
HAL Id: hal-00470848
https://hal.science/hal-00470848

Submitted on 9 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LBM Based Flow Simulation Using GPU Computing
Processor

F. Kuznik, C. Obrecht, G. Rusaouen, J.-J. Roux

To cite this version:
F. Kuznik, C. Obrecht, G. Rusaouen, J.-J. Roux. LBM Based Flow Simulation Using GPU
Computing Processor. Computers & Mathematics with Applications, 2010, 59 (7), pp.2380-2392.
�10.1016/j.camwa.2009.08.052�. �hal-00470848�

https://hal.science/hal-00470848
https://hal.archives-ouvertes.fr

LBM Based Flow Simulation Using GPU

Computing Processor

Frédéric Kuznik a,∗ Christian Obrecht a Gilles Rusaouen a

Jean-Jacques Roux a

aUniversité de Lyon, CNRS

INSA-Lyon, CETHIL, UMR5008, F-69621, Villeurbanne, France

Abstract

Graphics Processing Units (GPUs), originally developed for computer games, now

provide computational power for scientific applications. In this paper, we develop a

general purpose Lattice Boltzmann code that runs entirely on a single GPU. The

results show that: (1) simple-precision floating point arithmetic is sufficient for LBM

computation in comparison to double-precision; (2) the implementation of LBM on

GPUs allows to achieve up to about one billion lattice update per second using

single-precision floating point; (3) GPUs provide an inexpensive alternative to large

clusters for fluid dynamics prediction.

Key words: Lattice Boltzmann Method, Graphical Processing Unit , Fluid Flow,

Multi-Threaded Architecture.

∗ Corresponding author. Tel.: +33-472-438-461; Fax: +33-472-438-522

Email address: frederic.kuznik@insa-lyon.fr (Frédéric Kuznik).

Preprint submitted to Computers & Mathematics with Applications 6 July 2009

1 Introduction

Nowadays, computational methods and related hardware are really insepara-

ble. In fact, the numerical method must fit the hardware architecture to gain

benefits from computational possibilities. Of course, the reciprocal is also true:

the hardware architecture progress lead the numerical methods than can be

used with a reasonable computational cost.

In the last two decades, the Lattice Boltzmann method (LBM) has proved

its capability to simulate a large variety of fluid flows ([1], [2], [3], [4], [5] ...).

However, it has been recognized that the LBM is both computationally expen-

sive and memory demanding [6]. But, because LBM is explicit and generally

needs only nearest neighbor information, the method allows a highly efficient

parallel implementation using GPU architecture ([7], [8]).

Graphics Processing Unit (GPU) is a massively multi-threaded architecture

and then is widely used for graphical and now non-graphical computations([9]).

The main advantage of GPUs is their ability to perform significantly more

floating point operations (FLOPs) per unit time than a CPU (see figure 1).

Fan et al. [10] used a 32 nodes cluster made of nVIDIA GeForce 5800 ultra

for LBM computations. They use the GPU vector operations and stacks of

2D textures for 3D computations. With 32 nodes, they found an efficiency of

their implementation of 49.2 Million Lattice Update Per Second (MLUPS).

Tölke [11] used a nVIDIA 8800 Ultra graphics card to implement a 2D LBM

code. He found very good results with a ratio between GPU time and CPU

time of about 23 for the same test case.

2

In this paper we provide an implementation of a general purpose LBM code

where all steps of the algorithm are running on the GPU. This implementation

is made possible by the use of the nVIDIA CUDA C language programming

environment. CUDA provides low level hardware access, avoiding the limi-

tations imposed in fragment shaders. It works on the GT200 processor from

nVIDIA, and will be supported on future devices [12]. Algorithms developed

for this work will be directly applicable to newer, faster GPUs as they become

available.

2 Lattice Boltzmann method

This part is devoted to an overview of the lattice Boltzmann model used for

the purpose of this study (LBM).The model is the lattice BGK model (LBGK)

from Qian, D’Humières and Lallemand [13]. The main hypothesis of the LBGK

are:

• Bhatnagar, Gross and Krook approximation (BGK) ⇒ the collision operator

is expressed as a single relaxation time to the local equilibrium,

• the Knudsen number is assumed to be a small parameter,

• the flow is incompressible.

The evolution of the density distribution f for a single fluid particle is then

given by:

Df

Dt
= ∂tf +

(

~ξ.∇
)

f = −
f − f e

τ
(1)

~ξ is the microscopic velocity, τ is the relaxation time and f e the Maxwell-

Boltzmann equilibrium distribution function.

3

The macroscopic variables such as density ρ and velocity ~u:

ρ (~x, t) =
∫

f
(

~x, ~ξ, t
)

d~ξ (2)

ρ (~x, t) ~u (~x, t) =
∫

~ξf
(

~x, ~ξ, t
)

d~ξ (3)

To obtain the Lattice Boltzmann model, the velocity space must be discretized:

during dt, the distribution function moves along the lattice link d~xi = ~cidt.

In our simulations, a 9 velocities 2 dimensional (D2Q9) lattice has been used

(figure 2).

After discretization, the evolution equation becomes (figure 3):

fi (~x + ~cidt, t + dt) + fi (~x, t) = −
1

τ
(fi − f e

i) (4)

The macroscopic variables such as density ρ and velocity ~u are then given by:

ρ =
i=8
∑

i=0

fi (5)

ρ~u =
i=8
∑

i=0

~cifi (6)

For the two dimensional case, applying the third-order Gauss-Hermite quadra-

ture leads to the D2Q9 model with the following discrete velocities ~ci where

i = 1...8. The discrete velocities are −→c0 = (0, 0), −→c1 = −−→c3 = c(1, 0), −→c2 =

−−→c4 = c(0, 1), −→c5 = −−→c7 = c(1, 1), −→c6 = −−→c8 = c(−1, 1).

The equilibrium density distribution function is given by:

f e
i = ωiρ

[

1 + 3
~ci.~u

c2
+ 4.5

(~ci.~u)2

c4
− 1.5

(u2 + v2)

c2

]

(7)

with ~u = (u, v) and ω0 = 4/9, ωi = 1/9 for i = 1, 2, 3, 4, ωi = 1/36 for

i = 5, 6, 7, 8.

4

LBM can then be split into collision and propagation steps:

(1) collision:

fi (~x, t∗) = −
1

τ
(fi − f e

i) (8)

(2) propagation:

fi (~x + ~cidt, t + dt) = fi (~x, t∗) (9)

Of course, the third step necessary for the implementation of LBM is the

determination of the boundary conditions. There are two types of boundary

conditions for the case tested in our study: wall boundary condition and im-

posed velocity boundary condition. For the walls, the classical no-slip bound-

ary condition is imposed by the means of bounce-back rules. A prescribed

velocity is easily implemented by constantly refilling the boundary nodes with

the equilibrium population corresponding to the desired value of flow speed.

The collision step, which is totally local, required about 70% of the total com-

putational time. The propagation step required 28% of the total computation

time. On the whole, 98% of the computational time can easily be parallelized.

(these values are extracted from [14]).

3 Programming overview

3.1 Hardware architecture

This paragraph is dedicated to a description of the hardware architecture

(figure 4).The GPU computing processor hardware is the nVIDIA GTX280

which can easily be included in a standard workstation. The processor is com-

posed of ten thread processing clusters (TPCs), with each broken down into

5

three streaming multiprocessors (SMs). Threads are assigned by the thread

scheduler, which addresses directly to each streaming multiprocessor through

a dedicated instruction unit; the later then assigns tasks to one of the eight

thread (or stream) processors (SPs). On the whole, 1 GPU is composed of 240

processors.

The memory bandwidth is 141.7 GigaByte per second and the available amount

of memory is 1.0 GigaByte. The GPU can deliver about 1000 GFLOPS (Giga

Floating Operations per Second) which corresponds to about 80 x86 CPU.

3.2 CUDA overview

CUDA (Nvidia) is a standard C language extension for parallel application

development on the GPU, independently of the hardware target. Some defi-

nitions are necessary to understand the CUDA programming features:

• the device is the GPU,

• the host is the CPU,

• the kernel is a function that is called from the host and runs on the device,

• a CUDA kernel is executed by an array of threads (see figure 5).

In CUDA, these independent threads are organized into blocks which can

contain from 32 to 512 threads each (see figure 6). A kernel is executed in a

grid of thread blocks being indexed by a 2D block id in the form (row,column).

Concerning the device, one thread block is executed by one multiprocessor. In a

block, each thread is indexed by a thread id in the form (row,column). Threads

in a block are executed by processors within a single multiprocessor. One

important consequence is that threads from different blocks cannot cooperate.

6

3.3 Memory access optimization

The memory access of the kernel is an important feature of the implementation

performance. A schematic view of the memory access of the device is given

figure 7. The closer memory is a set of 32-bit register per processor. The

shared memory is on-chip memory, the size being 16KB per multiprocessor.

This memory allows data transfer between threads and is really fast as long

as the number of concurrent memory accesses is a multiple of 16. This last

precaution allows to avoid bank conflicts.

The global memory, which is the device memory, is large (1.5 GigaByte) but

not as fast as shared memory. The host can only read and write the global

memory.

In a D2Q9 lattice, each node requires at least 9 × 4 = 36 bytes of memory

for single precision computations. Therefore the number of lattice nodes that

can be concurrently stored into low latency shared memory is limited to ap-

proximatively 450 per multiprocessor, which on the GT200 leads to a lattice

of at most 80 × 80. Hence, the use of high latency global memory is unavoid-

able. To efficiently hide this latency, maximizing the occupancy rate of the

multiprocessors is an important issue.

Data layout in global memory can dramatically impact performances. CUDA

enabled GPUs are capable of loading or storing memory segments of 32, 64 or

128 bytes in a single memory transaction. Hence, it is possible to reduce the

number of global memory accesses as long as two conditions are met:

• coalescence, i.e. neighboring threads should access neighboring data,

7

• alignment, i.e. addresses should be a multiple of the segment’s size.

The former is easily satisfied by using a separate array for each density in-

stead of one array of structures. The later is more problematic because of

the propagation step. A careful choice of the lattice’s size allows to avoid mis-

aligned memory stores when propagating along one dimension but the problem

remains for the second dimension. A possible solution consists in fetching den-

sities into shared memory. Threads can concurrently access shared memory at

no cost as long as there are no bank conflicts. This is readily achieved by using

a number of threads per block which is a multiple of 16.

When following the shared memory approach, special care has to be taken of

densities crossing block boundaries. Incidentally, this additional step ensures

global synchronization across thread blocks.

3.4 Pseudo-code

The first step of the algorithm consists in loading the data from the CPU to

the GPU’s global memory. This step is computational time consuming because

of the CPU’s RAM bandwidth.

Once data is loaded in global memory, the data grid is decomposed into threads

and thread blocks. One grid point in the physical space is linked to one thread.

Each thread is identified by a thread number which depends on the row and

column of the thread. The figure 8 shows the physical grid vs. the computing

threads and thread blocks. The number of threads per block, which is limited

by available registers and shared memory, is set in order to obtain the maximal

number of concurrent threads running on each multiprocessor.

8

The pseudo-code for the implementation of LBM on GPU is the following:

Combine collision and propagation steps:

for each thread block

for each thread

load fi in shared memory

compute collision step

do the propagation step

end

end

Exchange information across boundaries

Following the pseudo-code description, in the first phase, one thread is used

per grid node.

4 Implementation details

This section is devoted to a detailed description of the LBM GPU implemen-

tation. The case used in this section concerns the lid-driven cavity which is

fully described in the part 5.1 of the paper.

4.1 CPU program

Listing 1. CPU program

int main (int argc , char∗∗ argv)

{

// Set s i z e

9

s i z e mat = nx ∗ ny ;

mem size mat = s izeof (f loat) ∗ s i z e mat ;

// CPU memory a l l o c a t i o n

f 0 = (f loat ∗) mal loc (mem size mat) ;

.

f 8 = (f loat ∗) mal loc (mem size mat) ;

unsigned int mem size mat char = s izeof (char) ∗ s i z e mat ;

geo = (char ∗) mal loc (mem size mat char) ;

// GPU memory a l l o c a t i o n

f loat ∗ f0 dev Old = NULL;

CUDA SAFE CALL(cudaMalloc ((void∗∗) &f0 dev Old , mem size mat)) ;

.

f loat ∗ f8 dev Old = NULL;

CUDA SAFE CALL(cudaMalloc ((void∗∗) &f8 dev Old , mem size mat)) ;

f loat ∗ f0 dev New = NULL;

CUDA SAFE CALL(cudaMalloc ((void∗∗) &f0 dev New , mem size mat)) ;

.

f loat ∗ f8 dev New = NULL;

CUDA SAFE CALL(cudaMalloc ((void∗∗) &f8 dev New , mem size mat)) ;

char∗ geo dev = NULL;

CUDA SAFE CALL(cudaMalloc ((void∗∗) &geo dev , mem size mat char)) ;

10

// I n i t i a l i z e

i n i t () ;

i n i t g e o () ;

// Copy data from CPU to GPU

CUDA SAFE CALL(cudaMemcpy(f0 dev Old , f0 , mem size mat

, cudaMemcpyHostToDevice)) ;

.

CUDA SAFE CALL(cudaMemcpy(f8 dev Old , f8 , mem size mat

, cudaMemcpyHostToDevice)) ;

CUDA SAFE CALL(cudaMemcpy(f0 dev New , f0 , mem size mat

, cudaMemcpyHostToDevice)) ;

.

CUDA SAFE CALL(cudaMemcpy(f8 dev New , f8 , mem size mat

, cudaMemcpyHostToDevice)) ;

CUDA SAFE CALL(cudaMemcpy(geo dev , geo , mem size mat char

, cudaMemcpyHostToDevice)) ;

// Define b l o c k and g r i d s i z e s

dim3 threads (num threads , 1 , 1) ;

dim3 gr id1 (nx/num threads , ny) ;

dim3 gr id2 (1 , ny/num threads) ;

11

while (t<t max)

{

// Execute k e rne l c o l l i s i o n p r o p a g a t i o n

c o l l i s i o n p r op a g a t i o n <<< gr id1 , threads >>> (nx , ny ,

num threads , tau , geo dev , f0 dev Old , f1 dev Old ,

f2 dev Old , f3 dev Old , f4 dev Old , f5 dev Old ,

f6 dev Old , f7 dev Old , f8 dev Old , f0 dev New ,

f1 dev New , f2 dev New , f3 dev New , f4 dev New ,

f5 dev New , f6 dev New , f7 dev New , f8 dev New) ;

// Execute k e rne l exchange

exchange<<< gr id2 , threads >>> (nx , ny , num threads ,

f1 dev New , f3 dev New ,

f5 dev New , f6 dev New , f7 dev New , f8 dev New) ;

}

// Copy r e s u l t s back to CPU

CUDA SAFE CALL(cudaMemcpy(f0 , f0 dev Old , mem size mat

, cudaMemcpyDeviceToHost)) ;

.

CUDA SAFE CALL(cudaMemcpy(f8 , f8 dev Old , mem size mat

, cudaMemcpyDeviceToHost)) ;

.

}

The listing 1 presents a part of the CPU programming stored in a source file

(i.e. D2Q9_LBGK.cu). The file is then compiled with nvcc.

12

The explicit GPU memory allocation uses the CUDA command cudaMalloc()

(similarly, the deallocation command is cudaFree()). Copy from CPU to GPU

is performed using cudaMemcpy(, , , cudaMemcpyHostToDevice); this op-

eration being slow, it must of course be minimized.

The multi-threaded architecture of nVIDIA GPU uses thread blocks and grids.

The thread block size and grid size are defined using respectively dim3 threads(, ,)

and dim3 grid(,). In order to optimize the memory access, the thread block

is an array which size is a multiple of 16. The grid size is then calculated in

order to execute the kernel correctly (the figure 8 shows the decomposition of

the domain).

The kernels are executed using kernel<<< grid, threads >>> (...). In our

code, there are two kernels considering first, the collision/propagation step

and second, the exchange of information across the boundaries of the grid of

threads.

4.2 Collision/propagation kernel

Listing 2. Collision/propagation kernel

g l o b a l void c o l l i s i o n p r o p a g a t i o n (int nx , int ny , int num threads ,

f loat tau , char∗ geoD , . . .)

{

// Setup index ing

int tx = threadIdx . x ;

int bx = blockIdx . x ;

int by = blockIdx . y ;

13

int xStart = tx + bx∗num threads ;

int yStart = by ;

int k = nx∗ yStart+xStart ;

// A l l o ca t e shared memory

s h a r e d f loat F1 OUT[NT] ;

.

s h a r e d f loat F8 OUT[NT] ;

s h a r e d f loat F0 IN=f0 Old [k] ;

.

s h a r e d f loat F8 IN=f8 Old [k] ;

// Check i f i t i s a f l u i d or boundary node

i f (geoD [k] == FLUID)

// Co l l i s i o n

{

rho=F0 IN+F1 IN+F2 IN+F3 IN+F4 IN+F5 IN+F6 IN

+F7 IN+F8 IN ;

vx=(F1 IN−F3 IN+F5 IN+F8 IN−F6 IN−F7 IN)/ rho ;

vy=(F2 IN−F4 IN+F5 IN+F6 IN−F7 IN−F8 IN)/ rho ;

square =1.5∗(vx ∗ vx +vy ∗vy) ;

f e q 0 =4./9.∗ rho ∗ (1 . − square) ;

rho ∗=0.1111111111111111111111;

14

f e q 1=rho ∗ (1 . + 3 .0∗ vx + 4 .5 ∗vx∗vx − square) ;

f e q 3=f eq1 −6.0∗vx∗ rho ;

f e q2=rho ∗ (1 . + 3 .0∗ vy + 4 .5 ∗vy∗vy − square) ;

f e q 4=f eq2 −6.0∗vy∗ rho ;

.

F0 IN+=(f eq0−F0 IN)∗ tau inv ;

.

F8 IN+=(f eq8−F8 IN)∗ tau inv ;

}

else i f (geoD [k] == SET U)

// Ve l o c i t y boundary cond i t i on

{

.

}

else i f (geoD [k] == WALL)

// Wall boundary cond i t i on

{

.

}

// Write to shared memory and Propagation

i f (tx==0)

{

F1 OUT [tx+1]=F1 IN ;

15

F3 OUT [num threads−1]=F3 IN ;

F5 OUT[tx+1]=F5 IN ;

F6 OUT[num threads−1]=F6 IN ;

F7 OUT[num threads−1]=F7 IN ;

F8 OUT[tx+1]=F8 IN ;

}

else i f (tx==num threads−1)

{

F1 OUT [0]= F1 IN ;

F3 OUT[tx−1]=F3 IN ;

F5 OUT[0]= F5 IN ;

F6 OUT[tx−1]=F6 IN ;

F7 OUT[tx−1]=F7 IN ;

F8 OUT[0]= F8 IN ;

}

else

{

F1 OUT[tx+1]=F1 IN ;

F3 OUT[tx−1]=F3 IN ;

F5 OUT[tx+1]=F5 IN ;

F6 OUT[tx−1]=F6 IN ;

F7 OUT[tx−1]=F7 IN ;

F8 OUT[tx+1]=F8 IN ;

}

// Synchronize

16

sync th r ead s () ;

// Write to g l o b a l memory

f0 New [k]=F0 IN ;

f1 New [k]=F1 OUT[tx] ;

f3 New [k]=F3 OUT[tx] ;

i f (by < ny−1)

{

k = nx∗(yStart+1) + xStart ;

f2 New [k]=F2 IN ;

f5 New [k]=F5 OUT[tx] ;

f6 New [k]=F6 OUT[tx] ;

}

i f (by > 0)

{

k = nx∗(yStart −1) + xStart ;

f4 New [k]=F4 IN ;

f7 New [k]=F7 OUT[tx] ;

f8 New [k]=F8 OUT[tx] ;

}

}

The listing 2 presents a part of the GPU kernel concerning the collision and

propagation step inside a thread block. The programming is stored in the

17

source file collision_propagation_kernel.cu.

The k parameter is the index array of the data and is calculated depending

on gridID and threadID. The main idea of the kernel is to use the shared

memory in order to calculate the new density distributions stored in an array

Fi_OUT[NT] which is in the shared memory. This allows to execute the propa-

gation during the data copy to Fi_OUT[NT]. Of course, there is no propagation

along the block boundaries. Then, the unknown densities at these boundaries

are used to store the known ones that must pass through the block boundaries.

The next kernel is used to pass information across the blocks boundaries.

The __syncthreads() function is necessary for the multiprocessor to wait for

the execution of all threads before transferring the results from the array in

shared memory to the global memory.

4.3 Exchange kernel

Listing 3. Exchange kernel

g l o b a l void exchange (int nx , int ny , int num threads

,)

{

// Setup index ing

int nbx=nx / num threads ;

int num threads1 = blockDim . x ;

int by = blockIdx . y ;

int tx = threadIdx . x ;

18

int bx ;

int xStart , yStart ;

int xStartW , xTargetW ;

int xStartE , xTargetE ;

int kStartW , kTargetW ;

int kStartE , kTargetE ;

// Exchange across boundar ies

for (bx=0; bx<nbx−1 ; bx++)

{

xStart = bx∗num threads ;

xStartW = xStart+2∗num threads −1;

xTargetW = xStartW−num threads ;

yStart = (by)∗ num threads1 + tx ;

kStartW = nx∗ yStart+xStartW ;

kTargetW = nx∗ yStart+xTargetW ;

f3 New [kTargetW] = f3 New [kStartW] ;

f6 New [kTargetW] = f6 New [kStartW] ;

f7 New [kTargetW] = f7 New [kStartW] ;

}

for (bx=nbx−2; bx>=0 ; bx−−)

{

xStart = bx∗num threads ;

xStartE = xStart ;

xTargetE = xStartE+num threads ;

19

yStart = (by)∗ num threads1 + tx ;

kStartE = nx∗ yStart+xStartE ;

kTargetE = nx∗ yStart+xTargetE ;

f1 New [kTargetE] = f1 New [kStartE] ;

f5 New [kTargetE] = f5 New [kStartE] ;

f8 New [kTargetE] = f8 New [kStartE] ;

}

}

The listing 3 presents a part of the GPU kernel concerning the exchange of

information across thread block boundaries. The programming is stored in the

source file exchange_kernel.cu.

5 Performances measurements

5.1 Presentation of the test case

In order to test the implementation of the LBM model on the GPU, the lid

driven cavity case is used. This case has been chosen because it has been

extensively studied in the literature. The figure 9 present the lid driven cavity

problem with the boundary conditions.

In order to check the convergence of the simulation, the norm used ‖.‖ is:

‖x‖ = max
grid

∣

∣

∣xn − xn′

∣

∣

∣ (10)

with xn the value of x at the iteration n and n′ = n − 2000.

20

5.2 Comparison of Single and Double Precision Floating-Point - Numerical

test

The GT200 GPU supports both single precision floating-point and double

precision floating-point. Then, this section deals with the use of single precision

floating-point for Lattice Boltzmann simulation of fluid flow instead of classical

double precision floating-point. The main idea is to evaluate the difference

between these two floating-point formats for a LBM use.

Both double and single precision floating-point calculations have been carried

out using the GT200 GPU. The case tested is the lid-driven cavity problem

at Re = 1000.

The figure 10 shows the norm evolution of the horizontal and vertical compo-

nents of the velocity. The calculation has been performed for 2×106 iterations.

The horizontal asymptote of the velocity norm is close to the limit that can be

obtained with single precision floating-point (i.e. 1.68 × 10−7). Of course, the

double precision floating-point allows to obtain a lower convergence criteria

than for the floating-point. The single-precision calculation exhibits oscilla-

tions of the order of 1/224 = 6 × 10−8. However, the convergence is assured

because of the numerical scheme stability.

From a numerical point of view, the maximum velocity magnitude difference

between the two calculations is about 10−3m/s i.e. a maximum relative differ-

ence of 10−2 which validates the use of single precision arithmetic with GPUs

for LBM calculations.

21

5.3 Numerical Results

GPUs that offer support for single precision floating point arithmetic do not

meet all the operations of the IEEE 754 standards [12]. It may be argued

that the precision of results obtained via LBM simulation using GPUs are

thus suspect. To demonstrate that this is not the case, simulations of LBM

lid driven cavity are compared with the results of Ghia et al. [16].

The figures 11 and 12 show the comparisons between the LBM with GPU

computations and the results from [16] and for Re = 1000. The LBM with

GPU is precise enough to predict correctly the flow in the lid driven cavity.

5.4 Performances of LBM with GPU

Table 1 presents the performance of the implementation using single-precision

floating point, measured in MLUPS (Million Lattice site Update Per Second),

function of the LBM mesh grid size and the number of threads per block. From

this table, two main conclusions can be done. First, the number of threads must

be at least 128 to have good calculation efficiency. Second, the size of the mesh

grid must be at least 5122: this is due to the streaming multiprocessors. They

all must be used for calculation to obtain a good GPU productivity.

Table 2 presents the performance of the implementation using GPU double

precision floating-point. Of course, the number of lattice sites updated per

second is quite lower than for simple precision. The mean multiplication factor

between the two arithmetics is about 3.8.

22

6 Conclusions

We have presented a general purpose LBM simulation fully implemented on a

single GPU. We have tested our GPU implementation using GT200 processing

unit. The case tested was the well known lid-driven cavity problem.

With the use of single-precision floating point numbers instead of double-

precision floating point numbers, the accuracy of the results remains satisfac-

tory. Moreover, the computational time is 3.8 times less with simple-precision

!

From a computational point of view, simple precision floating-point calcula-

tions on GPUs give good results compared to literature data. This enables its

use for computational fluid dynamics prediction.

Smaller, less power hungry, easier to maintain, and inexpensive compared to

a CPU cluster, GPUs offer a compelling alternative. And this is only the

beginning, as shows the figure 1.

References

[1] S. Succi, The Lattice Boltzmann - For Fluid Dynamics and Beyond. Oxford

University Press, 288p, 2001.

[2] O. Filippova and D. Hanel, A Novel BGK Approach for Low Mach Number

Combustion, J. Comput. Phys., vol. 158, pp. 139-160, 2000.

[3] R. Mei, W. Shyy, D. Yu, and L. S. Luo, Lattice Boltzmann Method for 3-D Flows

with Curved Boundary, J. Comput. Phys., vol. 161, pp. 680-699, 2000.

23

[4] Z. Guo and T. S. Zao, A Lattice Boltzmann Model for Convective Heat Transfer

in Porous Media, Numer. Heat Transfer B, vol. 47, pp. 155-177, 2005.

[5] W. Shi, W. Shyy, and R. Mei, Finite-Difference-Based Lattice Boltzmann Method

for Inviscid Compressible Flows, Numer. Heat Transfer B, vol. 40, pp. 1-21, 2001.

[6] K. Mattila, J. Hyvaluoma, J. Timonen, T. Rossi, Comparison of implementation

of the lattice-Boltzmann method, Computers and Mathematics with Applications,

vol. 55, pp. 1514-1524, 2008.

[7] W. Li, X. Wei, A. Kaufman, Implementing Lattice Boltzmann Computation on

Graphics Hardware, The Visual Computer, vol. 19, no.7-8, pp. 444-456, 2003.

[8] S. Tomov, M. McGuigan, R. Bennett, G. Smith, J. Spiletic, Benchmarking and

implementation of probability-based simulations on programmable graphics cards,

Computers & Graphics, vol. 29, pp. 71-80, 2005.

[9] J.A. Anderson, C.D. Lorenz, A. Travesset, General purpose molecular dynamics

simulations fully implemented on graphics processing units, J. Comput. Phys.,

vol. 227, pp. 5342-5359, 2008.

[10] Z. Fan, F. Qiu, Kaufman A., S. Yoakum-Stover, GPU Cluster for High

Performance Computing, ACM / IEEE Supercomputing Conference 2004,

November 06-12, Pittsburgh PA, 2004.

[11] J. Tölke,Implementation of a Lattice Boltzmann kernel using the Compute

Unified Device Architecture developed by nVIDIA , Computing and Visualization

in Science, 2008.

[12] Cuda programming guide 2.2.

< http : //www.nvidia.com/object/cudahome.html >, 2009.

[13] Y.H. Qian, D. D’Humières, P. Lallemand, Lattice BGK for Navier-Stokes

Equation, Europhys. Lett., vol. 17, pp. 479-484, 1992.

24

[14] J. Bernsdorf, How to make my LBcode faster :software planning,

implementation and performance tuning, ICMMES’08 Congress, 2008.

[15] IEEE Standard for Floating-Point Arithmetic, Institute of Electrical and

Electronics Engineers, 2008.

[16] U. Ghia, K.N. Ghia, C.T. Shin, High-Re solutions for incompressible flow using

the Navier-Stokes equations and a multigrid method, Journal of Computational

Physics, Vol. 48, pp. 387-411, 1982.

25

List of Tables

1 Performance of implementation in MLUPS - simple precision
floating-point. 27

2 Performance of implementation in MLUPS - double precision
floating-point. 28

26

Mesh grid size Number of Threads

16 32 64 128 256

2562 183 341 555 712 783

5122 188 370 617 840 935

10242 169 329 571 819 947

20482 129 294 508 781 909

30722 147 299 524 786 915

Table 1
Performance of implementation in MLUPS - simple precision floating-point.

27

Mesh grid size Number of Threads

16 32 64 128 256

2562 52 89 144 190 209

5122 52 89 146 205 234

10242 50 86 144 205 239

20482 46 82 138 202 239

Table 2
Performance of implementation in MLUPS - double precision floating-point.

28

List of Figures

1 Performances of CPUs (circle) and GPUs (diamond) over the
last few years - extracted from [12] 30

2 The square lattice velocities D2Q9. 31

3 LBM partition: collision step (left) and propagation step
(right). 32

4 GPU hardware architecture overview. 33

5 Array of threads. 34

6 GPU programming interface. 35

7 Kernel memory access. 36

8 Physical grid and thread blocks and grids. 37

9 Lid driven cavity problem. 38

10 Single vs double precision floating point arithmetic: sp for
single precision and dp for double precision. 39

11 Vertical velocity at y = 0.5 for Re = 1000 - circle are data
from [16] and line is LBM. 40

12 Horizontal velocity at x = 0.5 for Re = 1000 - circle are data
from [16] and line is LBM. 41

29

Fig. 1. Performances of CPUs (circle) and GPUs (diamond) over the last few years
- extracted from [12]

30

c0 c1

c5

c2
c6

c3

c7
c4

c8

Fig. 2. The square lattice velocities D2Q9.

31

Fig. 3. LBM partition: collision step (left) and propagation step (right).

32

Fig. 4. GPU hardware architecture overview.

33

Fig. 5. Array of threads.

34

Fig. 6. GPU programming interface.

35

Fig. 7. Kernel memory access.

36

Fig. 8. Physical grid and thread blocks and grids.

37

Fig. 9. Lid driven cavity problem.

38

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 0 500000 1000000 1500000 2000000

||x
||

[m
/s

]

Iteration

usp
vsp
udp
vdp

Fig. 10. Single vs double precision floating point arithmetic: sp for single precision
and dp for double precision.

39

x

v
v

el
o

ci
ty

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Fig. 11. Vertical velocity at y = 0.5 for Re = 1000 - circle are data from [16] and
line is LBM.

40

u velocity

y

-0.5 -0.25 0 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 12. Horizontal velocity at x = 0.5 for Re = 1000 - circle are data from [16] and
line is LBM.

41

