Uniqueness of post-gelation solutions of a class of coagulation equations

Abstract : We prove well-posedness of global solutions for a class of coagulation equations which exhibit the gelation phase transition. To this end, we solve an associated partial differential equation involving the generating functions before and after the phase transition. Applications include the classical Smoluchowski and Flory equations with multiplicative coagulation rate and the recently introduced symmetric model with limited aggregations. For the latter, we compute the limiting concentrations and we relate them to random graph models.
Type de document :
Pré-publication, Document de travail
31 pages, 4 figures. 2010
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00471238
Contributeur : Raoul Normand <>
Soumis le : mercredi 7 avril 2010 - 16:46:58
Dernière modification le : mercredi 12 octobre 2016 - 01:03:53

Identifiants

  • HAL Id : hal-00471238, version 1
  • ARXIV : 1002.0702

Collections

INSMI | PMA | UPMC | USPC

Citation

Raoul Normand, Lorenzo Zambotti. Uniqueness of post-gelation solutions of a class of coagulation equations. 31 pages, 4 figures. 2010. <hal-00471238>

Partager

Métriques

Consultations de la notice

122