
HAL Id: hal-00468007
https://hal.science/hal-00468007

Submitted on 29 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Grammar Error Detection with Best Approximated
Parse

Jean-Philippe Prost

To cite this version:
Jean-Philippe Prost. Grammar Error Detection with Best Approximated Parse. 11th International
Conference on Parsing Technology (IWPT’09), Oct 2009, Paris, France. pp.172–175. �hal-00468007�

https://hal.science/hal-00468007
https://hal.archives-ouvertes.fr


Grammar Error Detection with Best Approximated Parse

Jean-Philippe Prost

LIFO, Université d’Orléans

INRIA Lille - Nord Europe

Jean-Philippe.Prost@univ-orleans.fr

Abstract

In this paper, we propose that grammar er-

ror detection be disambiguated in generat-

ing the connected parse(s) of optimal merit

for the full input utterance, in overcom-

ing the cheapest error. The detected er-

ror(s) are described as violated grammat-

ical constraints in a framework for Model-

Theoretic Syntax (MTS). We present a

parsing algorithm for MTS, which only re-

lies on a grammar of well-formedness, in

that the process does not require any extra-

grammatical resources, additional rules

for constraint relaxation or error handling,

or any recovery process.

1 Introduction

Grammar error detection is a crucial part of

NLP applications such as Grammar Checking or

Computer-Assisted Language Learning (CALL).

The problem is made highly ambiguous depending

on which context is used for interpreting, and thus

pinpointing, the error. For example, a phrase may

look perfectly fine when isolated (e.g. brief inter-

view), but is erroneous in a specific context (e.g.

in *The judge grants brief interview to this plain-

tiff, or in *The judges brief interview this plain-

tiff ). Robust partial parsing is often not enough to

precisely desambiguate those cases. The solution

we prescribe is to point out the error(s) as a set

of violated (atomic) constraints of minimal cost,

along with the structural context used for measur-

ing that cost. Given an ungrammatical input string,

the aim is then to provide an approximated rooted

parse tree for it, along with a description of all the

grammatical constraints it violates. For example,

Figure 1 illustrates an approximated parse for an

ill-formed sentence in French, and the error be-

ing detected in that context. Property Grammar

(Blache, 2001) provides an elegant framework for

that purpose.

S15

NP3

D1

Le

The

N2

juge

judge

VP9

V8

octroie

grants

*NP7

AP6

A4

bref

brief

N5

entretien

interview

PP10

P11

à

to

NP12

D13

ce

this

N14

plaignant

plaintiff

Figure 1: Approximated parse for an erroneous French sen-
tence (the Noun ’entretien’ requires a Determiner).

Most of the relevant approaches to robust

knowledge-based parsing addresses the problem

as a recovery process. More specifically, we

observe three families of approaches in that re-

spect: those relying on grammar mal-rules in or-

der to specify how to correctly parse what ought

to be ungrammatical (Bender et al., 2004; Foster,

2007); those relying on constraint relaxation ac-

cording to specified relaxation rules (Douglas and

Dale, 1992); and those relying on constraint re-

laxation with no relaxation rules, along with a re-

covery process based on weighted parsing (Fou-

vry, 2003; Foth et al., 2005). The first two are

actually quite similar, in that, through their use

of extra-grammatical rules, they both extend the

grammar’s coverage with a set of ought-to-be-

ungrammatical utterances. The main drawback

of those approaches is that when faced with un-

expected input at best their outcome remains un-

known, at worst the parsing process fails. With

robust weighted parsing, on the other hand, that

problem does not occur. The recovery process

consists of filtering out structures with respect to

their weights or the weights of the constraints be-

ing relaxed. However, these strategies usually

can not discriminate between grammatical and un-

grammatical sentences. The reason for that comes



from the fact that grammaticality is disconnected

from grammar consistency: since the grammar

contains contradicting (universal) constraints, no

conclusion can be drawn with regard to the gram-

maticality of a syntactic structure, which violates

part of the constraint system. The same problem

occurs with Optimality Theory. In a different fash-

ion, Fouvry weighs unification constraints accord-

ing to “how much information it contains”. How-

ever, relaxation only seems possible for those uni-

fication constraints: error patterns such as word

order, co-occurrence, uniqueness, mutual exclu-

sion, . . . can not be tackled. The same restriction is

observed in VanRullen (2005), though to a much

smaller extent in terms of unrelaxable constraints.

What we would like is (i) to detect any type

of errors, and present them as conditions of well-

formedness being violated in solely relying on the

knowledge of a grammar of well-formedness—as

opposed to an error grammar or mal-rules, and

(ii) to present, along-side the violated constraints,

an approximated parse for the full sentence, which

may explain which errors have been found and

overcome. We propose here a parsing algorithm

which meets these requirements.

2 Property Grammar

The framework we are using for knowledge rep-

resentation is Property Grammar (Blache, 2001)

(PG), whose model-theoretical semantics was for-

malised by Duchier et al. (2009). Intuitively, a

PG grammar decomposes what would be rewriting

rules of a generative grammar into atomic syntac-

tic properties — a property being represented as a

boolean constraint. Take, for instance, the rewrit-

ing rule NP → D N. That rule implicitely informs

on different properties (for French): (1) NP has a

D child; (2) the D child is unique; (3) NP has an

N child; (4) the N child is unique; (5) the D child

precedes the N child; (6) the N child requires the

D child. PG defines a set of axioms, each axiom

corresponding to a constraint type. The proper-

ties above are then specified in the grammar as the

following constraints: (1) NP :△ D; (2) NP : D!;
(3) NP :△ N; (4) NP : N!; (5) NP : D ≺ N; (6)

NP : N ⇒ D. These constraints can be indepen-

dently violated. A PG grammar is traditionally

presented as a collection of Categories (or Con-

structions), each of them being specified by a set

of constraints. Table 1 shows an example of a

category. The class of models we are working

NP (Noun Phrase)

Features Property Type : Properties

[AVM]

obligation : NP:△(N ∨ PRO)
uniqueness : NP: D!

: NP: N!
: NP: PP!
: NP: PRO!

linearity : NP: D ≺ N
: NP: D ≺ PRO

: NP: D ≺ AP
: NP: N ≺ PP

requirement : NP: N ⇒ D
: NP: AP ⇒ N

exclusion : NP: N < PRO

dependency : NP: N
»

GEND 1

NUM 2

–

 D
»

GEND 1

NUM 2

–

Table 1: NP specification in Property Grammar

with is made up of trees labelled with categories,

whose surface realisations are the sentences σ of

language. A syntax tree of the realisation of the

well-formed sentence σ is a strong model of the

PG grammar G iff it satisfies every constraint in G.

The loose semantics also allows for constraints to

be relaxed. Informally, a syntax tree of the realisa-

tion of the ill-formed sentence σ is a loose model

of G iff it maximises the proportion of satisfied

constraints in G with respect to the total number

of evaluated ones for a given category. The set of

violated constraints provides a description of the

detected error(s).

3 Parsing Algorithm

The class of models is further restricted to con-

stituent tree structures with no pairwise intersect-

ing constituents, satisfying at least one constraint.

Since the solution parse must have a single root,

should a category not be found for a node a wild-

card (called Star) is used instead. The Star cate-

gory is not specified by any constraint in the gram-

mar.

We introduce an algorithm for Loose Satisfac-

tion Chart Parsing (LSCP), presented as Algo-

rithm 1. We have named our implementation of it

Numbat. LSCP is based on the probabilistic CKY,

augmented with a process of loose constraint sat-

isfaction. However, LSCP differs from CKY in

various respects. While CKY requires a grammar

in Chomsky Normal Form (CNF), LSCP takes an

ordinary PG grammar, since no equivalent of the

CNF exists for PG. Consequently, LSCP gener-

ates n-ary structures. LSCP also uses scores of

merit instead of probabilities for the constituents.

That score can be optimised, since it only factors

through the influence of the constituent’s immedi-

ate descendants.

Steps 1 and 2 enumerate all the possible and



Algorithm 1 Loose Satisfaction Chart Parsing

/∗ Initialisation ∗/
Create and clear the chart π: every score in π is set to 0

/∗ Base case: populate π with POS-tags for each word ∗/
for i← 1 to num words

for (each POS-category T of wi)

if merit(T ) ≥ π[i, 1, T ] then

Create constituent wT

i
, whose category is T

π[i, 1, T ]← {wT

i
, merit(wT

i
)}

/∗ Recursive case ∗/
/∗ Step 1: SELECTION of the current reference span ∗/
for span← 1 to num words

for offset ← 1 to num words− span + 1
end ← offset + span− 1
K ← ∅

/∗ Step 2: ENUMERATION of all the configurations ∗/
for (every set partition P in [offset, . . . , end])

KP ← buildConfigurations(P)
K ← K ∪KP

/∗ Step 3: CHARACTERISATION of the constraint system from the grammar ∗/
for (every configurationA ∈ KP )

χ
A
← characterisation(A)

/∗ Step 4: PROJECTION into categories ∗/
/∗ CA is a set of candidate constituents ∗/
CA ← projection(χ

A
)

checkpoint(CA)
/∗ Step 5: MEMOISATION of the optimal candidate constituent ∗/

for (every candidate constituent x ∈ CA, of construction C)

if merit(x) ≥ π[offset, span, C] then

π[offset, span, C]← {x, merit(x)}
if π[offset, span] = ∅ then

π[offset, span]← preferred forest in K

legal configurations of optimal sub-structures al-

ready stored in the chart for a given span and off-

set. At this stage, a configuration is a tree with

an unlabelled root. Note that Step 2 actually does

not calculate all the set partitions, but only the le-

gal ones, i.e. those which are made up of sub-

sets of contiguous elements. Step 3 evaluates the

constraint system, using a configuration as an as-

signment. The characterisation process is imple-

mented with Algorithm 2. Step 4 consists of mak-

Algorithm 2 Characterisation Function

function characterisation(A = 〈c1, . . . , cn〉 : assignment,

G: grammar)

returns the set of evaluated properties relevant toA,

and the set of projected categories forA.

/∗ For storing the result characterisation: ∗/
create and clear χ

A
[property]: table of boolean, indexed by property

/∗ For storing the result projected categories: ∗/
create and clear CA: set of category

/∗ For temporarily storing the properties to be evaluated: ∗/
create and clear S: set of property

for (mask ∈ [1 . . . 2n − 1])
key← applyBinaryMask(A, mask)
if (key is in the set of indexes for G) then

/∗ Properties are retrieved from the grammar, then evaluated ∗/
S ← G[key].getProperties()
χ
A
← evaluate(S)

/∗ Projection Step: fetch the categories to be projected ∗/
CA ← G[key].getDominantCategories()

return χ
A

, CA

The key is a hash-code of a combination of constructions, used for fetching the

constraints this combination is concerned with.

ing a category judgement for a configuration, on

the basis of which constraints are satisfied and vi-

olated, in order to label its root. The process is a

simple table lookup, the grammar being indexed

by properties. Step 5 then memoises the optimal

sub-structures for every possible category. Note

that the uniqueness of the solution is not guaran-

teed, and there may well be many different parses

with exact same merit for a given input utterance.

Should the current cell in the chart not being

populated with any constituents, a preferred for-

est of partial parses (= Star category) is used in-

stead. The preferred forest is constructed on the

fly (as part of buildConfigurations); a pointer

is maintained to the preferred configuration dur-

ing enumeration. The preference goes to: (i) the

constituents with the widest span; (ii) the least

overall number of constituents. This translates

heuristically into a preference score pF computed

as follows (where F is the forest, and Ci its con-

stituents): pF = span · (merit(Ci) + span). In

that way, LSCP always delivers a parse for any

input. The technique is somehow similar to the

one of Riezler et al. (2002), where fragment parses

are allowed for achieving increased robustness, al-

though their solution requires the standard gram-

mar to be augmented with a fragment grammar.

4 Evaluation

In order to measure Numbat’s ability to (i) detect

errors in an ungrammatical sentence, and (ii) build

the best approximated parse for it, Numbat should,

ideally, be evaluated on a corpus of both well-

formed and ill-formed utterances annotated with

spannnig phrase structures. Unfortunately, such

a Gold Standard is not available to us. The de-

velopment of adequate resources is central to fu-

ture works. In order to (partially) overcome that

problem we have carried out two distinct evalua-

tions: one aims to measure Numbat’s performance

on grammatical sentences, and the other one on

ungrammatical sentences. Evaluation 1, whose re-

sults are reported in Table 2, follows the proto-

col devised for the EASY evaluation campaign of

parsers of French (Paroubek et al., 2003), with a

subset of the campaign’s corpus. For comparison,

Table 3 reports the performance measured under

the same circumstances for two other parsers: a

shallow one (VanRullen, 2005) also based on PG,

and a stochastic one (VanRullen et al., 2006). The

grammar used for that evaluation was developed

by VanRullen (2005). Evaluation 2 was run on



Precision Recall F

Total 0.7835 0.7057 0.7416

general lemonde 0.8187 0.7515 0.7837
general mlcc 0.7175 0.6366 0.6746
general senat 0.8647 0.7069 0.7779
litteraire 0.8124 0.7651 0.788
mail 0.7193 0.6951 0.707
medical 0.8573 0.678 0.757
oral delic 0.6817 0.621 0.649
questions amaryllis 0.8081 0.7432 0.7743
questions trec 0.8208 0.7069 0.7596

Table 2: EASY scores of Numbat (Eval. 1)

Precision Recall F

shallow parser 0.7846 0.8376 0.8102

stochastic parser 0.9013 0.8978 0.8995

Table 3: Comparative EASY scores

a corpus of unannotated ungrammatical sentences

(Blache et al., 2006), where each of the ungram-

matical sentences (amounting to 94% of the cor-

pus) matches a controlled error pattern. Five ex-

pert annotators were asked whether the solution

trees were possible and acceptable syntactic parses

for their corresponding sentence. Specific instruc-

tions were given to make sure that the judgement

does not hold on the grammatical acceptability of

the surface sentence as such, but actually on the

parse associated with it. For that evaluation Van-

Rullen’s grammar was completed with nested cat-

egories (since the EASY annotation scheme only

has chunks). Given the nature of the material to

be assessed here, the Precision and Recall mea-

surements had to be modified. The total number

of input sentences is interpreted as the number of

predictions; the number of COMPLETE structures

is interpreted as the number of observations; and

the number of structures evaluated as CORRECT

by human judges is interpreted as the number of

correct solutions. Hence the following formula-

tions and scores: Precision=CORRECT/COMPLETE=0.74;

Recall=CORRECT/Total=0.68; F=0.71. 92% of the cor-

pus is analysed with a complete structure; 74% of

these complete parses were judged as syntactically

correct. The Recall score indicates that the correct

parses represent 68% of the corpus. In spite of a

lack of a real baseline, these scores compare with

those of grammatical parsers.

5 Conclusion

In this paper, we have proposed to address the

problem of grammar error detection in providing

a set of violated syntactic properties for an ill-

formed sentence, along with the best structural

context in the form of a connected syntax tree. We

have introduced an algorithm for Loose Satisfac-

tion Chart Parsing (LSCP) which meets those re-

quirements, and presented performance measures

for it. Future work includes optimisation of LSCP

and validation on more appropriate corpora.

Acknowledgement

Partly funded by ANR-07-MDCO-03 (CRoTAL).

References

E. M. Bender, D. Flickinger, S. Oepen, A. Walsh, and
T. Baldwin. 2004. Arboretum: Using a precision
grammar for grammar checking in CALL. In Proc.
of InSTIL/ICALL2004, volume 17, page 19.

P. Blache, B. Hemforth, and S. Rauzy. 2006. Ac-
ceptability Prediction by Means of Grammaticality
Quantification. In Proc. of CoLing/ACL, pages 57–
64. ACL.

P. Blache. 2001. Les Grammaires de Propriétés :
des contraintes pour le traitement automatique des
langues naturelles. Hermès Sciences.

S. Douglas and R. Dale. 1992. Towards Robust PATR.
In Proc. of CoLing, volume 2, pages 468–474. ACL.

D. Duchier, J-P. Prost, and T-B-H. Dao. 2009.
A Model-Theoretic Framework for Grammaticality
Judgements. In To appear in Proc. of FG’09, vol-
ume 5591 of LNCS. FOLLI, Springer.

J. Foster. 2007. Real bad grammar: Realistic grammat-
ical description with grammaticality. Corpus Lin-
guistics and Lingustic Theory, 3(1):73–86.

K. Foth, W. Menzel, and I. Schröder. 2005. Robust
Parsing with Weighted Constraints. Natural Lan-
guage Engineering, 11(1):1–25.

F. Fouvry. 2003. Constraint relaxation with weighted
feature structures. pages 103–114.

P. Paroubek, I. Robba, and A. Vilnat. 2003. EASY:
An Evaluation Protocol for Syntactic Parsers.
www.limsi.fr/RS2005/chm/lir/lir11/ (08/2008).

S. Riezler, T. H. King, R. M. Kaplan, R. Crouch,
J. T. III Maxwell, and M. Johnson. 2002.
Parsing the Wall Street Journal using a Lexical-
Functional Grammar and Discriminative Estimation
Techniques. In Proc. of ACL, pages 271–278. ACL.

T. VanRullen, P. Blache, and J-M. Balfourier. 2006.
Constraint-Based Parsing as an Efficient Solution:
Results from the Parsing Evaluation Campaign
EASy. In Proc. of LREC, pages 165–170.

T. VanRullen. 2005. Vers une analyse syntaxique à
granularité variable. Thèse de doctorat.


