
HAL Id: hal-00470523
https://hal.science/hal-00470523

Submitted on 6 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluating Context Descriptions and Property
Definition Patterns for Software Formal Validation

Philippe Dhaussy, Pierre-Yves Pillain, Stephen Creff, Amine Raji, Yves Le
Traon, Benoit Baudry

To cite this version:
Philippe Dhaussy, Pierre-Yves Pillain, Stephen Creff, Amine Raji, Yves Le Traon, et al.. Evaluat-
ing Context Descriptions and Property Definition Patterns for Software Formal Validation. Model
Driven Engineering Languages and Systems (Models’09), Oct 2009, Denver, United States. pp.438-
452, �10.1007/978-3-642-04425-0�. �hal-00470523�

https://hal.science/hal-00470523
https://hal.archives-ouvertes.fr

Evaluating Context Descriptions and Property

Definition Patterns for Software Formal Validation

Philippe Dhaussy1, Pierre-Yves Pillain1, Stephen Creff1, Amine Raji1,

Yves Le Traon2 and Benoit Baudry3

1 UEB, Laboratoire LISyC, ENSIETA, BREST, F-29806 cedex 9

{dhaussy, pillaipi, creffst, rajiam}@ensieta.fr
2 Université du Luxembourg, Campus Kirchberg

yves.letraon@uni.lu
3 Equipe Triskell, IRISA, RENNES, F-35042

bbaudry@irisa.fr

Abstract. A well known challenge in the formal methods domain is to improve

their integration with practical engineering methods. In the context of

embedded systems, model checking requires first to model the system to be

validated, then to formalize the properties to be satisfied, and finally to describe

the behavior of the environment. This last point which we name as the proof

context is often neglected. It could, however, be of great importance in order to

reduce the complexity of the proof. The question is then how to formalize such

a proof context. We experiment a language, named CDL (Context Description

Language), for describing a system environment using actors and sequence

diagrams, together with the properties to be checked. The properties are

specified with textual patterns and attached to specific regions in the context.

Our contribution is a report on several industrial embedded system applications.

Keywords: Formal methods, context description, property patterns, observers,

timed automata, model checking.

1 Introduction

In the field of embedded systems, software architectures must be designed to ensure

increasingly critical functions subjected to strong reliability and real time constraints.

Due to these constraints, embedded software architectures often have to go through

certification which requires a rigorous design process based on tight rules. However,

due to the increasing complexity of systems, there is no guarantee that such a design

process leads to error free systems. Formal methods offer rigorous and powerful

solutions for helping embedded system designers analyze, validate, or transform

systems in a provable sound way. For that purpose, behavior checking methods have

been explored for several years by many research teams [2, 8], but also by major

companies.

 P. Dhaussy et al.

Nevertheless, integration of formal methods in the engineering process is still too

weak comparatively to the huge need for reliability in critical systems. This

contradiction partly finds its causes in the actual difficulty to handle theoretical

concepts within an industrial framework. Besides, formal verification techniques

suffer from the combinatorial explosion induced by the internal complexity of the

software to be verified. This is particularly recurrent when dealing with real-time

embedded systems, interacting with a large number of actors. Additionally, formally

checking properties on system models requires the expression of these properties in

the form of temporal logic formula such as LTL [18] or CTL [16]. While these

languages have a high expressiveness they are not easily readable and easy to handle

by the engineers in industrial projects. To overcome this problem, some approaches

[5, 12, 10] propose to formulate temporal properties using textual definition patterns.

One way to circumvent the problem of combinatorial explosion consists of

specifying/restricting the system environment behavior or the context in which the

system will be used. The system is then tightly synchronized with its environment.

This context corresponds to well-defined operational phases, such as, for example,

initialization, reconfiguration, degraded modes, etc. Moreover, properties are often

related to specific use cases of the system. So, it is not necessary to verify them over

all the environment scenarios. To the best of our knowledge, no approach currently

provides such feature dedicated to an industrial use. In the case of an environment

composed of several parallel actors, describing the environmental context can be a

difficult task. To address these problems, we proposed [21, 22] the Context

Description Language (CDL). This DSL allows specifying the context with scenarios

and temporal properties using property patterns. Moreover, CDL provides the ability

to link each expressed property to a limited scope of the system behavior.

In this paper, we provide a two years experience feedback on applying our formal

verification approach on several aeronautic and military case studies. This paper

presents the approach and discusses the results on an exercise in bringing engineers to

use a formal method. First, we show that specifying more precisely the context in

which the system will be used can reduce the problem of state explosion. Second, we

show how to formalize, with CDL, specifications of an execution context, how to

formalize properties and how to attach these properties to specific regions in this

context.

For better understanding, this approach is illustrated with one industrial case study:

the software part of an anti-aircraft system (S_CP1), shown Fig.1. It controls the

internal modes of the system, its physical devices (radars, sensors, actuators�…) and

their actions in response to incoming signals from the environment. Due to page

limitation, only one requirement (Listing 1) and one sequence diagram are considered

to illustrate our approach along the paper.

The paper is organized as follows: Section 2 sets the scope of our work in current

formal verification practices and presents related work. Section 3 describes our DSL

for contexts and properties specification. Section 4 presents the proposed

methodology used for the experiments, as well as the framework supporting it. In

section 5 we give selected results on several industrial case studies. Finally, section 6

discusses our approach and future work and concludes.

1 For confidential reasons, company and system names are not mentioned in this paper.

 Evaluating CDL for Software Formal Validation

Fig. 1. S_CP system: partial use case and sequence diagram describing the behavior of the

system during the initialization phase

Requirement: “During initialization procedure, the S_CP shall associate a generic device
identifier to one or several roles in the system (Device), before dMax_dev time units. It
shall also associate an identifier to each console (HMI), before dMax_cons time units. The
S_CP shall send a notifyRole message for each connected generic device, to each
connected console. Initialization procedure shall end successfully, when the S_CP has set
all the generic device identifiers and all console identifiers and all notifyRole messages
have been sent.”

End Requirement
Listing 1: Initialization requirement for the S_CP system

2 Context and related work

These days, embedded software systems integrate more and more advanced features,

such as complex data structures, recursion, multithreading. These features pose

challenging theoretical and practical problems to developers of automatic analysis and

verification methods. Despite the increased level of automation, users of finite-state

verification tools are still constrained to specify the system requirements in their

specification language, which is most of the time informal. This fact is more

challenging than it appears because of the difficulty to write logic formula correctly

without some expertise in the idioms of the specification languages. While temporal

logic based languages allow a great expressivity for the properties, these languages

are not adapted to practically describe most of the requirements expressed in

industrial analysis documents. First, a requirement can refer to many events related to

the execution of the model or environment (cf. Listing 1). Then, it depends on an

execution history that has to be taken into account when checking it. As a result, the

logical formulas are of great complexity and become difficult to read and to handle by

engineers. It is thus necessary to facilitate the requirement expression with adequate

languages: abstracting some details in the property description, at a price of reducing

the expressivity. This conclusion has been done by many authors a long time ago and

some [5, 12, 10] proposed to formulate the properties using definition patterns.

Patterns are textual templates that capture common temporal properties and that can

be instantiated in a specific context to express application-specific properties.

 P. Dhaussy et al.

Specification patterns [5, 10] have been proposed to assist engineers in expressing

system requirements directly in a formal specification language, such as linear-time

temporal logic (LTL). These patterns represent commonly occurring types of real-

time properties found in several requirement documents for appliances and

automotive embedded systems applications.

In addition to the ease of writing real time properties, the patterns proposed by Dwyer

[5] and Cheng [10] have been defined to deal with high-level specifications.

Providing high-quality requirements is important since they serve as a baseline

between multiple teams working on the model under study (MUS2). Besides, Hassine

et al. [17] suggest an abstract high level pattern-based approach to the description of

property specifications based on Use Case Maps (UCM). They propose to build

property pattern systems that consider architectural aspects. Smith et al. developed

Propel [12], in which they extended the specification patterns of Dwyer et al. [5] to

address important aspects about properties. They extend the patterns with options that

can be used explicitly on these patterns.

In this paper, we reuse the categories of Dwyer�’s patterns and extend them to deal

with more specific temporal properties which appear when high-level specifications

are refined. Furthermore, in several industrial projects, intended requirements are not

associated to the entire lifecycle of software, but only to specific steps in its lifecycle.

In the system specification documents, requirements are often expressed in a context

of the system execution. For that reason, in addition to the use of property patterns,

we propose to link formalized properties to a specific execution context and thus to

limit the scope of the property. Hassine et al.[17] consider applying patterns to

architectural aspects; we focus on applying them to specific functional contexts,

which refer to system use cases. The benefit is to explicitly specify the conditions

under which is its meaningful to check the validity of a given property. So, according

to this feature, properties will be checked only in a specific execution context.

Consequently, the number of states over which the property is checked considerably

decreases. In this paper, we address the problem of applying property patterns in

industrial practices and provide concrete statistical results.

3 Context Description Language

In our approach, CDL aims at formalizing the context with scenarios and temporal

properties using property patterns. This DSML3 is based on UML 2. A CDL model

describes, on the one hand, the context using activity and sequence diagrams and, on

the other hand, the properties to be checked using property patterns. The originality of

CDL is its ability to link each expressed property to a context diagram, i.e. a limited

scope of the system behavior. For formal validation, CDL associates a formal

semantics to UML models, described as a set of traces [7, 13, 22]. The language is

designed and tooled to offer a simple and usable context description framework.

2 In this paper, MUS denotes the component model specified by the industrial in languages

such as UML 2, AADL [19], SDL [4], etc.
3 Domain Specific Modeling Language

 Evaluating CDL for Software Formal Validation

The syntax of the CDL language is specified in multiple and complementary ways.

One is the metamodel (e.g. the domain ontology) enhanced with OCL constraints. The

metamodel is an ECore model (EMF). It is annotated with OCL invariants to enforce

its semantics. A diagrammatical concrete syntax is created for the context description

and a textual syntax for the property expression. The following paragraphs outline: (i)

the proof context formalization, (ii) the property expressions.

In [11], we proposed a context description language using UML 2 diagrams (cf. Fig.2

for case study illustration). It is inspired by Use Case Charts of [13]. We extend this

language to allow several entities (as Device and HMI in Fig.1 and Fig.2) to compose

the proof context. Those entities are running in parallel. CDL is hierarchically

constructed in three levels: Level-1 is a set of use case diagrams which describes

hierarchical activity diagrams. Either alternative between several executions

(alternative/merge) or a parallelization of several executions (fork/join) is available.

Level-2 is a set of scenario diagrams organized by alternatives. Each scenario is fully

described at Level-3 by UML 2 sequence diagrams. These diagrams are composed of

two lifelines, one for the proof context and another for the MUS. Delayable

interaction event occurrences are specified on these lifelines. Counters limit the

iterations of diagram executions. It ensures the generation of finite context automata,

as described in [11]. Transitions at Level-1 and Level-2 are enabled according to the

values of some un-timed guards or timed guards. As mentioned in the introduction,

the approach links the context description (Level-1 or Level-2) to the specification of

the properties (as P1 and P2 in Fig.2) to be checked by stereotyped links

property/scope. A property can have several scopes and several properties can refer a

single diagram. Semantics of Level-1 and Level-2 is described in terms of traces,

inspired by [7]. Level-1 and Level-2 are based on the semantics of the scenarios and

expressed by construction rules of sets of traces built using seq, alt and par operators

(par only for Level-1). At Level-3, the semantics of a scenario is expressed by a set of

traces as described in [7] and in accordance with the semantics of UML 2 sequence

diagrams. A scenario trace is an ordered events sequence which describes a history of

the interactions between the context and the model. A scenario with several

interactions is described by a set of traces.

Fig. 2. S_CP case study: partial representation of the context. Initial Use cases and Sequence

diagrams (cf. Fig.1) are transformed and completed to create the context model. All context

scenarios are represented, combined with parallel and alternative operators, in terms of CDL.

For the property specification, we use a pattern-based approach and integrate property

patterns description in the CDL language (we refer the reader to [22] for details).

Patterns [5] are classified in basic families, which take into account the timed aspects

 P. Dhaussy et al.

of the properties to be specified. The patterns identified allow properties of answer

(Response), the necessity one (Precedence), of absence (Absence), of existence

(Existence) to be expressed. The properties refer to detectable events like

transmissions or receptions of signals, actions, and model state changes. These basic

forms are enriched by options (Pre-arity, Post-arity, Immediacy, Precedence, Nullity,

Repeatability) using annotations [10]. The property must be taken into account during

all the model execution, before, after or between occurrences of events. Patterns have

the possibility of expressing guards on the occurrences of events expressed in the

properties [22]. Guards refer to variables declared in the context model. This

mechanism adds precision to the property/scope reference introduced in the previous

section. Another extension of the patterns is the possibility of handling sets of events,

ordered or not ordered similar to the proposal of [9]. The operators AN and ALL

respectively specify if an event or all the events, ordered (Ordered) or not

(Combined), of an event set are concerned with the property. Illustrating with our case

study, Fig.3 depicts one bounded liveness property (P1) obtained from the R1

requirement decomposition as explained in section 4:
R1: During initialization procedure, the S_CP shall associate an identifier to NC

console (HMI), before dMax_cons time units.

R1 is linked to the communication sequence between the S_CP and consoles (HMI).

According to the sequence diagram of Fig.1, the association to other devices has no

effect on R1.

Property P1 ;
 exactly one occurence of S_CP_hasReachState_Init
 eventually leads-to [0..dMax_cons]
 ALL Ordered
 exactly one occurence of sendSetConsoleIdToHMI1
 exactly one occurence of sendSetConsoleIdToHMI2
 end
 S_CP_hasReachState_Init may never occurs
 one of sendSetConsoleIdToHMI1 cannot occur before S_CP_hasReachState_Init
 one of sendSetConsoleIdToHMI2 cannot occur before S_CP_hasReachState_Init
 repeatibility : true

Fig. 3. S_CP case study: A response pattern from R1 requirement.

In the illustrated case study, the number of consoles (HMI) considered is two (NC=2).

R1 specifies an observation of event occurrences. S_CP_hasReachState_Init refers a

state change in a MUS process. sendSetConsoleIdToHMI1 and

sendSetConsoleIdToHMI2 refer to the ones described in the CDL model (Fig.2). As

mentioned in section 4, our OBP toolset transforms each property into an observer

automaton [6], including a reject node. With observers, the properties we can handle

are of safety and bounded liveness type. The accessibility analysis consists of

checking if there is a reject state reached by a property observer. This reject node is

reached after detecting event �“S_CP_hasReachState_Init�” if the sequence

�“sendSetConsoleIdToHMI1�” and �“sendSetConsoleIdToHMI2�” is not produced in that

order before dMax_cons time units. Conversely, the reject node is not reached either

if event �“S_CP_hasReachState_Init�” is never received, or if the sequence of the two

events above is correctly produced (in the right order and with the right delay).

 Evaluating CDL for Software Formal Validation

Consequently, such a property can be verified by using reachability analysis

implemented in a formal model checker.

4. Methodology and OBP toolset

Our proposed specification and analysis process is based on checking a set of

requirements on the system interacting with its environment. To perform such

checking, we suppose that the set of properties can be formalized into a logic form,

that the environment interactions are also formally modeled as well as the possibility

to simulate the MUS in order to use a formal verification tool. With this hypothesis,

the process is decomposed into the following steps:

- Context Description (Fig.4.a): the environment interactions are formally modeled

with CDL activities diagrams (as illustrated Fig.2). This activity produces a set of

CDL context diagrams.

- Property Specification (Fig.4.b): the set of properties are formalized with property

patterns (as illustrated Listing 1). This activity produces a set of CDL pattern-based

properties.

- Proof Unit Construction (Fig.4.c): we proposed in [20] the Proof Unit (PU) concept,

which gathers all required data to perform proof activities, i.e. a reference to the

model to be checked (MUS), the context models and the properties (CDL model) to

be verified. The set of constructed PUs represents the set of requirements to be

checked on the MUS to prove it is correct (cf. Fig.5).

- Model Under Study (Fig.4.d): it has to be simulated in order to use a formal

verification tool. For this, OBP produces set of error observers. The observers

perform dynamic diagnosis and play the role of probes to locate the cause of an error.

When a fault is located, it is necessary to modify the model and create or modify

requirement.

Fig. 4. Activity diagram overviewing our specification and analysis process.

 P. Dhaussy et al.

The prerequisite of the methodology is the organization of the industrial specifications

into two sets: (i) the design models that represent the MUS structure and behavior; (ii)

the requirements that design models have to fulfill. This organization is necessary to

extract useful information about the context execution for a given requirement

(conditions under which a requirement has to be fulfilled). Indeed, in industrial

requirement documents, this contextual information is very often implicit or

disseminated in several documents and long discussions with engineers are usually

needed to precisely understand the different contexts for the system and capture them

in a model. Considering our case study, the given requirement (Listing 1) can be

decomposed and reordered into four sub-requirements, stated as follow:
R1: During initialization procedure, the S_CP shall associate an identifier to NC console

(IHM), before dMax_cons time units.
R2: After, the S_CP shall associate a generic device identifier to NE roles in the system

(Device), before dMax_dev time units.

R3: Each device returns a statusRole message to S_CP before dMax_ack time units.

R4: The S_CP shall send an notifyRole message for each connected generic device, to each

connected console. Initialization procedure shall end successfully, when the S_CP has

set all the generic device identifiers and all console identifiers and all notifyRole

messages have been sent.

After this decomposition, the user can specify more easily these requirements with

definition property patterns.

We use the CDL language to represent the context, using actors and sequence

diagrams, and all the requirements. The constructed CDL models reference elements

of the MUS (events, variables). Elements of CDL models and MUS are at the same

abstraction level. Moreover, we extract a formal specification describing the MUS�’s

behavior. This description is generally represented as a timed automaton so that it can

be executed by a simulator after model transformations. Property patterns capture,

with a textual format, types of properties translated from the requirement documents.

It is obvious that providing all these verification proof units is not a trivial activity.

It takes a great part of time and effort within a project. Besides, verification efforts

made to check whether an implementation meets the requirements have to be

capitalized. This capitalization captures the business logic to be used to redo the proof

if the requirements and thus the implementation evolve over the development

lifecycle. The definition of a general formal framework for the proof unit concept is

out of the scope of this paper and left for future work.

To carry out our experiments, we implemented the Observer Based Prover (OBP4)

tool onto the Eclipse platform through plug-ins. OBP takes as input the MUS

behavior model and CDL models. OBP is an implementation of a CDL language

translation in terms of formal languages, i.e. IF2 [2] or FIACRE [15] language. IF2 is

based on timed automata [1] extended to the asynchronous communicating process

context. Work is in progress to finalize the translation into FIACRE language and

thus take benefits from the TINA [14] model checker. The essence of a translational

approach to semantics is to move to a technological space that has a precise semantics

[3] and tools. As depicted in Fig.5, OBP leverages existing academic simulators and

model checkers, as TINA, IFx5 [2] or CADP [8].

4 OBP is available (version 2.0) under EPL license at : http://gforge.enseeiht.fr/projects/obp
5 IFx is IF2 simulator, developed by VERIMAG.

 Evaluating CDL for Software Formal Validation

To handle the gap between CDL meta-model and the final DSLs (e.g. IF2 or

FIACRE) the translation has several stages. We defined an ad-hoc domain-specified

transformation language in terms of ECore metamodel and define a Model to Model

transformation chain. From CDL context diagrams, OBP tool generates a set context

path automata which represent the set of the environment runs. OBP generates all the

possible paths. Each path represents one possible interaction between model and

context. The OBP tool generates, with a similar model transformation technique, the

observer automata from the properties. Each generated context path is transformed

into an IF2 automaton which is composed with the MUS and the generated observer

automata by the IFx simulator. To validate the component model, it is necessary to

compose each path with the model and the observers. Each property must be verified

for all paths. The accessibility analysis is carried out on the result of the composition

between a path, a set of observers and the MUS. If there is a reject state reached of a

property observer for one of paths, then the property is considered as false.

Fig. 5. Proof Units transformation with OBP

At present time, the input MUS of OBP (Fig.5) are imported currently with IF2

format. To import models with standard format as UML 2, AADL [19] or SDL [4], it

is necessary to implement adequate translators as studied in projects such as

TopCased6 or Omega7. The model driven developed tool OBP set out in this

paragraph was used in several case studies which are summed up in the experiment

following section.

5 Experiments and results

Our approach was applied to several embedded systems applications in avionic or

electronic industrial domain. These experiments are carried out with our french

industrial partners. This section reports on six case studies (CS1 to CS 6). Four of the

6 http://www.topcased.org

7 http://www-omega.imag.fr

 P. Dhaussy et al.

software components come from an industrial A and two from a B. For each industrial

component, the industrial partner provided requirement documents (use cases,

requirements in natural language) and the component executable model. Component

executable models are described with UML, completed by ADA or JAVA programs,

or with SDL language. The number of requirements in Table 1 evaluates the

complexity of the component. To validate these models, we follow the methodology

described in section 4. So, we describe the following phases: property specification,

context description and proof unit construction.

Table 1. Industrial case study classification.

 CS 1 CS 2 CS 3 CS 4 CS 5
8 CS 6

Modeling language SDL SDL SDL SDL UML2 UML2

Number of code lines 4 000 15 000 30 000 15 000 38 0009 25 00010

Number of requirements 49 94 136 85 188 151

5.1 Property specification

Requirements are inputs of our approach. Here, the work consists in transforming

natural language requirements into temporal properties. To create the CDL models

with patterns-based properties, we analyzed the software engineering documents of

the proposed case studies. We transformed textual requirements. We focused on

requirements which can be translated into observer automata. Firstly, we note that

most of requirements had to be rewritten into a set of several properties (as shown in

the S_CP case study along the paper). Secondly, model requirements of different

abstraction levels are mixed. We extracted requirement sets corresponding to the

model abstraction level. Finally, we observe that most of the textual requirements are

ambiguous. We had to rewrite them consequently to discussion with industrial

partners.

Table 2. Table highlighting the number of expressible properties in 6 industrial case studies.

 CS1 CS2 CS3 CS4 CS5 CS6 Average

Provable

properties
38/49

(78%)

73/94

(78%)

72/136

(53%)

49/85

(58%)

155/188

(82%)

41/151

(27%)

428/703

(61%)

Non-computable

properties
0/49

(0%)

2/94

(2%)

24/136

(18%)

2/85

(2%)

18/188

(10%)

48/151

(32%)

94/703

(13%)

Non-provable

properties
11/49

(22%)

19/94

(20%)

40/136

(29%)

34/85

(40%)

15/188

(8%)

62/151

(41%)

181/703

(26%)

8 CS 5 corresponds to the S_CP case study described partially in section 2.

9 The UML model is implemented by 38 000 lines ADA program.

10 The UML model is implemented by 25 000 lines JAVA program.

 Evaluating CDL for Software Formal Validation

Table 2 shows the number of properties which are translated from requirements. We

consider three categories of requirements. Provable requirements correspond to

requirements which can be captured with our approach and can be translated into

observers. The proof technique can be applied on a given context without

combinatorial explosion. Non computable requirements are requirements which can

be interpreted by a pattern but cannot be translated into an observer. For example,

liveness properties cannot be translated because they are unbounded. Observers

capture only bounded liveness properties. From the interpretation, we could generate

another temporal logic formula, which could feed a model checker as TINA. Non

provable requirements are requirements which cannot be interpreted at all with our

patterns. It is the case when a property refers to undetectable events for the observer,

such as the absence of a signal.

For the CS5, we note that the percentage (82%) of provable properties is very high. One

reason is that the most of 188 requirements was written with a good property pattern

matching. For the CS6, we note that the percentage (27%) is very low. It was very

difficult to re-write the requirements from specification documentation. We should

have spent much time to interpret requirements with our industrial partner to

formalize them with our patterns.

5.2 Context description

After property definition, we had to link each property to environment scenarios.

Here, the work consisted in transforming use cases into context with our CDL

language. One or several CDL contexts have been created according to the

complexity of behavior contexts and to the environment actor number. Table 3 shows

the number of paths obtained for different CDL models for the case study CS1. This

number depends on alternative and parallel operators, actors, interactions used in the

CDL model. We linked a set of properties related to a specific phase or scenarios at

each CDL model.

Table 3. Table highlighting the number of CDL and paths generated for CS1.

 CDL1 CDL2 CDL3 CDL4 CDL5

Number of actors 1 3 3 5 3

Number of path 3 128 82 612 96

Time of verification (sec) 6 256 164 1224 192

We note that the verification time can be long (for example, 20 minutes for CDL4 and

CS1) because the compilation time for state graphs IFx generation for each context

path. In the future work, we focus on path reduction and evaluating how paths can be

equivalent with respect to a particular property.

 P. Dhaussy et al.

5.3 Proof unit exploitation

In the case studies, for each CDL model, one proof unit is created. A proof unit

enables to organize a set of observers and one context. For each path generated by

OBP, one accessibility graph is generated and represents the set of all possible model

executions. A property is not verified by the tool if a �“reject�” observer automata state

exists. For this, OBP produces set of error observers. During simulation execution,

combinatorial explosion may appear. We do not resolve this point, but we propose

this partial solution. It is necessary to create specific contexts in order to restrict the

behaviors of the model. The solution is to initialize the system in specific

configurations and to create specific CDL models which restrict scenario spaces with

counters, actors, message parameters. So, partial verification is made on restricted

scenario spaces.

6 Discussion and conclusion

CDL is a prototype language to formalize contexts and properties. But CDL concepts

can be implemented in another language. For example, context diagrams are easily

described using UML 2. CDL permits us to check our methodology. In future work,

CDL can be viewed as an intermediate language. Today, the results obtained using the

currently implemented CDL language and OBP are very encouraging. For each case

study, it was possible to build proof units which take CDL models as input and which

generate sets of paths.

6.1 Approach benefits

CDL contributes to overcome the combinatorial explosion by allowing partial

verification on restricted scenarios specified by the context automata. CDL permits to

formalize contexts and non ambiguous properties. Property can be linked to whole or

specific contexts. During experiments, we noted that some requirements were often

described in the available documentation in an incomplete way. The collaboration

with engineers responsible for developing this documentation has motivated them to

consider a more formal approach to express their requirements, which is certainly a

positive improvement. In some case study, 70% textual requirements can be rewritten

more easily with pattern property. So, CDL permits a better formal verification

appropriation by industrial partners.

Contexts and properties are verification data. The set of proof units gather all these

data to perform proof activities and validate models. These data have to be

�“capitalized�” if the implementation evolves over the development lifecycle. Proof

units formalize proof contexts. It thus appears essential to study a framework to

describe and formalize proof contexts as MDA components jointly describing the

requirements to be checked and environment behaviors in which the model is plunged

at the time of simulations and the formal analysis.

 Evaluating CDL for Software Formal Validation

6.2. Using the CDL language

In case studies, context diagrams were built, on the one hand, from scenarios

described in the design documents and, on the other hand, from the sentences of

requirement documents. Two major difficulties are raised. The first one is the lack of

complete and coherent description of the environment�’s behavior. Use cases

describing interactions between the MUS (S_CP for instance) and its environment are

often incomplete. For instance, data concerning interaction modes may be implicit.

CDL diagrams development thus required discussions with experts who have

designed the models under study in order to explicit all context assumptions.

The problem comes from the difficulty to formalize system requirements into formal

properties. These requirements are expressed in several documents of different

(possibly low) levels. Furthermore, they are written in a textual form and many of

them can have several interpretations. Others implicitly refer to an applicable

configuration, operational phase or history without defining it. Such information,

necessary for verification, can only be deduced by manually analyzing design and

requirements documents and by interviewing expert engineers.

The use of CDL as a framework for formal and explicit context and requirement

definition can overcome these two difficulties: it uses a specification style very close

to UML and thus readable by engineers. In all case studies, the feedback from

industrial collaborators indicates that CDL models enhance communication between

developers with different levels of experience and backgrounds. Additionally, CDL

models enable developers, guided by behavior CDL diagrams, to structure and

formalize the environment description of their systems and their requirements.

Furthermore, constraints from CDL can guide developers to construct formal

properties to check against their models. As a result, developers can formalize system

requirements. Using CDL, they have a means to rigorously check whether

requirements are captured appropriately in the models using simulation and model

checking techniques. Nevertheless, property patterns will continue to evolve as we

receive feedback from academia and industry about possible improvements.

6.3 Property proofs

In the case studies, about forty significant requirements have been formally verified.

These requirements were written by using the property language presented section 3,

and then was translated automatically into IF2 observer automata. About 13% (non-

computable) of the requirements (cf Table 2) required manual translation. They did

not match the safety and bounded response time translation pattern,. The 61%

(provable) are translated and afterwards verified automatically. For the others 26%,

the requirements have to be discussed with the industrial partners to improve their

use. Following that approach, we found, in two case studies (CS1 and CS5), an

execution that didn�’t meet the requirements. Each case study corresponds to an

operational embedded system. The classical simulation techniques could not permit to

find these errors.

 P. Dhaussy et al.

6.4 Future work

One element highlight, working on embedded software case studies with industrial

partners, is the need of formal verification expertise capitalization. Given our

experience in formal checking for validation activities, it seems important to structure

the approach and the data handled during the proof. For that purpose, we identified

MDA components, called proof units, referencing all the data, models, meta-models,

etc. necessary to the verification. The definition of such MDA components can take

part in a better methodological framework, and afterwards a better integration of

validation techniques in model development processes. Indeed, proof units themselves

are handled as models, and are managed like a product resulting from the

specification activities. As a conceptual framework, they allow the activity and the

knowledge to be capitalized by gathering the necessary data to the proof.

Consequently, the development process must include a step of environmental

specification making it possible to generate sets of bounded behaviors in a complete

way. This assumption is not formally justified in this article but is based on the

essential idea that the designer can correctly develop a software system only if he

knows the constraints of use. This must be provided formally by the process analysis

of the designed software architecture, using a framework of development process.

Although the CDL approach has been shown scalable on several industrial case

studies, the approach suffer from a lack of methodology. The handling of contexts,

and then the formalization of CDL diagrams, must be done carefully in order to avoid

the combinatorial explosion when generating linear context path to be composed with

the observer automata. The definition of such a methodology will be addressed by the

next step of this work.

One essential point, dealing with model transformations, is the feedback obtained in

the formal target technical space into the source one. We take advantages of model

driven techniques and transformation traces in tooling to have validation feedbacks on

source models. Current and future works are dealing with increasing diagnosis

feedbacks to different users, including requirement managers and component model

designers.

In addition, work is still in progress at CDL level. It focuses on path reduction,

evaluating how paths can be equivalent with respect to a particular property. This

optimization aims at reducing the combinatorial explosion, allowing treating larger

and larger applications. Otherwise, experiments shown that part of the requirements

found in industrial specification documents were not translatable into property

patterns proposed by the approach. Several directions are followed to face the

problem, one is to extend actual patterns, and another is to create other patterns.

Implementation of experimental extended patterns is in progress.

Acknowledgments. This work results from collaboration between the authors and

other members of the Ensieta team. We thank Vincent Leilde for his contribution in

the OBP development and Bruno Aizier for his experiments and results.

 Evaluating CDL for Software Formal Validation

References

1. Alur R, Dill D. �“A Theory of Timed Automata�”. In Theoretical computer Science, 126(2),

2004, pages 183-235.

2. Bozga M., Graf S., and Mounier L. �“IF2: A validation environment for component-based

real-time systems�”. In Proceedings of Conference on Computer Aided Verification,

CAV�’02, Copenhagen, LNCS. Springer Verlag, 2002.

3. Clarke T., Evans A., Sammut P., Willians J. �“Applied Meamodeling: A foundation for

Language Driven Development�”. Technical report, version 0.1, Xactium, 2004.

4. ITU-T. Recommendations Z-100. Specification and Description Language (SDL). 1994.

5. Dwyer M.B., Avrunin G.S., Corbett J.C. �“Patterns in property specifications for finite-state

verification�”. In Proc. of the 21st Int. Conf. on Software Engineering, 1999, pages 411-420.

IEEE Computer Society Press.

6. Halbwachs N., Lagnier F. and Raymond P. Synchronous observers and the verification of

reactive systems. In 3rd int. Conf. on Algebraic Methodology and Software Technology

(AMAST'93), 1993.

7. Haugen O., Husa K. E., Runde R. K., Stolen K. Stairs: Towards formal design with

sequence diagrams. In journal of Software and System Modeling, 2005.

8. Fernandez J-C et al., « CADP: A Protocol Validation and Verification Toolbox », in Alur

R. and Henzinger T.A, editors, Proceedings of CAV'96 (new Brunswick, USA), Vol. 1102

LNCS, August 1996.

9. Janssen W., Mateescu R., Mauw S., Fennema P., Stappen P. �“Model Checking for

Managers�”. Conference Spin�’99, 1999, pages 92-107.

10. Konrad S., Cheng B. �“Real-Time Specification Patterns�”. In Proc. Of the 27th Int. Conf. on

Software Engineering (ICSE05), St Louis, MO, USA, 2005.

11. Roger J. C. Exploitation de contextes et d�’observateurs pour la vérification formelle de

modèles, Phd report, Univ. of Rennes I, 2006.

12. Smith R., Avrunin G.S., Clarke L. and Osterweil L. �“Propel: An Approach Supporting

Property Elucidation�”. In Proc. of the 24st Int. Conf. on Software Engineering, ACM Press,

2002, pages 11-21.

13. Whittle J. �“Specifying precise use cases with use case charts�”. In MoDELS'06, Satellite

Events, 2005, pages 290�–301.

14. Berthomieu B., Vernadat F., �“Time Petri nets analysis with TINA�”, 3rd Int. Conf. on the

Quantitative Evaluation of Systems (QEST�’2006), Riverside (USA), 11-14 Septembre 2006,

p. 123-124.

15. Berthomieu B, Bodeveix JP., Filali M., Garavel H., Lang F., Peres F., Saad R, Stoecker J.,

Vernadat F., �“The Syntax and Semantics of FIACRE, Version 1.0 alpha�”, Technical report

projet ANR05RNTL03101 OpenEmbeDD.

16.Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent

systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 2, 244�–263

(1986).

17. Hassine, J.; Rilling, J. & Dssouli, R. Use Case Maps as a property specification language,

Software System Model, 2009, 8, 205-220.

18.Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems. Springer,

New York, (1992)

19.Feiler, P., Gluch D.P., et Hudak J.J. The Architecture Analysis and Design Language

(AADL):An introduction.Technical report, Society of Automotive Engineers (SAE), 2006.

20. Ph. Dhaussy and Frédéric Boniol. Mise en �œuvre de composants MDA pour la validation

formelle de modéles de systèmes d�’information embarqués. RSTI, pages 133�–157, 2007.

 P. Dhaussy et al.

21.Ph. Dhaussy, J.Auvray, S.De Belloy, F.Boniol, E. Landel, Using context descriptions and

property definition patterns for software formal verification, Workshop Modevva�’08, 9 april

2008 (hosted by ICST 2008), Lillehammer, Norway.

22. Ph. Dhaussy, S. Creff, PY. Pillain, V. Leilde. « CDL language specification (Context

Description Language) », technical report version N° DTN/2009/8, Ensieta, 2009.

