Portfolio optimization in a default model under full/partial information

Abstract : In this paper, we consider a financial market with assets exposed to some risks inducing jumps in the asset prices, and which can still be traded after default times. We use a default-intensity modeling approach, and address in this incomplete market context the problem of maximization of expected utility from terminal wealth for logarithmic, power and exponential utility functions. We study this problem as a stochastic control problem both under full and partial information. Our contribution consists in showing that the optimal strategy can be obtained by a direct approach for the logarithmic utility function, and the value function for the power utility function can be determined as the minimal solution of a backward stochastic differential equation. For the partial information case, we show how the problem can be divided into two problems: a filtering problem and an optimization problem. We also study the indifference pricing approach to evaluate the price of a contingent claim in an incomplete market and the information price for an agent with insider information.
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

Contributeur : Thomas Lim <>
Soumis le : jeudi 21 novembre 2013 - 18:27:16
Dernière modification le : mercredi 21 mars 2018 - 18:56:48
Document(s) archivé(s) le : samedi 22 février 2014 - 04:43:30


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00468072, version 2
  • ARXIV : 1003.6002



Thomas Lim, Marie-Claire Quenez. Portfolio optimization in a default model under full/partial information. 2010. 〈hal-00468072v2〉



Consultations de la notice


Téléchargements de fichiers