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Abstract: In this paper, solving of conflicts of a Petri net model with techniques of (max, 
plus) algebra is considered. We define a routing policy which enables to solve and 
arbitrate the associated conflicts with a Petri net. We show how the conflict solving 
semantic prevents the deadlock in a graphical model while introducing routing functions 
into modelling. To illustrate the proposed results, a public transportation network is 
worked out. The aim is to analyze and evaluate the performance of a bus network which 
is represented by a Petri net with conflicts and a state model in (max, plus) algebra. 
Copyright © 2006 IFAC 
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1. INTRODUCTION 

 
Many systems may be described through a discrete 
event dynamic model, like transportation networks, 
manufacturing facilities, or computer networks 
(Cohen et al, 1985; Nait-Sidi-Moh, 2003; Olsder et 
al, 1998, Goverde et al, 1998). They differ from 
continuous systems as they can be associated with a 
space of discrete state, and changes of state involved 
by some events. Their behaviour is mainly 
characterized by parallelism, synchronization and 
concurrency (Baccelli et al, 1992; Gaubert, 1992). 
 
Among the formalisms used to model the discrete 
event systems (DES, for short), Petri Nets (PN) are 
an interesting graphical and mathematical tool 
(David et al, 1992; Proth et al, 1995). Nevertheless 
they sometimes provide complex representations 
because of the complexity of the modelled systems 
(problem size,…). Petri Nets include several 
modelling families. Each one represents a particular 
aspect of a complex system. For example, it is well 
known that event graphs allow us to model 
phenomena like parallelism, concurrency and 
synchronization. Another class of Petri nets is the 
Free Choice Petri Nets (FCPNs) (Bouillard, 2005; 
Sgroi et al, 1999). This last class may be used for the 
reliability, the management and the schedule of 
tasks. It also may be integrated in a global 
methodology aiming at designing the systems. Also, 
we can quote the Petri Nets with conflicts (PNConf) 

which exhibits clear distinction between the notions 
of concurrency and choice (David et al, 1992; Yen, 
2002). In this article, we specifically use this kind of 
Petri Nets. It is appropriate to obtain a model in 
which the outcome of a choice depends on the arrival 
time of token rather than other parameters. 
 
With a PNConf model, one of the main encountered 
problems is to know which transition will be fired in 
case of conflict (which involves making choices). 
Then an adapted strategy must be defined to solve 
those conflicts. More precisely, a routing policy must 
be defined when several output transitions exist for a 
given place. It determines which transition will be 
fired by a token arriving in a such place. Several 
routing policies may be envisaged such as race 
policy, Bernoulli routing, periodic routing, extreme 
routing (Bouillard, 2005; Nait-Sidi-Moh, et al., 
2003). 
 
(Nait-Sidi-Moh, et al., 2003) deals with the use of 
periodic routing to solve structural conflicts 
identified in a Petri Net model. This model 
represented a part of a public transportation network. 
The problem studied was the evaluation of the 
connection times during a given travel of passengers. 
The system behaviour was supposed to be a periodic 
one (periodic arrival of vehicles at the considered 
stops). For this study, the routing policy allowed us 
first to arbitrate those conflicts, and then to solve a 
(Max, plus) linear state model deduced from the 



     

graphical representation. To reach these goals, the 
explicit expressions of routing functions were 
determined. After solving a priori the structural 
conflicts, the performance evaluation was made, in 
terms of passenger waiting times at each connection 
stop and travel time from a given origin to a given 
destination point. 
 
This paper deals with an extension of the study 
presented in (Nait-Sidi-Moh, et al., 2003) to solve a 
more general problem. Indeed, we have relaxed the 
periodicity constraint. Then a conflict solving 
semantic must be found which prevents the deadlock 
in the graphical representation, and which allows a 
fine analysis so as to optimize the network dynamics. 
 
Among the formalisms used to represent the 
analytical behaviour of discrete event systems, dioid 
algebra presents an adequate tool (Baccelli et al, 
1992; Gaubert, 1992, Olsder et al, 1998). With this 
algebra, the evolution of the system is then described 
by linear state equations. The interpretation is the 
following one: each variable is a “dater” in (Max, 
plus) algebra: each function xi(k) represents the kth 
firing date of transition xi; in (Min, +) algebra, each 
variable is a “counter”: each function xi(t) represents 
the number of firings of xi at time t. 
 
2. MOTIVATION AND PAPER CONTRIBUTION 
 
Let us model the studied system with the Petri Net 
PN= {P, T, A, W, M0, �} where {P, T, A, 
W, M0} is the classical Petri Net, and � = (�t)t∈T is 
the set of routing functions. The routing strategy 
proposed in this article is given by the introduction 
of the routing function � in the modelling. 
Hereafter, some elements that we will need to use in 
this paper are defined. 
• ∀ P∈ P, P•  = {t /  A(P, t) ≥ 1, t∈ T} is the set of 

output transitions of P, 
• Pconf is a subset of P (Pconf ⊆ P) such that: 

∀ P∈Pconf, |P
•| > 1 (each place of Pconf has at least 

two output transitions). A place P such that 
|P•| > 1 is in conflict situation. Each internal 
transition t of a PNConf verifies |•t| ≥ 1 (i.e. each 
internal transition may have more than one input 
place). It is not the case for Free Choice Petri 
Nets where each transition has only one input 
place (|•t| = 1). 

• For each place P ∈ Pconf and for each transition 
t ∈ P•, we define a routing function that we 
associate with t. This function is defined by :  

�t : �
* → {e, ε} 

k  � �t(k) 

� �t(k) = e implies that the transition t is 
fired by the kth token arriving in P. 

 
� �t(k) = ε implies that the transition t will 

not be fired by the kth token arriving in 
P. This token takes part in the firing of 
another transition t’∈P•.

According to the definition of �, we have the 
following relation : ∀ P∈ Pconf, if ∃ t1 ∈ P• such that 
�t1(k) = e, then ∀ t ∈ P• with t ≠ t1, �t(k) = ε, we say 
that the firing of t1 is real, and the firing of t is 
virtual,  we affect then to t(k) a virtual date which is 
ε (t(k) = ε). 
 
Figure 1 illustrates a way to represent conflicts in the 
Petri Nets. In this graph, we identify two transitions 
in conflict situation: x1 and x2. The firing of x1 is 
preferred to the firing of x2, on condition that the 
places P1 and P2 simultaneously contain one token. 
Otherwise, if only P2 contains one token, x2 will be 
fired. Nevertheless, we associate a kth firing to each 
transition even if only one of them is really fired 
(introduction of the function �). This firing is 
performed by the kth token arriving in place P2. If the 
transition x2 (respectively x1) is effectively fired, then 
a virtual firing of transition x1 (respectively x2) is 
generated at time ε (respectively ε). In the graphical 
model of the figure 1, real or virtual firings of 
transitions x1 and x2 may be expressed respectively 
by associated functions �x1 and �x2. Each function 
takes part to the proposed solving strategy of 
conflicts. 
 
 
 
 
 
 
 
Fig. 1. Timed Petri Net with conflicts. 
 
Remark 1:  
 
• If x1 is virtually fired then the place P1 does not 

contain no token; 
• If x1 is really fired then the place P1 contains at 

least one token. In the case where P1 contains more 
than one token, the real firing of x1 withdraws all 
tokens of P1. This means, in the bus network, that 
all batches of passengers waiting at the considered 
connection stop get on the bus and carry out the 
connection. In this case, the associated weight to 
the arc A(P1, x1) becomes m(P1) which is the 
marking of the place P1. Let us consider that the 
capacity of the buses is infinite. 

 
From this remark, figure 2 gives the new PN 
obtained from the PN of figure 1. 
 
 
 
 
 
 
 
 
Fig. 2. New Timed PN with conflicts (some weights 

different from 1). 
 
By taking into account the routing functions �x1 and 

�x2, respectively associated with x1 and x2, the firing 
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evolution of these two transitions is expressed by the 
following way. 
 

x1(k) = max [τ1 + u1(k’) + �x1(k), τ2 + u2(k) + 
�x1(k)] 

= τ1 ⊗ u1(k’) ⊗ �x1(k) ⊕ τ2 ⊗ u2(k) ⊗ 
�x1(k) (1) 

 
k’ is given according to the marking m(P1) of place 
P1 just before a real firing of x1.  
 
Since the kth token that fires the transition u2 takes 
part in the firing of x1 (really or virtually) then the 
expression of x1(k) can be written as follows: 

x1(k) = τ2 ⊗ u2(k) ⊗ �x1(k) (2) 

For the kth token arriving in P2, if x1 is fired rather 
than x2 (i.e. P1 also contains one token), then we 
obtain for �x1(k) = e  

x1(k) =  τ2 ⊗ u2(k) 
Otherwise, �x1(k) = ε,  

x1(k) = ε 
 
In the same way we deduce the evolution equation of 
the transition x2. We finally obtain the following 
expressions: 
 

x1(k) = τ2 ⊗ u2(k) ⊗ �x1(k) 

x2(k) = τ2 ⊗ u2(k) ⊗ �x2(k) (3) 
 
The algorithm given hereafter allows us to solve 
these equations and then to evaluate the states of the 
system. We note that this algorithm may be used to 
solve a system of several equations in the case of a 
large model which contains several conflicts. In the 
considered case (figure 1), to use the proposed 
algorithm, some data must be known: initial 
conditions x1(0) and x2(0), and the various firing 
times of transitions u1 and u2 (labelled u1(k) and 
u2(k)).  
 
--------------------------- 
Algorithm: 
 
% u1(k) and u2(k) are known for all k 

% x1(0) = x2(0) = ε 

For k = 1: N 

If m(P) ≥ 1  ∀ P ∈ •x1 

Then �x1(k) = e  and  �x2(k) = ε 

x1(k) = τ2 ⊗ u2(k) 

x2(k) = ε 

Elseif m(P2) ≥  1 and m(P1) = 0 

Then �x1(k) = ε  and  �x2(k) = e 

x1(k) = ε 

x2(k) = τ2 ⊗ u2(k) 

Else 

“Neither x1 nor x2 will be fired until 

arriving of tokens in P1 and/or P2” 

Endif 

Endfor 
 
--------------------------- 
 

3. THE STUDIED SYSTEM 
 
We illustrate the approach proposed by studying a 
public transportation network. We consider then a 
bus network composed of four lines (Figure 3). Each 
line Li is linked with at least another lines Lj by the 
connection stops. Each line Li is represented by a 
departure stop (Dsi), connection stop(s) Csi,j, and an 
arrival terminus (Asi). Also, each line contains other 
simple stops that we do not consider here since we 
are just interested at the connection stops.  
 
For each line Li (1�i�4), the following data are 
supposed to be fixed: 
• the parameter λi which is the necessary time 
(average time) for a bus of line Li to perform one 
turn; 
• the number of buses circulating on the line Li; 
• the travel times of buses between all network 
stops. They include the mean time needed for 
passengers to go up and/or get off the bus and also 
the time spent at intermediate stops. 
 
We suppose that all buses work independently, i.e. 
the buses of different lines do not wait for each other; 
each of them leaves the connection stop just after the 
passengers got on/off it; this working mode is called 
working without synchronization. It is not the same 
working in the railway as a train that arrives first at 
the connection station often has to wait for a 
connecting train to carry out the connection (Olsder 
et al, 1998, Vries et al, 1998).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. The studied network. 
 
We assume that the departure times of buses from 
their departure stops are scheduled according to a 
given timetable. In this study, we are interested at 
each connection stop between two lines Li and Lj to 
the connection management of two kinds of 
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passengers: passengers who make the connection 
from Li to Lj and passengers who move from Lj to Li. 
 
The Petri net with conflicts model that represents the 
considered network is given in the following section 
(figure 4). This model illustrates the network 
working without any deadlock of buses. 
 

4. APPLICATION TO THE CONSIDERED BUS 
NETOWRK 

 
4.1  Modeling with Petri net 
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Fig. 4. The Petri net model of the considered 
network. 
 
 
Legend:  
 
The various notations of this Petri net are given in 
the following way: for each i and j (1�i, j � 4): 
 
• Dsi: departure station of the line Li; 
• Csij, Csji, Cij and #Cij represent the connection 

stop between the lines Li and Lj. Moreover Cij is 
also associated with the connection carried out 
from Li towards Lj ; #Cij is fired if no connection 
is carried out; 

• Asi: arrival stop of the line Li; 
• m(Pk) represents the associated weight to the 

downstream arc of the place Pk. 
 
 
The figure 4 describes the behaviour of the 
considered network (figure 3). In this model, we 
identify the four lines which are linked by the 
connection stops. Each line Li (1≤i≤4) is represented 
by a sequence of places and transitions where input 
transitions (Dsi) model departure stops, internal 
transitions (Csij, Cij, #Cij) model connection stops 
and output transitions (Asi) represent arrival stops. In 

the level of each connection stop, one finds the given 
structure in figure 2 where the stop is modelled by 
two transitions Cij (the connection with other line is 
carried out) and #Cij (the connection did not take 
place). This situation and the choice of the transition 
that will be fired involve the conflict in the level of 
each connection stop. As we already said in the 
second section, the parameters m(Pi) associated with 
some arcs model the number of batches of passengers 
who want to make the connection with another line. 

 

4.2  State representation in (max, +) algebra 
 

In this section, we present a (max, +)-linear model 
for the considered urban bus network. With this aim, 
we assign variables to model transitions and 
temporisations to certain places (necessary times to 
move from a stop to another) (see figure 5). The 
obtained model with these new notations is given 
figure 5. 
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Fig. 5. The Petri net model: definition of variables 
and temporisations. 

Remark 2: even if it does not appear on the 
graphical model (Fig. 5), we associate a routing 
function �xi,j (respectively �x’ i,j) to each transition 
xi,j (respectively x’i,j) in a conflict situation, that 
represent a connection stop,. These functions enable 
to arbitrate the conflicts in the PN model. 
 
From this model and by using the theory of linear 
systems in dioid algebra, we obtain the (max, +)-
linear model describing the network. Because of the 
conflicts associated to the Petri net model, the 
associated (max, +) model is a non stationary system. 
This means that, at a given time, the firing numbers 
of the downstream and upstream transitions of some 
places are not the same ones. 
Hereafter we give the expression of a dater xi,j(k) by 
using the technique introduced in the equation (1). 
We consider for example x1,2(k). For all k, 



     

x1,2(k) = x1,1(k) ⊗ �x1,2(k) ⊕ x2,1(k1) ⊗ �x1,2(k) 

where k1 is expressed according to the number of 
tokens m(P3) in the place P3. 
The connection will be done just when the bus 
arrives at the connection stop. Then one can deduce 
for all k, x1,1(k) � x2,1(k1). So, we obtain:  

x1,2(k) = x1,1(k) ⊗ �x1,2(k) 

In the same way, we obtain all equations of the 
model. The transportation system can be then 
modelled as a state representation in �max by:  

X(k) = A ⊗ � ⊗ X(k) ⊕ B ⊗ U(k) 
Y(k) = C ⊗ X(k), (4) 

X(k)∈� 24

max
 is the state vector that gathers all 

defined internal variables xi,j(k). xi,j(k) denote the 

departure times of buses at stops xi,j. U(k)∈� 4

max
 is 

the input vector whose components are the input 
variables ui(k). ui(k) denote the departure times of 

buses at their departure stop, Y(k)∈� 4

max
 is the 

output vector which gather the output transitions 
yi(k) denote the arrival times of buses at arrival 

stations. A∈� 2424

max

x
, B∈� 424

max

x
 and C∈� 244

max

x
 are the 

characteristic matrices whose components are the 

moving times on the network. �∈� 2424

max

x
 is the 

routing matrix whose components are the routing 
functions. 

 

4.3  Timetable evaluation problem 
 
In this paper, we focus our study on the use of 
routing functions to evaluate the transit times of 
buses at the network stops, the waiting times of 
passengers at the connection stops and the journey 
times of passengers. In the same context, similar 
studies are already achieved using the theory of 
(max, +) algebra (Nait et al, 2006, Houssin et al, 
2006). 
 
In this section, we present the timetable evaluation 
problem by solving the state model (4). This 
evaluation problem will be focused on the 
determination of various daters related to each stop 
of the network. To reach this objective, we define, 
for each step, the elements of the routing matrix �. 
For each step k, the value of each routing function 
�xi,j(k) (elements of the matrix �) is defined 
observing the marking of each place of the model. 
The application of the algorithm given in the section 
2 for all transitions in conflict situation allows us to 
solve the equations of the (max, +)-linear system (4). 
 
By applying the proposed algorithm, the obtained 
results for the two transitions xi,j and x’i,j (connection 
stop with or without connection between buses) may 
be expressed as follows: for example, for 1�k�Nmax, 
(Nmax the number of journeys to perform by a bus), if 
Nmax = 10, 

 

xi,j = {v1, v2, ε, v4, ε, ε, v7, v8, ε, v10} 

x’ i,j = {ε, ε, v3, ε, v5, v6, ε, ε, v9, ε} 

From the values of xi,j we remark that only six 
components are different from zero (ε) which means 
that six connections are carried out. For other 
components, which take the values “ε,” the 
connection is not really carried out (we say that the 
connection is virtually carried out). The vector x’i,j is 
the opposite of xi,j: each component equals to ε 
means when the connection is ensured, and each 
component differs from ε if connection is not carried 
out. The two vectors xi,j and x’i,j are complementary 
ones: for all k,  

xi,j ∪ x’ i,j = {x i,j (1) ⊕ x’ i,j (1), …, xi,j(10) ⊕ x’ i,j (10)} 

   = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10} 

The real components of xi,j and x’i,j are the 
components which are different from ε. So, we 
obtain:  for all k (1�k�Nmax=10): 

xi,j = {v1, v2, v4, v7, v8, v10} = {xi,j(1), xi,j(2), xi,j(3), 
xi,j(4), xi,j(5), xi,j(6)} which means that xi,j is really 
fired six times. 

x’ i,j = {v3, v5, v6, v9} = {x’i,j(1), x’i,j(2), x’i,j(3), 
x’ i,j(4)} which means that the transition x’i,j is really 
fired four times. 
 
In the same way, we define all real firing times of 
various model transitions. We note that the number 
of firings of all transitions, during a working period 
of buses, is not in general the same one. 
 
After defining all arrival times of buses at various 
connection stops, one can evaluate the connection 
times of passengers. The expressions of these 
connection times are given as follows. 

For example, the connection time for the passengers 
who make the connection from line 1 to line 2 is 
given by:  

For k � 1, 
T1,2(k, jk) = x2,2(k) – x1,1(jk),  

with jk = Sup {l such that x2,2(k) � x1,1(l)}  

If j k - jk-1 = m(P3) > 1 (with j0 =0), then several 
batches of passengers make the connection. The 
connection time of each batch is given by: for k � 1 

T1,2(k, jk-1 + 1) = x2,2(k) – x1,1(jk-1 + 1) 

T1,2(k, jk-1 + 2) = x2,2(k) – x1,1(jk-1 + 2) 

… 

T1,2(k, jk-1 + m(P3)) = x2,2(k) – x1,1(jk-1 + m(P3)) 

      = x2,2(k) – x1,1(jk) 

 
In the same way all connection times at each 
connection stop can be evaluated. 
 

4. CONCLUSION 
 
In this paper, we have introduced a new method to 
model and evaluate performances of a bus network. 



     

Originality of this study is the possibility to use the 
two complementary tools Petri nets with conflicts 
and (max, +) algebra to describe the behavior of a 
bus network and then evaluate its performances. The 
assignment of weights which differ from 1 to certain 
arcs of PNCnf model allows several batches of 
passengers to make a connection and get on the same 
bus. The introduction of a routing policy enables us 
to solve the associated conflicts to the graphical 
model and to prevent its deadlock. By applying a 
compute algorithm, we have solved the (max, +) 
model describing the network. From the obtained 
results, a timetable evaluation problem is studied; 
also we have proposed an evaluation study of 
connection times of passengers on the network.  
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