contiki Blink process in each step. Figure 12 shows the evalu-
ation result of our scenario. When we have oneBlink component/process, the CPU overhead
of both approaches is almost the same, indicating that the REMORA runtime and frame-
work impose no additional processing overhead. When the number of components/process
increases towards15, reduction in CPU usage is achieved in two dimensions.

Firstly, the number of CPU cycles for REMORA is slightly less than for the Contiki appli-
cation. This difference reaches13 milliseconds when Contiki undertakes running15 Blink
processes. Therefore, we can conclude that REMORA does not impose additional processing
overhead affecting the performance of the system. Secondly, the CPU usage of REMORA

application is reduced when the number ofBlink components is increased. This improve-

12 A. Taherkordi et al.

ment is achieved because the number of context switches between the REMORA runtime
and the REMORA framework is significantly decreased when there are more event producer
components (Timer) in PQ.

To clarify this issue, we assume that the application running time isT and Contiki pe-
riodically allocates CPU to the REMORA runtime in this period. In each allocation round,
the runtime module invokes the event manager in the REMORA framework to poll the ap-
plication level event producers. Given that there areK producers in PQ, the polling process
consumesK×t1 of CPU, wheret1 is the average processing cost of one element. Therefore,
the frequency of event manager calling (equal to the number of context-switches) is in the
order ofT /K×t1. Therefore, as the value ofK is increased the number of context-switches
is decreased accordingly. Figure 13 shows the changes in thenumber of context-switches
when the number ofTimer components is increased to15. As a result, the maximum perfor-
mance in REMORA relies on the average number of event producer components enqueued
during the application lifespan, while in the worst case (a very few producers in the queue)
REMORA does not impose any additional processing cost.

5500

5600

5700

5800

5900

6000

2 4 6 8 10 12 14 16

C
P

U
 U

sa
ge

 (
m

s)

Number of components

Remora
Contiki

Fig. 12: The REMORA -based implementation
does not impose additional CPU overhead com-
pared to the Contiki-based implementation.

3000

4000

5000

6000

7000

8000

9000

10000

11000

2 4 6 8 10 12 14 16

N
um

be
r

of
 c

on
te

xt
-s

w
itc

he
s

Number of components

Context-switch overhead

Fig. 13: As the number of producer components
in the queue is increased, the number of context
switches is significantly decreased.

5 Existing Approaches

In this section, we survey the existing component-based approaches for node-level pro-
gramming on embedded system and WSNs. Most of these componentmodels mainly aim
at building entire operating systems as an assembly of components.

In the area of WSNs, NESC [8] is perhaps the best known component model being
used to develop TINYOS [9]. As mentioned earlier, the main downside of NESC is that it
is tightly bound to the TINYOS platform. Moreover, although NESC efficiently supports
event-driven programming, events in NESC are not considered as independent entities with
their own attributes and specifications. Therefore, the binding model of event-related com-
ponents is not well-described as it is not essentially described based on the specification of
events. Additionally, the unique features of REMORA, such as multiplicity in component
instance and property-based reconfiguration of componentsbring significant improvements
to component-based programming in WSNs compared to NESC.

Coulson et al. in [14] propose OPENCOM as a generic component-based programming
model for building system applications without dependencyon any target-specific platform
environment. The authors express that they have tried to build OPENCOM with negligible
overhead for supporting features specific to a development area, however it is a generic
model and basically developed for platforms without resource constraints and tends to be
complex for embedded systems. To evaluate OPENCOM, we deployed a samplebeaconap-
plication [15], includingRadio, Timer andBeacon components, on a TelosB node with Con-
tiki. Based on our measurements, the memory footprint of this application is significantly
high, so that it consumes4, 618 bytes of code memory and28 bytes of data memory.

REMORA Component Model 13

The OSGi model [16] is a framework targeting powerful embedded devices, such as
mobile phones and network gateways along with enterprise computers. OSGi features a
secure execution environment, support for runtime reconfiguration, lifecycle management,
and various system services. While OSGi is suitable for powerful embedded devices, the
smallest implementation, Concierge [17] consumes more than 80KB of memory, making it
inappropriate for resource-constrained platforms.

OSKIT [18] is a set of ready-made components for building operating systems. OSKIT
is developed with a language called KNIT [19]. In contrast to NESC, KNIT is not limited
to OSKIT. OSKit has adapted the Microsoft COM model and is not primarily focused on
embedded systems.

The THINK framework [20] is an implementation of the FRACTAL [21] component
model applied to operating systems. The choice of the THINK framework is motivated by
the fact that it allows fine-grained reconfiguration of components. Although the experiments
on deploying THINK components on WSNs have been quite promising in terms of memory
usage [23], the lack of application-level event support is the main hurdle for using THINK
in WSNs. LOOCI [24] is another component-based approach, providing a loosely-coupled
component infrastructure focusing on an event-based binding model for WSNs. However,
the Java-based implementation of LOOCI limits its usage to the SunSPOT sensor node.

6 Discussion, Conclusion and Future Direction

We presented REMORA, a novel programming abstraction for resource-constrained embed-
ded systems. The main motivation behind proposing REMORA is to simplify high-level
event-driven programming in WSNs by a component-based approach. Moreover, involving
PC-based developers in WSN programming and considering the state-of-the-art technolo-
gies for component development are two other challenges addressed by REMORA. The spe-
cial consideration paid to the event abstraction in REMORA makes it a practical and efficient
approach for WSN applications development. The other key features of REMORA include:
applicability on a wide range of embedded OSs, rich support of component reusability and
instantiation, and reduced effort and resource usage in WSN programming.

Careful restrictions on the REMORA component model, including the lack of dynamic
memory allocation and avoiding M-to-N communications between event producers and
event consumers bring significant improvements to the static deployments in WSNs. Since
one of our main future directions is to support dynamic component reconfiguration in REMORA [25–
27], we encounter a new major challenge on how to efficiently provide such a feature in
REMORA so that the overhead of dynamic memory allocation is carefully minimized.

As mentioned earlier, the current goal of REMORA is to be exploited only in application-
level programming. However, we believe that the efficient support of event processing in
REMORA potentially enables it to componentize system level functionalities. In the Blink
application, we implicitly demonstrated this capability by redeveloping theTimer compo-
nent, which is essentially developed at the OS level. To address precisely this issue, we need
to enhance the current REMORA implementation with features likeconcurrency support,
task scheduling, andinterrupts handling.

In our current implementation, a REMORA process cannot be preempted by any other
process in the operating system. This issue becomes critical when a component execution
takes a long time to complete and it causes large average waiting times for other processes
waiting for the CPU. The event handling model of REMORA can be used to provide preemp-
tion by defining a new event type per preemption-required point of application, while in this
case the component implementation and the event managementbecome quite complicated.
This concern will also be considered in the future extensions for REMORA. In particular,
we intend to promote the native Contiki macros, handling process lifecycle, to the REMORA

application level. In this way, the REMORA component becomes preemptable by explicitly
yielding the running process.

14 A. Taherkordi et al.

Beside the fact that REMORA provides a strong abstraction for single node program-
ming, the same level of programming abstraction is expectedto occur at the network level.
This challenge opens up another key area for future work: howto make REMORA compo-
nents distributed by the provision of a well-defined remote invocation mechanism.

Acknowledgments. This work was partly funded by the Research Council of Norway
through the project SWISNET, grant number 176151.

References
1. Sugihara, R., Gupta, R.K.: Programming models for sensor networks: A survey. ACM. Trans.

Sensor Networks 4(2), 1-29 (2008)
2. C. Szyperski. Component Software: Beyond Object-Oriented Programming. Second edition,

ACM, Press and Addison-Wesley, New York, N.Y. (2002)
3. F. Bachmann, L. et al.: Technical Concepts of Component-BasedSoftware Engineering, 2nd Edi-

tion. Carnegie Mellon Software Engineering Institute (2000)
4. Ommering, R., Linden, F., Kramer, J., Magee, J.: The Koala component model for consumer

electronics software, IEEE Computer, vol. 33, no. 3 (2000)
5. Winter, M. et al.: Components for embedded software: the PECOS approach. In Proc. of the

CASES’02, ACM Press, NY (2002)
6. Hansson, H., Akerholm, M., Crnkovic, I., Torngren, M.: SaveCCM-a component model for safety-

critical real-time systems. In Proc. of the IEEE Euromicro Conference(2004)
7. Plsek, A., Loiret, F., Merle, P., Seinturier, L.: A Component Framework for Java-Based Real-Time

Embedded Systems. In Proc. of the ACM/IFIP/USENIX 9th Middleware (2008)
8. Gay, D. et al.: The nesC Language: A Holistic Approach to NetworkedEmbedded Systems, In

Proc. of the SIGPLAN Conference on Prog. Language Design and Impl. (2003)
9. Levis, P. et al.: TinyOS: An Operating System for Sensor Networks.Ambient Intelligence (2005)

10. http://www.oasis-opencsa.org/sca
11. Dunkels, A., Gr̈onvall, B., Voigt, T.: Contiki - a lightweight and flexible operating system for tiny

networked sensors, in Proc. of 1st Wkshp. on Embedded NetworkedSensors (2004)
12. Dunkels, A., Schmidt, O., Voigt, T., Ali, M.: Protothreads: Simplifying Event-Driven Program-

ming of Memory-Constrained Embedded Systems, Proc. ACM SenSys,(2006)
13. ANTLR. Website:http://www.antlr.org
14. Coulson, G. et al.: A generic component model for building systems software. ACM Trans. Com-

puter Systems, 1-42 (2008)
15. WISEBED. http://www.wisebed.eu/wiki/pmwiki.php?n=Main.Osaapp1
16. The OSGi Alliance. The OSGi framework. http://www.osgi.org, 1999.
17. Rellermeyer, J., Alonso, G., Concierge: A Service Platform for Resource-Constrained Devices, in

ACM SIGOPS Operating Systems Review, Vol. 41, No. 3, June 2007, pp.245 - 258
18. Ford, B., Back, G., Benson, G., Lepreau, J., Lin, A., Shivers, O.: The Flux OSKit: A Substrate for

Kernel and Language Research, Operating Systems Principles (1997)
19. Reid, A., Flatt, M., Stoller, L., Lepreau, J., Eide, E.: Knit: Component Composition for Systems

Software, Operating Systems Design and Implementation (OSDI) (2000)
20. Fassino, J.-P., Stefani, J.-B., Lawall, J., Muller, G.: Think: A software framework for component-

based operating system kernels. In Proc. of the USENIX Annual Conference (2002)
21. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J., B.: The FRACTAL component

model and its support in Java. Softw., Pract. Exper. (2006)
22. REMORA. Website:http://folk.uio.no/amirhost/remora
23. Lobry, O., Navas, J., Babau, J.: Optimizing Component-Based Embedded Software, 2nd IEEE

Workshop on Component-Based Design of Resource-Constrained Sys., COMPSAC-09, (2009)
24. Hughes, D. et al.: LooCI: A loosely-coupled component infrastructure for networked embedded

systems, Mobile computing Multimedia, (2009)
25. Taherkordi, A. et al.: WISEK IT: A Distributed Middleware to Support Application-level Adapta-

tion in Sensor Networks, In Proc. of DAIS’09, LNCS vol. 5523, Portugal, (2009)
26. Taherkordi, A., Rouvoy, R., Le-Trung, Q., Eliassen, F.: A Self-Adaptive Context Processing

Framework for Wireless Sensor Networks, In Proc. of ACM MidSens’08, Belgium, (2008)
27. Mottola, L. et al.: Selective Reprogramming of Mobile Sensor Networks through Social Commu-

nity Detection, In Proc. of EWSN’10, Portugal, (2010)

