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Abstract. A well known challenge in the formal methods domain is to improve 

their integration with practical engineering methods. In the context of 

embedded systems, model checking requires first to model the system to be 

validated, then to formalize the properties to be satisfied, and finally to describe 

the behavior of the environment. This last point which we name as the proof 

context is often neglected. It could, however, be of great importance in order to 

reduce the complexity of the proof. The question is then how to formalize such 

a proof context. We experiment a language, named CDL (Context Description 

Language), for describing a system environment using actors and sequence 

diagrams, together with the properties to be checked. The properties are 

specified with textual patterns and attached to specific regions in the context. 

Our contribution is a report on several industrial embedded system applications. 

Keywords: Formal methods, context description, property patterns, observers, 

timed automata, model checking. 

1   Introduction 

In the field of embedded systems, software architectures must be designed to ensure 

increasingly critical functions subjected to strong reliability and real time constraints. 

Due to these constraints, embedded software architectures often have to go through 

certification which requires a rigorous design process based on tight rules. However, 

due to the increasing complexity of systems, there is no guarantee that such a design 

process leads to error free systems. Formal methods offer rigorous and powerful 

solutions for helping embedded system designers analyze, validate, or transform 

systems in a provable sound way. For that purpose, behavior checking methods have 

been explored for several years by many research teams [2, 8], but also by major 

companies. 
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Nevertheless, integration of formal methods in the engineering process is still too 

weak comparatively to the huge need for reliability in critical systems. This 

contradiction partly finds its causes in the actual difficulty to handle theoretical 

concepts within an industrial framework. Besides, formal verification techniques 

suffer from the combinatorial explosion induced by the internal complexity of the 

software to be verified. This is particularly recurrent when dealing with real-time 

embedded systems, interacting with a large number of actors. Additionally, formally 

checking properties on system models requires the expression of these properties in 

the form of temporal logic formula such as LTL [18] or CTL [16]. While these 

languages have a high expressiveness they are not easily readable and easy to handle 

by the engineers in industrial projects. To overcome this problem, some approaches 

[5, 12, 10] propose to formulate temporal properties using textual definition patterns. 

One way to circumvent the problem of combinatorial explosion consists of 

specifying/restricting the system environment behavior or the context in which the 

system will be used. The system is then tightly synchronized with its environment. 

This context corresponds to well-defined operational phases, such as, for example, 

initialization, reconfiguration, degraded modes, etc. Moreover, properties are often 

related to specific use cases of the system. So, it is not necessary to verify them over 

all the environment scenarios. To the best of our knowledge, no approach currently 

provides such feature dedicated to an industrial use. In the case of an environment 

composed of several parallel actors, describing the environmental context can be a 

difficult task. To address these problems, we proposed [21, 22] the Context 

Description Language (CDL). This DSL allows specifying the context with scenarios 

and temporal properties using property patterns. Moreover, CDL provides the ability 

to link each expressed property to a limited scope of the system behavior.  

In this paper, we provide a two years experience feedback on applying our formal 

verification approach on several aeronautic and military case studies. This paper 

presents the approach and discusses the results on an exercise in bringing engineers to 

use a formal method. First, we show that specifying more precisely the context in 

which the system will be used can reduce the problem of state explosion. Second, we 

show how to formalize, with CDL, specifications of an execution context, how to 

formalize properties and how to attach these properties to specific regions in this 

context.    

For better understanding, this approach is illustrated with one industrial case study: 

the software part of an anti-aircraft system (S_CP1), shown Fig.1. It controls the 

internal modes of the system, its physical devices (radars, sensors, actuators�…) and 

their actions in response to incoming signals from the environment. Due to page 

limitation, only one requirement (Listing 1) and one sequence diagram are considered 

to illustrate our approach along the paper.  

The paper is organized as follows: Section 2 sets the scope of our work in current 

formal verification practices and presents related work. Section 3 describes our DSL 

for contexts and properties specification. Section 4 presents the proposed 

methodology used for the experiments, as well as the framework supporting it. In 

section 5 we give selected results on several industrial case studies. Finally, section 6 

discusses our approach and future work and concludes. 

                                                             
1 For confidential reasons, company and system names are not mentioned in this paper. 
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Fig. 1. S_CP system: partial use case and sequence diagram describing the behavior of the 

system during the initialization phase 

 

Requirement: “During initialization procedure, the S_CP shall associate a generic device 
identifier to one or several roles in the system (Device), before dMax_dev time units. It 
shall also associate an identifier to each console (HMI), before dMax_cons time units. The 
S_CP shall send a notifyRole message for each connected generic device, to each 
connected console. Initialization procedure shall end successfully, when the S_CP has set 
all the generic device identifiers and all console identifiers and all notifyRole messages 
have been sent.” 

End Requirement 
Listing 1: Initialization requirement for the S_CP system 

 

2   Context and related work 
 

These days, embedded software systems integrate more and more advanced features, 

such as complex data structures, recursion, multithreading. These features pose 

challenging theoretical and practical problems to developers of automatic analysis and 

verification methods. Despite the increased level of automation, users of finite-state 

verification tools are still constrained to specify the system requirements in their 

specification language, which is most of the time informal. This fact is more 

challenging than it appears because of the difficulty to write logic formula correctly 

without some expertise in the idioms of the specification languages. While temporal 

logic based languages allow a great expressivity for the properties, these languages 

are not adapted to practically describe most of the requirements expressed in 

industrial analysis documents. First, a requirement can refer to many events related to 

the execution of the model or environment (cf. Listing 1). Then, it depends on an 

execution history that has to be taken into account when checking it. As a result, the 

logical formulas are of great complexity and become difficult to read and to handle by 

engineers. It is thus necessary to facilitate the requirement expression with adequate 

languages: abstracting some details in the property description, at a price of reducing 

the expressivity. This conclusion has been done by many authors a long time ago and 

some [5, 12, 10] proposed to formulate the properties using definition patterns. 

Patterns are textual templates that capture common temporal properties and that can 

be instantiated in a specific context to express application-specific properties. 
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Specification patterns [5, 10] have been proposed to assist engineers in expressing 

system requirements directly in a formal specification language, such as linear-time 

temporal logic (LTL). These patterns represent commonly occurring types of real-

time properties found in several requirement documents for appliances and 

automotive embedded systems applications.  

In addition to the ease of writing real time properties, the patterns proposed by Dwyer 

[5] and Cheng [10] have been defined to deal with high-level specifications. 

Providing high-quality requirements is important since they serve as a baseline 

between multiple teams working on the model under study (MUS2). Besides, Hassine 

et al. [17] suggest an abstract high level pattern-based approach to the description of 

property specifications based on Use Case Maps (UCM). They propose to build 

property pattern systems that consider architectural aspects. Smith et al. developed 

Propel [12], in which they extended the specification patterns of Dwyer et al. [5] to 

address important aspects about properties. They extend the patterns with options that 

can be used explicitly on these patterns. 

In this paper, we reuse the categories of Dwyer�’s patterns and extend them to deal 

with more specific temporal properties which appear when high-level specifications 

are refined. Furthermore, in several industrial projects, intended requirements are not 

associated to the entire lifecycle of software, but only to specific steps in its lifecycle. 

In the system specification documents, requirements are often expressed in a context 

of the system execution. For that reason, in addition to the use of property patterns, 

we propose to link formalized properties to a specific execution context and thus to 

limit the scope of the property. Hassine et al.[17] consider applying patterns to 

architectural aspects; we focus on applying them to specific functional contexts, 

which refer to system use cases. The benefit is to explicitly specify the conditions 

under which is its meaningful to check the validity of a given property. So, according 

to this feature, properties will be checked only in a specific execution context. 

Consequently, the number of states over which the property is checked considerably 

decreases. In this paper, we address the problem of applying property patterns in 

industrial practices and provide concrete statistical results.  

3   Context Description Language 

In our approach, CDL aims at formalizing the context with scenarios and temporal 

properties using property patterns. This DSML3 is based on UML 2. A CDL model 

describes, on the one hand, the context using activity and sequence diagrams and, on 

the other hand, the properties to be checked using property patterns. The originality of 

CDL is its ability to link each expressed property to a context diagram, i.e. a limited 

scope of the system behavior. For formal validation, CDL associates a formal 

semantics to UML models, described as a set of traces [7, 13, 22]. The language is 

designed and tooled to offer a simple and usable context description framework. 

                                                             
2 In this paper, MUS denotes the component model specified by the industrial in languages 

such as UML 2, AADL [19], SDL [4], etc.  
3 Domain Specific Modeling Language 
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The syntax of the CDL language is specified in multiple and complementary ways. 

One is the metamodel (e.g. the domain ontology) enhanced with OCL constraints. The 

metamodel is an ECore model (EMF). It is annotated with OCL invariants to enforce 

its semantics. A diagrammatical concrete syntax is created for the context description 

and a textual syntax for the property expression. The following paragraphs outline: (i) 

the proof context formalization, (ii) the property expressions. 

In [11], we proposed a context description language using UML 2 diagrams (cf. Fig.2 

for case study illustration). It is inspired by Use Case Charts of [13]. We extend this 

language to allow several entities (as Device and HMI in Fig.1 and Fig.2) to compose 

the proof context. Those entities are running in parallel. CDL is hierarchically 

constructed in three levels: Level-1 is a set of use case diagrams which describes 

hierarchical activity diagrams. Either alternative between several executions 

(alternative/merge) or a parallelization of several executions (fork/join) is available. 

Level-2 is a set of scenario diagrams organized by alternatives. Each scenario is fully 

described at Level-3 by UML 2 sequence diagrams. These diagrams are composed of 

two lifelines, one for the proof context and another for the MUS. Delayable 

interaction event occurrences are specified on these lifelines. Counters limit the 

iterations of diagram executions. It ensures the generation of finite context automata, 

as described in [11]. Transitions at Level-1 and Level-2 are enabled according to the 

values of some un-timed guards or timed guards. As mentioned in the introduction, 

the approach links the context description (Level-1 or Level-2) to the specification of 

the properties (as P1 and P2 in Fig.2) to be checked by stereotyped links 

property/scope. A property can have several scopes and several properties can refer a 

single diagram. Semantics of Level-1 and Level-2 is described in terms of traces, 

inspired by [7]. Level-1 and Level-2 are based on the semantics of the scenarios and 

expressed by construction rules of sets of traces built using seq, alt and par operators 

(par only for Level-1). At Level-3, the semantics of a scenario is expressed by a set of 

traces as described in [7] and in accordance with the semantics of UML 2 sequence 

diagrams. A scenario trace is an ordered events sequence which describes a history of 

the interactions between the context and the model. A scenario with several 

interactions is described by a set of traces. 

 
Fig. 2.  S_CP case study: partial representation of the context. Initial Use cases and Sequence 

diagrams (cf. Fig.1) are transformed and completed to create the context model. All context 

scenarios are represented, combined with parallel and alternative operators, in terms of CDL. 

 

For the property specification, we use a pattern-based approach and integrate property 

patterns description in the CDL language (we refer the reader to [22] for details). 

Patterns [5] are classified in basic families, which take into account the timed aspects 
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of the properties to be specified. The patterns identified allow properties of answer 

(Response), the necessity one (Precedence), of absence (Absence), of existence 

(Existence) to be expressed. The properties refer to detectable events like 

transmissions or receptions of signals, actions, and model state changes. These basic 

forms are enriched by options (Pre-arity, Post-arity, Immediacy, Precedence, Nullity, 

Repeatability) using annotations [10]. The property must be taken into account during 

all the model execution, before, after or between occurrences of events. Patterns have 

the possibility of expressing guards on the occurrences of events expressed in the 

properties [22]. Guards refer to variables declared in the context model. This 

mechanism adds precision to the property/scope reference introduced in the previous 

section. Another extension of the patterns is the possibility of handling sets of events, 

ordered or not ordered similar to the proposal of [9]. The operators AN and ALL 

respectively specify if an event or all the events, ordered (Ordered) or not 

(Combined), of an event set are concerned with the property. Illustrating with our case 

study, Fig.3 depicts one bounded liveness property (P1) obtained from the R1 

requirement decomposition as explained in section 4: 
R1: During initialization procedure, the S_CP shall associate an identifier to NC 

console (HMI), before dMax_cons time units.  

R1 is linked to the communication sequence between the S_CP and consoles (HMI). 

According to the sequence diagram of Fig.1, the association to other devices has no 

effect on R1.  

 

Property P1 ; 
     exactly  one  occurence of   S_CP_hasReachState_Init 
     eventually  leads-to  [0..dMax_cons] 
     ALL Ordered  
             exactly  one  occurence of   sendSetConsoleIdToHMI1 
             exactly  one  occurence of   sendSetConsoleIdToHMI2 
     end 
     S_CP_hasReachState_Init  may never occurs 
     one of sendSetConsoleIdToHMI1  cannot  occur before  S_CP_hasReachState_Init 
     one of sendSetConsoleIdToHMI2  cannot  occur before  S_CP_hasReachState_Init 
     repeatibility : true 

Fig. 3.  S_CP case study: A response pattern from R1 requirement.  

 

In the illustrated case study, the number of consoles (HMI) considered is two (NC=2). 

R1 specifies an observation of event occurrences. S_CP_hasReachState_Init refers a 

state change in a MUS process. sendSetConsoleIdToHMI1 and 

sendSetConsoleIdToHMI2 refer to the ones described in the CDL model (Fig.2). As 

mentioned in section 4, our OBP toolset transforms each property into an observer 

automaton [6], including a reject node. With observers, the properties we can handle 

are of safety and bounded liveness type. The accessibility analysis consists of 

checking if there is a reject state reached by a property observer. This reject node is 

reached after detecting event �“S_CP_hasReachState_Init�” if the sequence 

�“sendSetConsoleIdToHMI1�” and �“sendSetConsoleIdToHMI2�” is not produced in that 

order before dMax_cons time units. Conversely, the reject node is not reached either 

if event �“S_CP_hasReachState_Init�” is never received, or if the sequence of the two 

events above is correctly produced (in the right order and with the right delay). 
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Consequently, such a property can be verified by using reachability analysis 

implemented in a formal model checker. 

4. Methodology and OBP toolset 

Our proposed specification and analysis process is based on checking a set of 

requirements on the system interacting with its environment. To perform such 

checking, we suppose that the set of properties can be formalized into a logic form, 

that the environment interactions are also formally modeled as well as the possibility 

to simulate the MUS in order to use a formal verification tool. With this hypothesis, 

the process is decomposed into the following steps: 

- Context Description (Fig.4.a): the environment interactions are formally modeled 

with CDL activities diagrams (as illustrated Fig.2). This activity produces a set of 

CDL context diagrams. 

- Property Specification (Fig.4.b): the set of properties are formalized with property 

patterns (as illustrated Listing 1). This activity produces a set of CDL pattern-based 

properties. 

- Proof Unit Construction (Fig.4.c): we proposed in [20] the Proof Unit (PU) concept, 

which gathers all required data to perform proof activities, i.e. a reference to the 

model to be checked (MUS), the context models and the properties (CDL model) to 

be verified. The set of constructed PUs represents the set of requirements to be 

checked on the MUS to prove it is correct (cf. Fig.5).  

- Model Under Study (Fig.4.d):  it has to be simulated in order to use a formal 

verification tool. For this, OBP produces set of error observers. The observers 

perform dynamic diagnosis and play the role of probes to locate the cause of an error. 

When a fault is located, it is necessary to modify the model and create or modify 

requirement. 

 
Fig. 4.  Activity diagram overviewing our specification and analysis process.  
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The prerequisite of the methodology is the organization of the industrial specifications 

into two sets: (i) the design models that represent the MUS structure and behavior; (ii) 

the requirements that design models have to fulfill. This organization is necessary to 

extract useful information about the context execution for a given requirement 

(conditions under which a requirement has to be fulfilled). Indeed, in industrial 

requirement documents, this contextual information is very often implicit or 

disseminated in several documents and long discussions with engineers are usually 

needed to precisely understand the different contexts for the system and capture them 

in a model. Considering our case study, the given requirement (Listing 1) can be 

decomposed and reordered into four sub-requirements, stated as follow: 
R1: During initialization procedure, the S_CP shall associate an identifier to NC console 

(IHM), before dMax_cons time units.  
R2: After, the S_CP shall associate a generic device identifier to NE roles in the system 

(Device), before dMax_dev time units. 

R3: Each device returns a statusRole message to S_CP before dMax_ack time units. 

R4: The S_CP shall send an notifyRole message for each connected generic device, to each 

connected console. Initialization procedure shall end successfully, when the S_CP has 

set all the generic device identifiers and all console identifiers and all notifyRole 

messages have been sent. 

After this decomposition, the user can specify more easily these requirements with 

definition property patterns.  

We use the CDL language to represent the context, using actors and sequence 

diagrams, and all the requirements. The constructed CDL models reference elements 

of the MUS (events, variables). Elements of CDL models and MUS are at the same 

abstraction level. Moreover, we extract a formal specification describing the MUS�’s 

behavior. This description is generally represented as a timed automaton so that it can 

be executed by a simulator after model transformations. Property patterns capture, 

with a textual format, types of properties translated from the requirement documents. 

It is obvious that providing all these verification proof units is not a trivial activity. 

It takes a great part of time and effort within a project. Besides, verification efforts 

made to check whether an implementation meets the requirements have to be 

capitalized. This capitalization captures the business logic to be used to redo the proof 

if the requirements and thus the implementation evolve over the development 

lifecycle. The definition of a general formal framework for the proof unit concept is 

out of the scope of this paper and left for future work. 

To carry out our experiments, we implemented the Observer Based Prover (OBP4) 

tool onto the Eclipse platform through plug-ins. OBP takes as input the MUS 

behavior model and CDL models. OBP is an implementation of a CDL language 

translation in terms of formal languages, i.e. IF2 [2] or FIACRE [15] language. IF2 is 

based on timed automata [1] extended to the asynchronous communicating process 

context. Work is in progress to finalize the translation into FIACRE language and 

thus take benefits from the TINA [14] model checker. The essence of a translational 

approach to semantics is to move to a technological space that has a precise semantics 

[3] and tools. As depicted in Fig.5, OBP leverages existing academic simulators and 

model checkers, as TINA, IFx5 [2] or CADP [8]. 

                                                             
4 OBP is available (version 2.0) under EPL license at : http://gforge.enseeiht.fr/projects/obp 
5 IFx is IF2 simulator, developed by VERIMAG. 
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To handle the gap between CDL meta-model and the final DSLs (e.g. IF2 or 

FIACRE) the translation has several stages. We defined an ad-hoc domain-specified 

transformation language in terms of ECore metamodel and define a Model to Model 

transformation chain. From CDL context diagrams, OBP tool generates a set context 

path automata which represent the set of the environment runs. OBP generates all the 

possible paths. Each path represents one possible interaction between model and 

context. The OBP tool generates, with a similar model transformation technique, the 

observer automata from the properties. Each generated context path is transformed 

into an IF2 automaton which is composed with the MUS and the generated observer 

automata by the IFx simulator. To validate the component model, it is necessary to 

compose each path with the model and the observers. Each property must be verified 

for all paths. The accessibility analysis is carried out on the result of the composition 

between a path, a set of observers and the MUS. If there is a reject state reached of a 

property observer for one of paths, then the property is considered as false. 

 
Fig. 5. Proof Units transformation with OBP 

 

At present time, the input MUS of OBP (Fig.5) are imported currently with IF2 

format. To import models with standard format as UML 2, AADL [19] or SDL [4], it 

is necessary to implement adequate translators as studied in projects such as 

TopCased6 or Omega7. The model driven developed tool OBP set out in this 

paragraph was used in several case studies which are summed up in the experiment 

following section.  

5   Experiments and results 

Our approach was applied to several embedded systems applications in avionic or 

electronic industrial domain. These experiments are carried out with our french 

industrial partners. This section reports on six case studies (CS1 to CS 6). Four of the 

                                                             
6 http://www.topcased.org 

7 http://www-omega.imag.fr 
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software components come from an industrial A and two from a B. For each industrial 

component, the industrial partner provided requirement documents (use cases, 

requirements in natural language) and the component executable model. Component 

executable models are described with UML, completed by ADA or JAVA programs, 

or with SDL language. The number of requirements in Table 1 evaluates the 

complexity of the component. To validate these models, we follow the methodology 

described in section 4. So, we describe the following phases: property specification, 

context description and proof unit construction. 

Table 1. Industrial case study classification. 

 CS 1 CS 2 CS 3 CS 4 CS 5
8 CS 6 

Modeling language SDL SDL SDL SDL UML2 UML2 

Number of code lines 4 000 15 000 30 000 15 000 38 0009 25 00010 

Number of requirements 49 94 136 85 188 151 

5.1   Property specification 

Requirements are inputs of our approach. Here, the work consists in transforming 

natural language requirements into temporal properties. To create the CDL models 

with patterns-based properties, we analyzed the software engineering documents of 

the proposed case studies. We transformed textual requirements. We focused on 

requirements which can be translated into observer automata. Firstly, we note that 

most of requirements had to be rewritten into a set of several properties (as shown in 

the S_CP case study along the paper). Secondly, model requirements of different 

abstraction levels are mixed. We extracted requirement sets corresponding to the 

model abstraction level. Finally, we observe that most of the textual requirements are 

ambiguous. We had to rewrite them consequently to discussion with industrial 

partners.  

Table 2. Table highlighting the number of expressible properties in 6 industrial case studies. 

 CS1 CS2 CS3 CS4 CS5 CS6 Average 

Provable 

properties 
38/49 

(78%) 

73/94 

(78%) 

72/136 

(53%) 

49/85 

(58%) 

155/188 

(82%) 

41/151 

(27%) 

428/703 

(61%) 

Non-computable 

properties  
0/49 

(0%) 

2/94 

(2%) 

24/136 

(18%) 

2/85 

(2%) 

18/188 

(10%) 

48/151 

(32%) 

94/703 

(13%) 

Non-provable 

properties 
11/49 

(22%) 

19/94 

(20%) 

40/136 

(29%) 

34/85 

(40%) 

15/188 

(8%) 

62/151 

(41%) 

181/703 

(26%) 

 

                                                             
8 CS 5 corresponds to the S_CP case study described partially in section 2. 

9 The UML model is implemented by 38 000 lines ADA program. 

10 The UML model is implemented by 25 000 lines JAVA program. 
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Table 2 shows the number of properties which are translated from requirements. We 

consider three categories of requirements. Provable requirements correspond to 

requirements which can be captured with our approach and can be translated into 

observers. The proof technique can be applied on a given context without 

combinatorial explosion. Non computable requirements are requirements which can 

be interpreted by a pattern but cannot be translated into an observer. For example, 

liveness properties cannot be translated because they are unbounded. Observers 

capture only bounded liveness properties. From the interpretation, we could generate 

another temporal logic formula, which could feed a model checker as TINA. Non 

provable requirements are requirements which cannot be interpreted at all with our 

patterns. It is the case when a property refers to undetectable events for the observer, 

such as the absence of a signal. 

For the CS5, we note that the percentage (82%) of provable properties is very high. One 

reason is that the most of 188 requirements was written with a good property pattern 

matching. For the CS6, we note that the percentage (27%) is very low. It was very 

difficult to re-write the requirements from specification documentation. We should 

have spent much time to interpret requirements with our industrial partner to 

formalize them with our patterns. 

5.2   Context description 

After property definition, we had to link each property to environment scenarios. 

Here, the work consisted in transforming use cases into context with our CDL 

language. One or several CDL contexts have been created according to the 

complexity of behavior contexts and to the environment actor number. Table 3 shows 

the number of paths obtained for different CDL models for the case study CS1. This 

number depends on alternative and parallel operators, actors, interactions used in the 

CDL model. We linked a set of properties related to a specific phase or scenarios at 

each CDL model.  

 
Table 3. Table highlighting the number of CDL and paths generated for CS1.  

 CDL1 CDL2 CDL3 CDL4 CDL5 

Number of actors 1 3 3 5 3 

Number of path 3 128 82 612 96 

Time of verification (sec) 6 256 164 1224 192 

 

We note that the verification time can be long (for example, 20 minutes for CDL4 and 

CS1) because the compilation time for state graphs IFx generation for each context 

path. In the future work, we focus on path reduction and evaluating how paths can be 

equivalent with respect to a particular property. 
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5.3   Proof unit exploitation 

In the case studies, for each CDL model, one proof unit is created. A proof unit 

enables to organize a set of observers and one context. For each path generated by 

OBP, one accessibility graph is generated and represents the set of all possible model 

executions. A property is not verified by the tool if a �“reject�” observer automata state 

exists. For this, OBP produces set of error observers. During simulation execution, 

combinatorial explosion may appear. We do not resolve this point, but we propose 

this partial solution. It is necessary to create specific contexts in order to restrict the 

behaviors of the model. The solution is to initialize the system in specific 

configurations and to create specific CDL models which restrict scenario spaces with 

counters, actors, message parameters. So, partial verification is made on restricted 

scenario spaces. 

6 Discussion and conclusion    

CDL is a prototype language to formalize contexts and properties. But CDL concepts 

can be implemented in another language. For example, context diagrams are easily 

described using UML 2. CDL permits us to check our methodology. In future work, 

CDL can be viewed as an intermediate language. Today, the results obtained using the 

currently implemented CDL language and OBP are very encouraging. For each case 

study, it was possible to build proof units which take CDL models as input and which 

generate sets of paths.  

 

6.1 Approach benefits  

 

CDL contributes to overcome the combinatorial explosion by allowing partial 

verification on restricted scenarios specified by the context automata. CDL permits to 

formalize contexts and non ambiguous properties. Property can be linked to whole or 

specific contexts. During experiments, we noted that some requirements were often 

described in the available documentation in an incomplete way. The collaboration 

with engineers responsible for developing this documentation has motivated them to 

consider a more formal approach to express their requirements, which is certainly a 

positive improvement. In some case study, 70% textual requirements can be rewritten 

more easily with pattern property. So, CDL permits a better formal verification 

appropriation by industrial partners. 

Contexts and properties are verification data. The set of proof units gather all these 

data to perform proof activities and validate models. These data have to be 

�“capitalized�” if the implementation evolves over the development lifecycle. Proof 

units formalize proof contexts. It thus appears essential to study a framework to 

describe and formalize proof contexts as MDA components jointly describing the 

requirements to be checked and environment behaviors in which the model is plunged 

at the time of simulations and the formal analysis.  
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6.2. Using the CDL language 

In case studies, context diagrams were built, on the one hand, from scenarios 

described in the design documents and, on the other hand, from the sentences of 

requirement documents. Two major difficulties are raised. The first one is the lack of 

complete and coherent description of the environment�’s behavior. Use cases 

describing interactions between the MUS (S_CP for instance) and its environment are 

often incomplete. For instance, data concerning interaction modes may be implicit. 

CDL diagrams development thus required discussions with experts who have 

designed the models under study in order to explicit all context assumptions.  

The problem comes from the difficulty to formalize system requirements into formal 

properties. These requirements are expressed in several documents of different 

(possibly low) levels. Furthermore, they are written in a textual form and many of 

them can have several interpretations. Others implicitly refer to an applicable 

configuration, operational phase or history without defining it. Such information, 

necessary for verification, can only be deduced by manually analyzing design and 

requirements documents and by interviewing expert engineers. 

The use of CDL as a framework for formal and explicit context and requirement 

definition can overcome these two difficulties: it uses a specification style very close 

to UML and thus readable by engineers. In all case studies, the feedback from 

industrial collaborators indicates that CDL models enhance communication between 

developers with different levels of experience and backgrounds. Additionally, CDL 

models enable developers, guided by behavior CDL diagrams, to structure and 

formalize the environment description of their systems and their requirements.  

Furthermore, constraints from CDL can guide developers to construct formal 

properties to check against their models. As a result, developers can formalize system 

requirements. Using CDL, they have a means to rigorously check whether 

requirements are captured appropriately in the models using simulation and model 

checking techniques. Nevertheless, property patterns will continue to evolve as we 

receive feedback from academia and industry about possible improvements.  

6.3   Property proofs 

In the case studies, about forty significant requirements have been formally verified. 

These requirements were written by using the property language presented section 3, 

and then was translated automatically into IF2 observer automata. About 13% (non-

computable) of the requirements (cf Table 2) required manual translation. They did 

not match the safety and bounded response time translation pattern,. The 61% 

(provable) are translated and afterwards verified automatically. For the others 26%, 

the requirements have to be discussed with the industrial partners to improve their 

use. Following that approach, we found, in two case studies (CS1 and CS5), an 

execution that didn�’t meet the requirements. Each case study corresponds to an 

operational embedded system. The classical simulation techniques could not permit to 

find these errors. 
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6.4   Future work 

One element highlight, working on embedded software case studies with industrial 

partners, is the need of formal verification expertise capitalization. Given our 

experience in formal checking for validation activities, it seems important to structure 

the approach and the data handled during the proof. For that purpose, we identified 

MDA components, called proof units, referencing all the data, models, meta-models, 

etc. necessary to the verification. The definition of such MDA components can take 

part in a better methodological framework, and afterwards a better integration of 

validation techniques in model development processes. Indeed, proof units themselves 

are handled as models, and are managed like a product resulting from the 

specification activities. As a conceptual framework, they allow the activity and the 

knowledge to be capitalized by gathering the necessary data to the proof. 

Consequently, the development process must include a step of environmental 

specification making it possible to generate sets of bounded behaviors in a complete 

way. This assumption is not formally justified in this article but is based on the 

essential idea that the designer can correctly develop a software system only if he 

knows the constraints of use. This must be provided formally by the process analysis 

of the designed software architecture, using a framework of development process. 

Although the CDL approach has been shown scalable on several industrial case 

studies, the approach suffer from a lack of methodology. The handling of contexts, 

and then the formalization of CDL diagrams, must be done carefully in order to avoid 

the combinatorial explosion when generating linear context path to be composed with 

the observer automata. The definition of such a methodology will be addressed by the 

next step of this work. 

One essential point, dealing with model transformations, is the feedback obtained in 

the formal target technical space into the source one. We take advantages of model 

driven techniques and transformation traces in tooling to have validation feedbacks on 

source models. Current and future works are dealing with increasing diagnosis 

feedbacks to different users, including requirement managers and component model 

designers. 

In addition, work is still in progress at CDL level. It focuses on path reduction, 

evaluating how paths can be equivalent with respect to a particular property. This 

optimization aims at reducing the combinatorial explosion, allowing treating larger 

and larger applications. Otherwise, experiments shown that part of the requirements 

found in industrial specification documents were not translatable into property 

patterns proposed by the approach. Several directions are followed to face the 

problem, one is to extend actual patterns, and another is to create other patterns. 

Implementation of experimental extended patterns is in progress. 
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