Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Portfolio optimization in a default model under full/partial information

Abstract : In this paper, we consider a financial market with assets exposed to some risks inducing jumps in the asset prices, and which can still be traded after default times. We use a default-intensity modeling approach, and address in this incomplete market context the problem of maximization of expected utility from terminal wealth for logarithmic, power and exponential utility functions. We study this problem as a stochastic control problem both under full and partial information. Our contribution consists in showing that the optimal strategy can be obtained by a direct approach for the logarithmic utility function, and the value function for the power utility function can be determined as the minimal solution of a backward stochastic differential equation. For the partial information case, we show how the problem can be divided into two problems: a filtering problem and an optimization problem. We also study the indifference pricing approach to evaluate the price of a contingent claim in an incomplete market and the information price for an agent with insider information.
Complete list of metadata

Cited literature [33 references]  Display  Hide  Download
Contributor : Thomas Lim <>
Submitted on : Thursday, November 21, 2013 - 6:27:16 PM
Last modification on : Wednesday, December 9, 2020 - 3:10:17 PM
Long-term archiving on: : Saturday, February 22, 2014 - 4:43:30 AM


Files produced by the author(s)


  • HAL Id : hal-00468072, version 2
  • ARXIV : 1003.6002


Thomas Lim, Marie-Claire Quenez. Portfolio optimization in a default model under full/partial information. 2010. ⟨hal-00468072v2⟩



Record views


Files downloads