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Abstract

A formalism is proposed for representing uncertain information on set-valued variables

using the formalism of belief functions. A set-valued variable X on a domain Ω is a variable

taking zero, one or several values in Ω. While defining mass functions on the frame 22Ω

is usually not feasible because of the double-exponential complexity involved, we propose

an approach based on a definition of a restricted family of subsets of 2Ω that is closed

under intersection and has a lattice structure. Using recent results about belief functions

on lattices, we show that most notions from Dempster-Shafer theory can be transposed

to that particular lattice, making it possible to express rich knowledge about X with only

limited additional complexity as compared to the single-valued case. An application to

multi-label classification (in which each learning instance can belong to several classes

simultaneously) is demonstrated.

Keywords: Dempster-Shafer theory, Evidence theory, conjunctive knowledge, lattice,

uncertain reasoning, multi-label classification.



1 Introduction

An important concept in knowledge representation is that of variable. Usually, we associate

to each variable X a domain (or frame of discernment) Ω, and we assume that X takes

one and only one value in Ω. For instance, in conventional classification problems, X

denotes the class of an object, and each object is assumed to belong to one and only one

class among a set Ω of classes.

There are cases, however, where it is convenient to consider a variable X taking zero,

one or several values in a domain Ω. In such cases, X may be called a set-valued, or

conjunctive variable [8, 33]. For instance, in diagnosis problems, Ω may denote the set of

faults that can possibly occur in a system, and X the faults actually occurring at a given

time. In text classification, Ω may denote a set of topics, and X the list of topics dealt

with in a given text, etc.

A straightforward approach to the above problem is, of course, to consider a set-

valued variable X on Ω as a single-valued variable on the power set Θ = 2Ω. However,

this approach often implies working in a space of very high cardinality. If, as done in this

paper, we assume Ω to be finite with size K, then the size of Θ is 2K . If we want to

express imprecise information about X, we will have to manipulate subsets of Θ. As there

are 22K

of these subsets, this approach rapidly becomes intractable as K increases.

In this paper, we consider the problem of representing partial knowledge about a set-

valued variable X with domain Ω using the Dempster-Shafer theory of belief functions

[26, 30]. Our approach will be based on a simple representation of a class C(Ω) of subsets

of Θ = 2Ω which, endowed with set inclusion, has a lattice structure. Using recent results

about belief functions on lattices [14], we will be able to generalize most concepts of

Dempster-Shafer theory (including the canonical decompositions and the cautious rule

[5]) in this setting. This formalism will be shown to allow the expression of a wide range

of knowledge about set-valued variables, with only a moderate increase of complexity

(from 2K to 3K) as compared to the usual single-valued case.

The rest of this paper is organized as follows. Background notions on belief functions

in the classical setting and in general lattices will first be recalled in Sections 2 and 3,

respectively. Our approach will then be introduced in Section 4, and some relationships

with previous work will be outlined in Section 5. An application to multi-label classification
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will be presented in Section 6, and Section 7 will conclude the paper.

2 Belief Functions

The basic concepts of the Dempster-Shafer theory of belief functions, as introduced in [26],

will first be summarized in Subsection 2.1. The canonical decomposition and the cautious

rule will then be recalled in Section 2.2.

2.1 Basic definitions

Let Ω be a finite set. A mass function on Ω is a function m : 2Ω → [0, 1] such that

∑

A⊆Ω

m(A) = 1.

The subsets A of Ω such that m(A) > 0 are called the focal elements of m. The set of

focal elements of m will be denoted F(m). m is said to be normal if ∅ is not a focal set,

and dogmatic if Ω is not a focal set.

A mass function m is often used to model an agent’s beliefs about a variable X taking

a single but ill-known value ω0 in Ω [30]. The quantity m(A) is then interpreted as the

measure of the belief that is committed exactly to the hypothesis ω0 ∈ A. Full certainty

corresponds to the case where m({ωk}) = 1 for some ωk ∈ Ω, while total ignorance is

modeled by the vacuous mass function verifying m(Ω) = 1. Probabilistic uncertainty cor-

responds to the case where all focal elements are singletons, in which case m is equivalent

to a probability distribution on Ω.

To each mass function m can be associated an implicability function b and a belief

function bel defined as follows:

b(A) =
∑

B⊆A

m(B) (1)

bel(A) =
∑

B⊆A,B 6⊆A

m(B) = b(A) − m(∅). (2)

These two functions are equal when m is normal. However, they need to be distinguished

when considering non normal mass functions. Function bel has easier interpretation, as

bel(A) corresponds to a degree of belief in the proposition “The true value ω0 of X belongs
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to A”. However, function b has simpler mathematical properties. For instance, m can be

recovered from b as

m(A) =
∑

B⊆A

(−1)|A\B|b(B), (3)

where | · | denotes cardinality. Function m is said to be the Möbius transform of b. For

every function f from 2Ω to [0, 1] such that f(Ω) = 1, the following conditions are known

to be equivalent [26]:

1. The Möbius transform m of f is positive and verifies
∑

A⊆Ω m(A) = 1.

2. f is totally monotone, i.e., for any k ≥ 2 and for any family A1, . . . , Ak in 2Ω,

f

(
k⋃

i=1

Ai

)

≥
∑

∅6=I⊆{1,...,k}

(−1)|I|+1f

(
⋂

i∈I

Ai

)

.

Hence, b (and bel) are totally mononotone.

Other functions related to m are the plausibility function, defined as

pl(A) =
∑

B∩A 6=∅

m(B) (4)

= 1 − b(A) (5)

and the commonality function (or co-Möbius transform of b) defined as

q(A) =
∑

B⊇A

m(B). (6)

m can be recovered from q using the following relation:

m(A) =
∑

B⊇A

(−1)|B\A|q(B). (7)

Functions m, bel, b, pl and q are thus in one-to-one correspondence and can be regarded

as different facets of the same information.

A special case of interest is that where the focal elements of m are nested: m is then

said to be consonant. In this case, we have

pl(A ∪ B) = max(pl(A), pl(B)), ∀A,B ⊆ Ω.

The plausibility function is thus a possibility measure, with corresponding possibility dis-

tribution defined by π(x) = pl({x}) for all x ∈ Ω. Conversely, to each possibility distribu-

tion corresponds a unique consonant mass function [26].
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Let us now assume that we receive two mass functions m1 and m2 from two distinct

sources of information assumed to be reliable. Then m1 and m2 can be combined using

the conjunctive sum (or unnormalized Dempster’s rule of combination) defined as follows:

(m1 ∩©m2)(A) =
∑

B∩C=A

m1(B)m2(C). (8)

This rule is commutative, associative, and admits the vacuous mass function as neutral

element. It is conjunctive as the product of m1(B) and m2(C) is transferred to the

intersection of B and C. The quantity (m1 ∩©m2)(∅) is referred to as the degree of conflict

between m1 and m2.

Let q1 ∩©2 denote the commonality function corresponding to m1 ∩©m2. It can be com-

puted from q1 and q2, the commonality functions associated to m1 and m2, as follows:

q1 ∩©2(A) = q1(A) · q2(A), ∀A ⊆ Ω. (9)

The normalized Dempster’s rule ⊕ [26] is defined as the conjunctive sum followed by

a normalization step:

(m1 ⊕ m2)(A) =






0 if A = ∅

(m1 ∩©m2)(A)
1−(m1 ∩©m2)(∅) otherwise.

(10)

It is clear that m1 ⊕ m2 is defined as long as (m1 ∩©m2)(∅) < 1.

Alternatives to the conjunctive sum can be constructed by replacing ∩ by any binary

set operation in (8). For instance, the choice of the union operator results in the disjunctive

sum [28]:

(m1 ∪©m2)(A) =
∑

B∪C=A

m1(B)m2(C). (11)

It can be shown that

b1 ∪©2(A) = b1(A) · b2(A), ∀A ⊆ Ω, (12)

which is the counterpart of (9). Dubois and Prade [10] have also proposed a “hybrid”

rule intermediate between the conjunctive and disjunctive sums, in which the product

m1(B)m2(C) is assigned to B∩C whenever B∩C 6= ∅, and to B∪C otherwise. This rule

is not associative, but it usually provides a good summary of partially conflicting items of

evidence.

4



In [30], Smets proposed a two-level model in which items of evidence are quantified by

mass functions and combined at the credal level, while decisions are made at the pignistic

level (from the Latin pignus meaning a bet). Once a decision has to be made, a mass

function m is thus transformed into a pignistic probability distribution p. The pignistic

transformation consists in normalizing m (assuming that m(∅) < 1), and then distributing

each normalized mass m(A)/(1 − m(∅)) equally between the atoms ωk ∈ A:

p(ωk) =
∑

{A⊆Ω,ωk∈A}

m(A)

(1 − m(∅))|A|
, ∀ωk ∈ Ω. (13)

Other authors have suggested the so-called plausibility transformation for transforming a

mass function into a probability distribution, by normalizing the plausibilities of singletons

[3]. In a decision making context, this approach results in selecting the most plausible

single hypothesis.

2.2 Canonical Decompositions and Idempotent Rules

According to Shafer [26], a mass function is said to be simple if it has the following form

m(A) = 1 − w0

m(Ω) = w0,

for some A ⊂ Ω and some w0 ∈ [0, 1]. Let us denote such a mass function as Aw0 . The

vacuous mass function may thus be noted A1 for any A ⊂ Ω. It is clear that

Aw0
∩©Aw′

0 = Aw0w′
0.

A mass function may be called separable if it can be obtained as the result of the conjunc-

tive sum of simple mass functions. It can then be written:

m = ∩©A⊂ΩAw(A), (14)

with w(A) ∈ [0, 1] for all A ⊂ Ω.

Smets [29] showed that any non dogmatic mass function m can be uniquely expressed

using (14), with weights w(A) now in (0,+∞). This is referred to as the conjunctive

canonical decomposition of a mass function. Note that, when w(A) > 1, Aw(A) is no

longer a mass function, but the conjunctive sum can be extended to such “generalized

mass functions” in an obvious way.
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Function w is called the conjunctive weight function associated to m [5]. It is a new

equivalent representation of a non dogmatic mass function, which may be computed di-

rectly from q as follows:

w(A) =
∏

B⊇A

q(B)(−1)|B\A|+1

, ∀A ⊂ Ω, (15)

or, taking logarithms,

ln w(A) = −
∑

B⊇A

(−1)|B\A| ln q(B), ∀A ⊂ Ω. (16)

In [29] and [5], w(A) was defined for all strict subsets A of Ω. However, function w can

be extended to 2Ω by using (15) for A = Ω. We then have:

w(Ω) =
1

q(Ω)
=

1

m(Ω)
=

(
∏

A⊂Ω

w(A)

)−1

and
∏

A⊆Ω

w(A) = 1. (17)

With this convention, (16) can be extended to all A ⊆ Ω. We notice that (16) then has

exactly the same form as (7), i.e., the formula for computing ln w from − ln q is the same

as the one for computing m from q. Conversely, ln q can thus be computed from − ln w

using a formula similar to (6):

ln q(A) = −
∑

B⊇A

lnw(B), ∀A ⊆ Ω.

We note that function w has a simple property with respect to the conjunctive sum. Let

w1 and w2 be two weight functions, and let w1 ∩©2 denote the result of their ∩©-combination.

Then the following relation holds:

w1 ∩©2(A) = w1(A)w2(A), ∀A ⊆ Ω. (18)

In [5], Denœux introduced the cautious rule, noted ∧©, which is obtained by replacing the

product by the minimum in (18), for all A ⊂ Ω:

w1 ∧©2(A) = min (w1(A), w2(A)) . (19)

The value of w1 ∧©2(Ω) can then be determined to satisfy the normalization condition

(17). This rule is obviously commutative, associative and idempotent. As shown in [5],
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it is suitable for combining conjunctively non independent items of evidence. As the

conjunctive sum, the cautious rule has a normalized version defined by

(m1 ∧©
∗m2)(A) =






0 if A = ∅

(m1 ∧©m2)(A)
1−(m1 ∧©m2)(∅) otherwise.

(20)

As shown in [5], the conjunctive canonical decomposition also has a disjunctive coun-

terpart. Any mass function m such that m(∅) > 0 can be decomposed disjunctively as

follows:

m = ∪©A⊃∅Av(A), (21)

where Av(A) is a generalized mass function assigning a mass v(A) > 0 (possibly greater

than 1) to ∅, and 1 − v(A) to A, for all A ⊆ Ω, A 6= ∅. This defines a new function v,

called the disjunctive weight function, which can be computed from b as follows:

v(A) =
∏

B⊆A

b(B)(−1)|A\B|+1

, ∀A ⊆ Ω, A 6= ∅, (22)

or

ln v(A) = −
∑

B⊆A

(−1)|A\B| ln b(B), ∀A ⊆ Ω, A 6= ∅. (23)

As before, the above equations can be extended to A = ∅, which leads to

v(∅) =
1

b(∅)
=

1

m(∅)
=




∏

A 6=∅

v(A)




−1

and
∏

A⊆Ω

v(A) = 1. (24)

The disjunctive rule (11) has a simple expression as a function of disjunctive weights:

v1 ∪©2(A) = v1(A)v2(A), ∀A ⊆ Ω. (25)

By replacing the product by the minimum in the above equation, we can define a new

rule, denoted ∨© and called the bold rule in [5]:

v1 ∨©2(A) = min (v1(A), v2(A)) , A ⊆ Ω, A 6= ∅, (26)

and v1 ∨©2(∅) =
(∏

A 6=∅ v1 ∨©2(A)
)−1

. This rule is obviously commutative, associative and

idempotent; it is suitable for combining disjunctively non independent items of evidence.
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3 Extension to General Lattices

As shown by Grabisch [14], the theory of belief function can be extended from the Boolean

lattice (2Ω,⊆) to any lattice, not necessarily Boolean. We will first recall some basic

definitions about lattices in Section 3.1. Grabisch’s results used in this work will then be

summarized in Section 3.2.

3.1 Lattices

A review of lattice theory can be found in [21]. The following presentation follows [14].

Let L be a finite set and ≤ a partial ordering (i.e., a reflexive, antisymmetric and

transitive relation) on L. The structure (L,≤) is called a poset. We say that (L,≤) is a

lattice if, for every x, y ∈ L, there is a unique greatest lower bound (denoted x ∧ y) and a

unique least upper bound (denoted x ∨ y). Operations ∧ and ∨ are called the meet and

join operations, respectively. For finite lattices, the greatest element (denote ⊤) and the

least element (denoted ⊥) always exist. We say that x covers y if x > y and there is no z

such that x > z > y. An element x of L is an atom if it covers only one element and this

element is ⊥. It is a co-atom if it is covered by a single element and this element is ⊤.

Two lattices L and L′ are isomorphic if there exists a bijective mapping f from L to

L′ such that x ≤ y ⇔ f(x) ≤ f(y). For any poset (L,≤), we can define its dual (L,≥) by

inverting the order relation. A lattice is autodual if it is isomorphic to its dual.

A lattice is distributive if (x∨y)∧ z = (x∧ z)∨ (y∧ z) holds for all x, y, z ∈ L. For any

x ∈ L, we say that x has a complement in L if there exists x′ ∈ L such that x ∧ x′ = ⊥

and x ∨ x′ = ⊤. L is said to be complemented if any element has a complement. Boolean

lattices are distributive and complemented lattices. Every Boolean lattice is isomorphic to

(2Ω,⊆) for some set Ω. For the lattice (2Ω,⊆), we have ∧ = ∩, ∨ = ∪, ⊥ = ∅ and ⊤ = Ω.

A closure system C on a set Θ is a family of subsets of Θ satisfying the following

properties:

1. Θ ∈ C.

2. C1, C2 ∈ C ⇒ C1 ∩ C2 ∈ C.

As shown in [21], any closure system (C,⊆) is a lattice with the following meet and join
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operations

C1 ∧ C2 = C1 ∩ C2 (27)

C1 ∨ C2 =
⋂

{C ∈ C|C1 ∪ C2 ⊆ C}. (28)

3.2 Belief Functions on Lattices

Let (L,≤) be a finite poset having a least element, and let f be a function from L to R.

The Möbius transform of f is the function m : L → R defined as the unique solution of

the equation:

f(x) =
∑

y≤x

m(y), ∀x ∈ L. (29)

Function m can be expressed as:

m(x) =
∑

y≤x

µ(y, x)f(y), (30)

where µ(x, y) : L2 → R is the Möbius function defined inductively by:

µ(x, y) =






1 if x = y,

−
∑

x≤t<y

µ(x, t) if x < y,

0, otherwise.

(31)

The co-Möbius transform of f is defined as:

q(x) =
∑

y≥x

m(y), (32)

and m can be recovered from q as:

m(x) =
∑

y≥x

µ(x, y)q(y). (33)

Let us now assume that (L,≤) is a lattice. Following Grabisch [14], a function b : L →

[0, 1] will be called an implicability function on L if b(⊤) = 1, and its Möbius transform

is nonnegative. The corresponding belief function bel can then be defined as:

bel(x) = b(x) − m(⊥), ∀x ∈ L.
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Note that Grabisch [14] considered only normal belief functions, in which case b = bel. As

shown in [14], any implicability function on (L,≤) is totally monotone, i.e., for any k ≥ 2

and for any family x1, . . . , xk in L,

b

(
k∨

i=1

xi

)
≥

∑

∅6=I⊆{1,...,k}

(−1)|I|+1b

(
∧

i∈I

xi

)
.

Note, however, that the converse does not hold in general: a totally monotone function

may not have a non negative Möbius transform.

As shown in [14], most results of Dempster-Shafer theory can be transposed in the

general setting of lattices. For instance, the conjunctive sum (8) becomes:

(m1 ∩©m2)(x) =
∑

y∧z=x

m1(y)m2(z), ∀x ∈ L, (34)

and the following relation between commonality functions still holds:

q1 ∩©2(x) = q1(x) · q2(x), ∀x ∈ L. (35)

The normalized Dempster’s rule ⊕ can still be defined, as in the classical case, by dividing

each number (m1 ∩©m2)(x) with x 6= ⊥ by 1−(m1 ∩©m2)(⊥), provided that (m1 ∩©m2)(⊥) <

1.

Using a similar line of reasoning as that followed in [14], we can also extend the

disjunctive rule (11) as:

(m1 ∪©m2)(x) =
∑

y∨z=x

m1(y)m2(z), ∀x ∈ L, (36)

and (12) becomes:

b1 ∪©2(x) = b1(x) · b2(x), ∀x ∈ L. (37)

Grabisch [14] also extended the conjunctive canonical decomposition of belief functions

in the general lattice setting. He showed that any mass function m on L such that

m(⊤) > 0 can be decomposed as

m = ∩©x<⊤xw(x), (38)

where xw(x) is a simple mass function assigning 1 − w(x) to x and w(x) to ⊤, with

w(x) ∈ (0,+∞). Clearly, (38) generalizes (14). As in the classical case, function w :
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L \ {⊤} → (0,+∞) can be computed from q using the following equation:

w(x) =
∏

y≥x

q(y)−µ(x,y), ∀x ∈ L, x 6= ⊤, (39)

which generalizes (15). Obviously, we still have

w1 ∩©2(x) = w1(x)w2(x), ∀x ∈ L, x 6= ⊤. (40)

The existence of the w function also allows us to define the cautious rule in the general

lattice setting as

w1 ∧©2(x) = min (w1(x), w2(x)) , ∀x ∈ L, x 6= ⊤. (41)

The normalized cautious rule ∧©∗ is defined as in the classical case, by dividing each

w1 ∧©2(x) for x 6= ⊥ by 1 − w1 ∧©2(⊥), provided that w1 ∧©2(⊥) < 1.

Although Grabisch did not consider the disjunctive canonical decomposition, it can

also be extended in the general lattice setting. The proof parallels that given in [14] for

the conjunctive case. We will only state the main result here. Let xv(x) be a mass function

on L assigning 1 − v(x) to x and v(x) to ⊥, with v(x) ∈ (0,+∞). Any mass function m

on L such that m(⊥) > 0 can be decomposed as

m = ∪©x>⊥xv(x). (42)

The function v : L\{⊥} → (0,+∞) can be computed from b using the following equation:

v(x) =
∏

y≤x

b(y)−µ(y,x), ∀x ∈ L, x 6= ⊥, (43)

which generalizes (22). We still have

v1 ∪©2(x) = v1(x)v2(x), ∀x ∈ L, x 6= ⊥, (44)

and the existence of the v function allows us to define the bold rule as

v1 ∨©2(x) = min (v1(x), v2(x)) , ∀x ∈ L, x 6= ⊥. (45)

The extension of other notions from classical Dempster-Shafer theory may require

additional assumptions on (L,≤). For instance, the definition of the plausibility function

pl as the dual of b using (5) can only be extended to autodual lattices [14]. The definition
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of pl from (4) remains possible in the other cases, but the relationship between pl and

b (or bel) is lost. Also, probability measures cannot be defined on arbitrary lattices.

Consequently, the pignistic probability (13) can only be extended in restricted settings.

Remark 1 Although our approach relies essentially on Grabisch’s work, we may note the

existence of another line of research that aims at extending results of Probability Theory

to some classes of residuated lattices, which are more general than Boolean algebra. In

particular, there have been many developments about probability measures on MV-algebra

(aso called states), see, e.g., [2, 16, 17, 22] as well as in Gödel algebras [1]. In the course

of revising this paper, we also became aware of recent work on defining belief functions on

MV-algebras [18]1.

4 Belief Functions on Set-valued Variables

In this section, the main concepts of Dempster-Shafer theory recalled in Section 2 will be

extended to the case where we want to describe the uncertainty regarding a set-valued

variable X on a finite domain Ω. The key to this extension will be the definition of a closure

system C(Ω) of Θ = 2Ω, i.e., a set of subsets of Θ that is closed under intersection. Each

element of C(Ω) will be shown to have a simple description as a pair of disjoint subsets of

Ω. Belief functions and associated notions will then be defined on the lattice (C(Ω),⊆),

resulting in a simple framework for uncertain reasoning about set-valued variables.

4.1 The Lattice (C(Ω),⊆)

In the rest of this paper, X denotes a set-valued variable on a finite domain Ω, i.e., a

variable taking values in Θ = 2Ω. Let A0 ⊆ Ω denote the unknown true value of X. We

want to describe partial knowledge about that value in the belief function framework.

As explained in the introduction, the formalism recalled in Section 2 could be applied

without modification to this case, by defining a mass function mΘ on Θ. However, such

a brute force approach would require the storage of up to 2|Θ| = 22|Ω|
numbers for each

mass function. Basic operations such as the conjunctive or disjunctive sums would have

1We are indebted to one of the anonymous referees for bringing this work to our attention.
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A B

Figure 1: Two subsets of Ω (broken lines) containing A and not intersecting B. The set

of all such subsets is denoted by ϕ(A,B).

double-exponential complexity, making the approach inapplicable except for sets Ω with

very small cardinality.

As an alternative, we propose to define mass functions and associated functions on a

subset of 2Θ that forms a lattice when equipped with the inclusion relation. The intuitive

idea underlying our approach is the fact that, when expressing knowledge about a set-

valued variable X, it is often convenient to specify sets of values that are certainly taken

by X, and sets of values that are certainly not taken by X. This can be illustrated by the

following example.

Example 1 Let X denote the languages spoken by John, defined on the (very large) set Ω

of existing languages. If we know for sure that John can speak English and French (because

he was brought up in the US and he stayed in France for a long time), and that he can

speak neither Japanese nor Chinese (because he never traveled to Asia), then all subsets

of Ω containing A = {English, French} and not intersecting B = {Japanese,Chinese}

are possible values of X.

As shown by this example, some families of subsets of Ω or, equivalently, some subsets

of Θ = 2Ω can be conveniently described by two subsets A and B of Ω such that A∩B = ∅

(Figure 1).

More generally, let Q(Ω) = {(A,B) ∈ 2Ω × 2Ω|A∩B = ∅Ω} be the set of ordered pairs

13



of disjoint subsets of Ω, where ∅Ω denotes the empty set of Ω. For any (A,B) ∈ Q(Ω), let

ϕ(A,B) denote the following subset of Θ = 2Ω:

ϕ(A,B) = {C ⊆ Ω|C ⊇ A,C ∩ B = ∅Ω}. (46)

ϕ(A,B) is thus the subset of Θ composed of all subsets of Ω including A and non inter-

secting B. Equivalently, it is the set of all subsets of Ω that include A and are included

in B:

ϕ(A,B) = {C ⊆ Ω|A ⊆ C ⊆ B}. (47)

It is thus the interval [A,B] in the lattice (Ω,⊆).

Let C(Ω) denote the set of all subsets of Θ of the form ϕ(A,B), completed by the

empty set of Θ, noted ∅Θ:

C(Ω) = {ϕ(A,B)|A ⊆ Ω, B ⊆ Ω, A ∩ B = ∅Ω} ∪ {∅Θ}.

C(Ω) is thus a subset of 2Θ. For a reason that will become evident later, we will also use

ϕ(Ω,Ω) as an alternative notation for ∅Θ. Function ϕ is thus a bijective mapping from

Q∗(Ω) = Q(Ω)∪ {(Ω,Ω)} to C(Ω). The following proposition states that C(Ω) is a closure

system and, consequently, has a lattice structure.

Proposition 1 C(Ω) is a closure system of Θ, and

ϕ(A,B) ∩ ϕ(A′, B′) =






ϕ(A ∪ A′, B ∪ B′) if (A ∪ A′) ∩ (B ∪ B′) = ∅Ω

∅Θ otherwise,

for all (A,B) and (A′, B′) in Q∗(Ω).

Proof: It is obvious that Θ = ϕ(∅Ω, ∅Ω) ∈ C(Ω). Now,

ϕ(A,B) ∩ ϕ(A′, B′) = {C ⊆ Ω|C ⊇ A,C ⊇ A′, C ∩ B = ∅Ω, C ∩ B′ = ∅Ω}

= {C ⊆ Ω|C ⊇ (A ∪ A′), C ∩ (B ∪ B′) = ∅Ω}.

If (A ∪ A′) ∩ (B ∪ B′) = ∅Ω then ϕ(A,B) ∩ ϕ(A′, B′) is thus equal to ϕ(A ∪ A′, B ∪ B′).

Otherwise, no subset C of Ω can include A ∪ A′ and have an empty intersection with

B ∪ B′; consequently, ϕ(A,B) ∩ ϕ(A′, B′) = ∅Θ. �
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As recalled in Section 3.1, any closure system endowed with the inclusion relation has

a lattice structure with ∧ = ∩ and ∨ defined by (28). Here, the inclusion relation has the

following simple expression using the ϕ(A,B) representation:

ϕ(A,B) ⊆ ϕ(A′, B′) ⇔ A ⊇ A′ and B ⊇ B′. (48)

The least element is ⊥ = ϕ(Ω,Ω) = ∅Θ. We note that (48) remains valid when A =

B = Ω, which explains the interest of the notation ϕ(Ω,Ω) = ∅Θ. The greatest element

is ⊤ = ϕ(∅Ω, ∅Ω) = Θ. The atoms are of the form ϕ(A,A) for A ⊆ Ω, and the co-atoms

are of the form ϕ({x}, ∅Ω) or ϕ(∅Ω, {x}) for x ∈ Ω. We can see that the number of atoms

is not equal to the number of co-atoms, which shows that (C,⊆) is not autodual. This

lattice is also not complemented; consequently, it is not Boolean.

As a consequence of (48), it is easy to see that the meet operation ∨ is the following

operation, hereafter denoted ⊔:

ϕ(A,B) ⊔ ϕ(A′, B′) = ϕ(A ∩ A′, B ∩ B′).

It must be noted that ⊔ is not identical to set union. The following proposition states the

relation between these two operators.

Proposition 2 For all (A,B) and (A′, B′) in Q∗(Ω),

ϕ(A,B) ∪ ϕ(A′, B′) ⊆ ϕ(A,B) ⊔ ϕ(A′, B′).

Proof: For every C in ϕ(A,B) ∪ ϕ(A′, B′), we have

C ⊇ A and C ⊇ A′ ⇒ C ⊇ A ∩ A′ (49)

and

C ∩ B = ∅Ω and C ∩ B′ = ∅Ω ⇒ C ∩ (B ∩ B′) = ∅Ω, (50)

hence C ∈ ϕ(A ∩ A′, B ∩ B′). �

One can notice that the implications in (49) and (50) are strict. Consequently, ϕ(A,B)∪

ϕ(A′, B′) is usually a strict subset of ϕ(A,B) ⊔ ϕ(A′, B′). As the lattices (C(Ω),⊆) and

(2Θ,⊆) do not have the same join operator, (C(Ω),⊆) is not a sublattice of (2Θ,⊆), al-

though it is a subposet.

15



As noticed in [15], any ordered pair (A,B) of disjoint subsets of Ω = {ω1, . . . , ωK} can

be represented by a vector (u1, . . . , uK) ∈ {−1, 0, 1}K , with

ui =






1 if ωi ∈ A,

−1 if ωi ∈ B,

0 otherwise.

Consequently, any ϕ(A,B) ∈ C(Ω) such that (A,B) 6= (Ω,Ω) can be represented in the

same way. For ϕ(Ω,Ω) = ∅Θ, a special representation can be adopted, e.g., (∗, . . . , ∗).

This encoding makes it possible to implement the ∩ and ⊔ operations in a simple way

using generalized truth tables. It also makes it clear that the cardinality of C(Ω) is equal

to 3K + 1.

4.2 Belief Functions on C(Ω)

The general theory recalled in Section 3.2 can be applied directly to the lattice (C(Ω),⊆).

Let m : C(Ω) → [0, 1] be a mass function on C(Ω). The notation m(ϕ(A,B)) will be

simplified to m(A,B). For this reason, m will be called a two-place mass function. We

assume that
∑

(A,B)∈Q∗(Ω)

m(A,B) = 1.

The implicability, belief and commonality functions can be computed from m using the

following formula:

b(A,B) =
∑

ϕ(C,D)⊆ϕ(A,B)

m(C,D) =
∑

C⊇A,D⊇B

m(C,D), (51)

bel(A,B) = b(A,B) − m(Ω,Ω), (52)

q(A,B) =
∑

ϕ(C,D)⊇ϕ(A,B)

m(C,D) =
∑

C⊆A,D⊆B

m(C,D), (53)

where all pairs (A,B) and (C,D) are understood to belong to Q∗(Ω) (the same convention

will be adopted throughout this paper). The conjunctive sum operation in C(Ω) is defined

16



as follows:

(m1 ∩©m2)(A,B) =
∑

ϕ(C,D)∩ϕ(E,F )=ϕ(A,B)

m1(C,D)m2(E,F ) (54)

=






∑

C∪E=A,D∪F=B

m1(C,D)m2(E,F ) if A ∩ B = ∅Ω,

∑

(C∪E)∩(D∪F )6=∅Ω

m1(C,D)m2(E,F ) if A = B = Ω.

(55)

It can be computed using the commonality functions as:

q1 ∩©2(A,B) = q1(A,B) · q2(A,B), ∀(A,B) ∈ Q∗(Ω). (56)

Similarly, the disjunctive sum can be computed as:

(m1 ∪©m2)(A,B) =
∑

ϕ(C,D)⊔ϕ(E,F )=ϕ(A,B)

m1(C,D)m2(E,F ) (57)

=
∑

C∩E=A,D∩F=B

m1(C,D)m2(E,F ), (58)

or using implicability functions:

b1 ∪©2(A,B) = b1(A,B) · b2(A,B), ∀(A,B) ∈ Q∗(Ω).

It is also possible to define a rule expressing a consensus among items of evidence, somehow

in the same spirit as the Dubois-Prade rule recalled in Section 2.1. Assume that we learn

from two sources that the value of X is in ϕ(C,D) and in ϕ(E,F ), but that ϕ(C,D) ∩

ϕ(E,F ) = ∅Θ, i.e., (C ∪ E) ∩ (D ∪ F ) 6= ∅Ω, so that the two pieces of information are

in conflict. It may still be safe to keep (C ∪ E) \ (D ∪ F ) as positive information, and

(D∪F )\(C ∪E) as negative information. Denoting by ⊓ the following operation on C(Ω):

ϕ(C,D) ⊓ ϕ(E,F ) = ϕ ((C ∪ E) \ (D ∪ F ), (D ∪ F ) \ (C ∪ E)) ,

we may define a new combination rule as

(m1 ⊡ m2)(A,B) =
∑

ϕ(C,D)⊓ϕ(E,F )=ϕ(A,B)

m1(C,D)m2(E,F ). (59)

This rule will be referred to as the consensus rule. We note that operations ⊓ and ⊡ are

not associative. However, they are quasi-associative, as it is possible to define a n-ary

version of ⊓ as:

ϕ(C1,D1) ⊓ . . . ⊓ ϕ(Cn,Dn) = ϕ

(
n⋃

i=1

Ci \
n⋃

i=1

Di,

n⋃

i=1

Di \
n⋃

i=1

Ci

)

.
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To compute functions m, w and v from q or b using (30), (33), (39) and (43), we need

the expression of the Möbius function µ. It is given in the following proposition.

Proposition 3 The Möbius function on (C(Ω),⊆) is given, for any (A,B) and (A′, B′) in

Q∗(Ω) by

µ(ϕ(A,B), ϕ(A′, B′)) =






(−1)|A\A′|+|B\B′| if ϕ(A,B) ⊆ ϕ(A′, B′),

0 otherwise.

Proof: The proof is similar to that of Theorem 2 in [15] with simple adaptations, due to

the similarity between two-place belief functions on C(Ω) and bi-capacities (see Section 5

below). �

This result allows us to compute m from b as:

m(A,B) =
∑

C⊇A,D⊇B

(−1)|C\A|+|D\B|b(C,D), (60)

and from q as

m(A,B) =
∑

C⊆A,D⊆B

(−1)|A\C|+|B\D|q(C,D). (61)

The conjunctive and disjunctive weight functions may be computed, respectively, as:

w(A,B) =
∏

C⊆A,D⊆B

q(C,D)(−1)|A\C|+|B\D|+1

, ∀(A,B) 6= (∅Ω, ∅Ω), (62)

and

v(A,B) =
∏

C⊇A,D⊇B

b(C,D)(−1)|C\A|+|D\B|+1

, ∀(A,B) 6= (Ω,Ω), (63)

which makes it possible to use the cautious and bold rules in this context.

Example 2 Let X now denote the set of languages spoken by Bernard. Assume that we

are 100 % sure that Bernard speaks no other language than Dutch (d), English (e) and

French (f), so that we can restrict the domain of X to Ω = {d, e, f}. Suppose that we

have the following items of evidence:

1. Bernard is Belgian. Approximately 60 % of Belgians are Dutch-speaking, and 40 %

of Belgians are French-speaking (we neglect here the small German-speaking com-

munity for simplicity). According to a recent survey, approximately 20 % of French-

speaking Belgians declare to have good knowledge of Dutch, whereas around 50 % of

members of the Dutch speaking community claim to have good knowledge of French.
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2. Bernard studied three years in Canada, where most universities are English-speaking,

and some are French speaking. Based on available evidence, we have a 0.7 degree of

belief that Bernard studied in an English-speaking university, and a 0.15 degree of

belief that he studied in a French-speaking one.

Each of these two items of evidence can be represented by a mass function on C(Ω).

According to the first item of evidence, approximately (0.6×0.5)×100 = 30% of Belgians

speak Dutch and no French, approximately (0.4 × 0.8) × 100 = 32% speak French and

no Dutch, and the rest speak both languages. Knowing that Bernard belongs to this

population (and nothing else), and assuming these figures to be accurate, this would lead

to the following mass function:

m1({d}, {f}) = 0.3, m1({f}, {d}) = 0.32, m1({f, d}, ∅) = 0.38.

To account for inaccuracy of these figures, we may discount this mass function [26] by

transferring a fraction of the mass (say, 10%) to the greatest element of C(Ω), i.e., ϕ(∅, ∅).

We thus have

m1({d}, {f}) = 0.3 × 0.9 = 0.27, m1({f}, {d}) = 0.32 × 0.9 ≈ 0.29,

m1({f, d}, ∅) = 0.38 × 0.9 ≈ 0.34, m1(∅, ∅) = 0.1.

The second item of evidence can be represented by a mass function m2 defined as:

m2({e}, ∅) = 0.7, m2({f}, ∅) = 0.15, m2(∅, ∅) = 0.15.

Assuming these two items of evidence to be distinct, they should be combined using the

conjunctive sum operation ∩©. This may be achieved in two ways:

1. We may compute the intersection between each focal element of m1 and each focal

element of m2 and apply formula (54). The computations may be presented as in

Table 1.

2. Alternatively, we may compute the commonality functions q1 and q2 using (53), mul-

tiply them, and convert the result into a mass function using (61). The intermediate

and final results are shown in Table 2.
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Table 1: Computation of the conjunctive sum of m1 and m2 in Example 2. The columns

and the lines correspond to the focal elements of m1, and m2, respectively. Each cell

contains the intersection of a focal element of m1 and a focal element of m2. The mass of

each focal element is indicated below it.

({d}, {f}) ({f}, {d}) ({f, d}, ∅) (∅, ∅)

0.27 0.29 0.34 0.1

({e}, ∅) ({d, e}, f) ({e, f}, {d}) ({e, f, d}, ∅) ({e}, ∅)

0.7 0.7 × 0.27 0.7 × 0.29 0.7 × 0.34 0.7 × 0.1

({f}, ∅) ∅Θ ({f}, {d}) ({f, d}, ∅) ({f}, ∅)

0.15 0.15 × 0.27 0.15 × 0.29 0.15 × 0.34 0.15 × 0.1

(∅, ∅) ({d}, {f}) ({f}, {d}) ({f, d}, ∅) (∅, ∅)

0.15 0.15 × 0.27 0.15 × 0.29 0.15 × 0.34 0.15 × 0.1

We may check that both approaches yield the same result. In particular, we can see that

the empty set ∅Θ receives a mass equal to 0.15 × 0.27 = 0.0405, which can be interpreted

as a degree of conflict between m1 and m2. Using the consensus rule ⊡ (59), the mass

0.15 × 0.27 would be transferred to

ϕ({f}, ∅) ⊓ ϕ({d}, {f}) = ϕ({d}, ∅),

resulting in a normal, conflict-free mass function.

Table 2 also shows the normal mass function computed using the normalized Demp-

ster’s rule ⊕, and Table 3 displays the intermediate steps and final results for computing

the combinations of m1 and m2 using the unnormalized and normalized cautious rules.

Remark 2 We may remark here that the concept of two-place mass and belief func-

tions defined here bears some similarity with bi-capacities introduced by Grabisch and

Labreuche [15]. A bi-capacity as defined in [15] is an increasing function defined on the

lattice (Q(Ω),⊑), where ⊑ is the partial ordering on Q(Ω) defined by (A,B) ⊑ (C,D) if

A ⊆ B and C ⊇ D. In [15], Grabisch and Labreuche introduce various concepts related

to bi-capacities, with application to cooperative game theory. In [19], they introduce the

concept of bi-belief function, defined as a totally monotone bi-capacity from Q(Ω) to [0, 1].

They suggest an interpretation in terms of bipolar representation of uncertainty for the
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Table 2: Computation of m1 ∩©m2 and m1 ⊕ m2 in Example 2.

A B m1 q1 m2 q2 q1 ∩©2 m1 ∩©m2 m1 ⊕ m2

{def} {def} 0 1 0 1 1 0.0405 0

∅ {def} 0 0.1 0 0.15 0.015 0 0

∅ {de} 0 0.1 0 0.15 0.015 0 0

{f} {de} 0 0.39 0 0.3 0.117 0 0

∅ {df} 0 0.1 0 0.15 0.015 0 0

∅ {d} 0 0.1 0 0.15 0.015 0 0

{f} {d} 0.29 0.39 0 0.3 0.117 0.087 0.091

{e} {df} 0 0.1 0 0.85 0.085 0 0

{e} {d} 0 0.1 0 0.85 0.085 0 0

{ef} {d} 0 0.39 0 1 0.39 0.203 0.212

∅ {ef} 0 0.1 0 0.15 0.015 0 0

∅ {e} 0 0.1 0 0.15 0.015 0 0

{f} {e} 0 0.1 0 0.3 0.03 0 0

∅ {f} 0 0.1 0 0.15 0.015 0 0

∅ ∅ 0.1 0.1 0.15 0.15 0.015 0.015 0.016

{f} ∅ 0 0.1 0.15 0.3 0.03 0.015 0.016

{e} {f} 0 0.1 0 0.85 0.085 0 0

{e} ∅ 0 0.1 0.7 0.85 0.085 0.07 0.07

{ef} ∅ 0 0.1 0 1 0.1 0 0

{d} {ef} 0 0.37 0 0.15 0.0555 0 0

{d} {e} 0 0.1 0 0.15 0.015 0 0

{df} {e} 0 0.44 0 0.3 0.132 0 0

{d} {f} 0.27 0.37 0 0.15 0.0555 0.0405 0.0422

{d} ∅ 0 0.1 0 0.15 0.015 0 0

{df} ∅ 0.34 0.44 0 0.3 0.132 0.102 0.106

{de} {f} 0 0.37 0 0.85 0.3145 0.189 0.197

{de} ∅ 0 0.1 0 0.85 0.085 0 0

{def} ∅ 0 0.44 0 1 0.44 0.238 0.248
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Table 3: Computation of m1 ∧©m2 and m1 ∧©∗m2 in Example 2.

A B m1 w1 m2 w2 w1∧2 m1 ∧©m2 m1 ∧©∗m2

{def} {def} 0 6.349 0 1 1 0.864 0

∅ {def} 0 1 0 1 1 0 0

∅ {de} 0 1 0 1 1 0 0

{f} {de} 0 1 0 1 1 0 0

∅ {df} 0 1 0 1 1 0 0

∅ {d} 0 1 0 1 1 0 0

{f} {d} 0.29 0.256 0 1 0.256 0.00806 0.0591

{e} {df} 0 1 0 1 1 0 0

{e} {d} 0 1 0 1 1 0 0

{ef} {d} 0 1 0 1 1 0.0376 0.276

∅ {ef} 0 1 0 1 1 0 0

∅ {e} 0 1 0 1 1 0 0

{f} {e} 0 1 0 1 1 0 0

∅ {f} 0 1 0 1 1 0 0

∅ ∅ 0.1 10 0.15 6.67 719.6 0.00139 0.0102

{f} ∅ 0 1 0.15 0.5 0.5 0.00139 0.0102

{e} {f} 0 1 0 1 1 0 0

{e} ∅ 0 1 0.7 0.176 0.176 0.00649 0.0477

{ef} ∅ 0 1 0 1.7 1 0.00649 0.0477

{d} {ef} 0 1 0 1 1 0 0

{d} {e} 0 1 0 1 1 0 0

{df} {e} 0 1 0 1 1 0 0

{d} {f} 0.27 0.270 0 1 0.270 0.00375 0.0275

{d} ∅ 0 1 0 1 1 0 0

{df} ∅ 0.34 0.227 0 1 0.227 0.00945 0.0694

{de} {f} 0 1 0 1 1 0.0175 0.129

{de} ∅ 0 1 0 1 1 0 0

{def} ∅ 0 1 0 1 1 0.0441 0.324
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Table 4: Commonalities of atoms according to m1⊕m2, m1⊡m2 and m1 ∧©∗m2 in Example

2.

(A,A) q1⊕2(A,A) q1⊡2(A,A) q1∧∗2(A,A)

(∅, {def}) 0.0156 0.015 0.0102

({f}, {de}) 0.122 0.117 0.0796

({e}, {df}) 0.0889 0.085 0.0578

({ef}, {d}) 0.406 0.39 0.451

({d}, {ef}) 0.0578 0.096 0.0377

({df}, {e}) 0.138 0.173 0.0898

({de}, {f}) 0.328 0.355 0.214

({def}, ∅) 0.459 0.481 0.509

case of a single-valued variable. Bi-belief functions and two-place belief functions as intro-

duced here are thus two distinct classes of belief functions built on different lattices, with

different interpretations.

Remark 3 Another remark concerns decision making. As noted in the previous section,

the lattice (C(Ω),⊆) is not Boolean, so that the notion of pignistic probability cannot

be defined in that lattice. In the classical setting, a common alternative to the rule of

maximum pignistic probability for decision making is that of maximum plausibility: it

consists in selecting the element of Ω with the greatest plausibility or, equivalent, with

the greatest commonality (as these two functions coincide on singletons). In C(Ω), we

may propose as a reasonable decision rule to select the atom ϕ(A,A) with the highest

commonality. Table 4 shows the commonalities of the atoms computing from m1 ⊕ m2,

m1 ⊡ m2 and m1 ∧©∗m2 in Example 2. In that particular case, we can see that the three

rules lead to the same conclusion, which is that Bernard speaks all three languages. The

second most likely hypothesis is that Bernard speaks English and French, but no Dutch.

However, it is clear that different combination rules may, in general, result in different

decisions.

The following section will be devoted to a review of previous work on uncertainty

representation for set-valued variables.
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5 Relation to Previous Work

This section discusses the relation between the notions introduced above and related con-

cepts or other formalisms already proposed for handling set-valued variables.

5.1 Disjunctive vs. Conjunctive Bodies of Evidence

Yager [32, 33] was among the first authors to emphasize the fundamental difference between

single-valued and set-values variables, and to develop specific formalisms for reasoning with

the latter. In [33], a distinction is made between disjunctive and conjunctive information

using set-based representations. Given a variable X taking a single value in Ω, a statement

“X is A” with A ⊆ Ω means that X takes some value in A, but we do not know which

one. In contrast, if X is multiple-valued, the same statement is understood to mean that

X takes all values in A (and possibly other values outside A). The corresponding piece

of information is called “disjunctive” in the former case, and “conjunctive” in the latter.

Yager then proceeds by observing that there is some kind of duality between disjunctive

and conjunctive knowledge. For instance, the statement P1 : “X is A” implies P2 : “X is

B” whenever B ⊇ A in the disjunctive case, whereas P2 can be deduced from P1 whenever

B ⊆ A in the conjunctive case. If we know that P1 and P2 both hold, then we can deduce

“X is A ∩ B” in the disjunctive case, and “X is A ∪ B” in the conjunctive case, etc.

Viewing mass functions as generalized sets, Dubois and Prade [8] remarked that the

same distinction holds in the belief function framework. They pointed out that, when a

mass function m represents a body of evidence pertaining to a set-valued variable (referred

to as a conjunctive body of evidence), the commonality function q is more appropriate

than b for representing degrees of belief, and the disjunctive sum (11) should be used for

combining information conjunctively.

The formalism developed in Section 4 sheds new light on this duality between con-

junctive and disjunctive knowledge. The conjunctive statement “X is A” corresponds to

the proposition ϕ(A, ∅). Let m be a mass function on C(Ω) whose focal elements are all

of the form ϕ(B, ∅) for some B ⊆ Ω. We can note m′(A) = m(A, ∅) for all A. Using (51),

we then have, for all A ⊆ Ω:

b(A, ∅) =
∑

B⊇A

m(B, ∅) =
∑

B⊇A

m′(B) = q′(A),
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where q′ is the commonality function corresponding to m′. Conversely,

q(A, ∅) =
∑

B⊆A

m(B, ∅) =
∑

B⊆A

m′(B) = b′(A).

As a consequence, let m1 and m2 be two mass functions on C(Ω) with focal elements of

the form described above, and assume that we want to combine them conjunctively using

(56). We get

q1 ∩©2(A, ∅) = q1(A, ∅)q2(A, ∅) = b′1(A)b′2(A) = b′1 ∪©2(A)

for all A ⊆ Ω, which explains why the disjunctive sum seems to be used when combining

conjunctive bodies of evidence in a conjunctive manner.

5.2 Random sets

Random sets are defined as random elements taking values as subsets of some space [20, 23].

In the finite case, a random set is thus defined by a probability function m on 2Ω such that
∑

A⊆Ω m(A) = 1, which is mathematically equivalent to a Dempster-Shafer mass function

on Ω [24]. However, as noted by Smets [27], the semantics of random sets and (standard)

belief functions are different, as random sets model random experiments with set-valued

outcomes, whereas standard belief functions quantify beliefs regarding a variable taking a

single, but unknown value.

In contrast, random sets are recovered as a special class of belief functions on set-

valued variables introduced in this paper. Let m be a mass function on C(Ω), and assume

that the focal elements of m are atoms of C(Ω), i.e., if they are of the form (A,A). In

that case, the function m′ from 2Ω to [0, 1] such that m′(A) = m(A,A) for all A ⊆ Ω is

a random set. Random sets are thus equivalent to mass functions on C(Ω) with atomic

focal elements, just as probability distributions on Ω are equivalent to mass functions on

2Ω with singleton focal elements.

5.3 Veristic Variables

In [34, 35], Yager develops a theory of veristic variables, which can be defined as fuzzy

set-valued variables. Let X denote a fuzzy set-valued variable on a domain Ω, i.e., a

variable taking a single value in the set IΩ of fuzzy subsets of Ω. For any x ∈ Ω and any

A ∈ IΩ, we denote by A(x) the degree of membership of x in A. Let A0 ∈ IΩ denote
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the unknown true value of X. Yager considers four ways of associating variable X with a

fuzzy set A ∈ IΩ, using the following statements:

1. X isv A, meaning that A ⊆ A0, where ⊆ denotes standard fuzzy set inclusion, i.e.,

A(x) ≤ A0(x) for all x ∈ Ω;

2. X isv(n) A, meaning that A0 ⊆ A, where A denotes the complement of A with

membership function A(x) = 1 − A(x) for all x ∈ Ω;

3. X isv(c) A, meaning that A0 = A;

4. X isv(c, n) A, meaning that A0 = A.

In the above expressions, the copula isv has two parameters: c for closed (exclusive) and

n for negative. We observe that the statement X isv(c, n) A is equivalent to X isv(c) A.

Consequently, we need only to consider the first three cases.

As remarked by Yager, each of these basic types of statements can be interpreted as

specifying a set W of fuzzy subsets of Ω, i.e., a crisp subset of IΩ. W contains the possible

values of variable X. It is defined as follows for the three types of statements:

X isv A −→ W = {F ∈ IΩ | F (x) ≥ A(x),∀x ∈ Ω}

X isv(n) A −→ W = {F ∈ IΩ | F (x) ≤ A(x),∀x ∈ Ω}

X isv(c) A −→ W = {A}

Yager also associated to W two functions from Ω to [0, 1], called the verity and rebuff

distributions, and defined as follows:

Ver(x) = min
F∈W

F (x),

Rebuff(x) = 1 − max
F∈W

F (x) = min
F∈W

1 − F (x) = min
F∈W

F (x).

Ver(x) is thus the minimal degree of membership of x to any possible value of X: it can be

interpreted as the minimal support for x being one of the values taken by X. In contrast,

Rebuff(x) can be interpreted as the minimal support for x not being one of the values

taken by X. These two distributions have the following expressions for the three basic

types of statements:

X isv A −→ Ver(x) = A(x), Rebuff(x) = 0

X isv(n) A −→ Ver(x) = 0, Rebuff(x) = A(x)

X isv(c) A −→ Ver(x) = A(x), Rebuff(x) = 1 − A(x).
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Clearly, a major difference between Yager’s approach and ours is the fact that Yager

represents each piece of knowledge about X as a set of fuzzy subsets of Ω, whereas we

use a set of crisp subsets of Ω. However, the kinds of statements considered by Yager as

well as the associated verity and rebuff distributions have very close representations in our

approach.

To begin with, let us provisionally assume that A is a crisp subset of Ω. Then, each of

the three types of statements can be expressed by categorical mass functions on C(Ω) as

follows:

X isv A −→ m(A, ∅) = 1

X isv(n) A −→ m(∅, A) = 1

X isv(c) A −→ m(A,A) = 1.

It is easy to see that, in each of these three cases:

b({x}, ∅) = Ver(x) (64)

b(∅, {x}) = Rebuff(x) (65)

for all x ∈ Ω. The verity of x is thus the belief that x is one of the values taken by X,

whereas the rebuff of x is the belief that x is not a value taken by X. This interpretation

can be shown to remain true when A is a fuzzy subset of Ω. In that case, the function

x → A(x) can be seen as a possibility distribution, which is known to be equivalent to a

consonant mass function m′ on Ω with focal elements A1 ⊆ . . . ⊆ An. The corresponding

plausibility function pl′ verifies

pl′({x}) =
∑

Ai∋x

m′(Ai) = A(x), ∀x ∈ Ω.

For instance, let us consider the statement X isv A, and let us translate it as the following

two-place mass function:

m(Ai, ∅) = m′(Ai), i = 1, . . . , n.

We have

b({x}, ∅) =
∑

Ai∋x

m(Ai, ∅) =
∑

Ai∋x

m′(Ai) = A(x) = Ver(x)

and

b(∅, {x}) = 0 = Rebuff(x).
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By handling the two other cases similarly, it can be verified that Equations (64) and (65)

hold in all cases.

We may thus conclude that, although based on a slightly different interpretation,

Yager’s framework can be easily translated into the formalism of two-place belief functions,

which is more general. However, this is only true at the static level, i.e., as long as we do not

combine different pieces of information. For instance, as shown by Yager, the conjunctive

combination of two statements X isv A and X isv B in the veristic framework results

in a new statement X isv A ∪ B, where ∪ denotes fuzzy set union. This is consistent

with our approach only as long as A and B are crisp sets. If A and B are fuzzy, then

translating the two statements as two-place mass functions and combining them using

either the conjunctive sum or the cautious rule does not, in general, yield a consonant

mass function corresponding to a veristic constraint on X. The two formalisms thus differ

when combining statements involving fuzzy subsets.

5.4 Two-fold fuzzy sets

To complete this review of previous work on uncertainty representation for set-valued

variables, we need to mention the representation of incomplete conjunctive information

using a pair of fuzzy sets introduced in [9].

In this work, Dubois and Prade proposed to represent partial knowledge about a set-

valued variable as a possibility distribution π on 2Ω. This is equivalent to defining a fuzzy

set of crisp subsets of Ω, which contrasts with Yager’s approach who defines a crisp set W

of fuzzy subsets of Ω. To make such a representation more easily tractable, Dubois and

Prade then proposed to approximate π by a pair of fuzzy sets (A−, A+) as follows. Let

Ai, i ∈ I be the family of subsets of Ω such that π(Ai) > 0. Let

A−(x) = 1 − sup
i:x 6∈Ai

π(Ai)

and

A+(x) = sup
i:x∈Ai

π(Ai).

The degree of membership of x to A− is thus the extent to which is impossible to find an

Ai not containing x, while A+(x) corresponds to the possibility of finding an Ai containing

x. The pair (A−, A+), referred to as a two-fold fuzzy set, constitutes an approximation
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of π in the sense that it is a simpler, but incomplete representation: several possibility

distributions π correspond to the same two-fold fuzzy set. However, Dubois and Prade

showed that the least specific possibility distribution π∗ induced by a two-fold fuzzy set

(A−, A+) can be expressed as π∗(∅) = 1 − supA−, π∗(Ω) = inf A+, and

π∗(B) = min

[
inf
x∈B

A+(x), inf
x 6∈B

(1 − A−(x))

]
, ∀B ∈ 2Ω \ {∅,Ω}.

To each two-fold fuzzy set (A−, A+) can thus be associated a fuzzy subset A of 2Ω, with

membership function equal to π∗.

We note that this approach has some similarity with ours, since it is based on the

representation of a subset of 2Ω by a pair of subsets of Ω. Actually, if A− and A+ are

crisp, then the corresponding crisp subset A of 2Ω is exactly equal to ϕ(A−, A+). However,

in the general case, the two-fold fuzzy set representation is based on a pair of possibility

distributions, i.e., consonant belief functions on Ω, whereas our approach is based on a

single two-place belief function on C(Ω).

What can be seen as a limitation of the two-fold fuzzy set approach arises when combin-

ing information from several sources. Given two pairs (A−, A+) and (B−, B+) representing

knowledge about two set-valued variables X and Y , Dubois and Prade showed that the

knowledge of X ∩ Y can be represented by (A− ∩ B−, A+ ∩ B+), while the knowledge

of X ∪ Y can be represented by (A− ∪ B−, A+ ∪ B+). Applications of this kind of rea-

soning to database query evaluation is discussed in [9]. However, a different and maybe

more common problem in uncertain reasoning is the situation where we have two items of

evidence about a single set-valued variable X, and we want to combine these two items

of evidence. If (A−, A+) and (B−, B+) correspond, respectively, to fuzzy subsets A and

B of 2Ω, the result of the combination should ideally correspond to A ∩ B or to A ∪ B,

depending on the choice of a conjunctive or disjunctive combination mechanism. However,

none of these two fuzzy subsets of 2Ω generally admits a two-fold fuzzy set representation,

which restricts the use of this formalism for reasoning with set-valued variables.

We have shown that the formalism of two-place belief functions introduced in this

paper seems to compare favorably in terms of expressive power with existing formalisms

for representing and reasoning with uncertain conjunctive information. In the next section,

we will demonstrate the usefulness of this formalism for a certain category of classification

problems.
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6 Application to Multi-label Classification

In this section, we present an application of the framework developed in this paper to multi-

label classification2. In this kind of problems, each object may belong simultaneously to

several classes, contrary to standard single-label problems where objects belong to only

one class [13, 38, 12, 36]. Multi-label classification tasks arise in many real-world problems.

For instance, in image retrieval, each image may belong to several semantic classes such as

beach and urban. In text categorization, each document may belong to several topics, etc.

In such problems, the learning task consists in predicting the value of the class variable for

a new instance, based on a training set. As the class variable is set-valued, the framework

developed in this paper may be used.

In order to construct a multi-label classifier, we generally assume the existence of a

labeled training set, composed of n examples (xi, Yi), where xi is a feature vector describing

instance i, and Yi is a label set for that instance, defined as a subset of the set Ω of classes.

In practice, however, gathering such high quality information is not always feasible at a

reasonable cost. In many problems, there is no ground truth for assigning unambiguously

a label set to each instance, and the opinions of one or several experts have to be elicited.

Typically, an expert will sometimes express lack of confidence for assigning exactly one

label set. If several experts are consulted, some conflict will inevitably arise, which again

will introduce some uncertainty in the labeling process.

The formalism developed in this paper can easily be used to handle such situations. In

the most general setting, the opinions of one or several experts regarding the set of classes

that pertain to a particular instance i may be modeled by a mass function mi on C(Ω).

A less general, but arguably more workable option is to restrict mi to be categorical, i.e.,

to have a single focal element ϕ(Ai, Bi), with Ai, Bi ⊆ Ω and Ai ∩ Bi = ∅. The set Ai is

then the set of classes that certainly apply to example i, while Bi the set of classes that

certainly do not apply. In a multiple expert setting, Ai might represent the set of classes

indicated by all (or most) experts as relevant to describe instance i, while Bi would be

the set of classes mentioned by none of the experts (or only a few of them). The usual

situation of precise labeling is recovered in the special case where Bi = Ai.

For instance, assume that instances are songs and classes are emotions generated by

2A preliminary version of the application described in this section was presented in [37].
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these songs, as in the emotion dataset that will be used in Section 6.3 below. Upon hearing

a song, an expert may decide that this song certainly evokes happiness and certainly does

not evoke sadness, but may be undecided regarding the other emotions (such as quietness,

anger, surprise, etc.). In that case, the song cannot be assigned a single label set, but

we can associate to it the set of all label sets containing “happiness” and not containing

“sadness”, which has the form suggested above.

In [4, 39], we introduced a single-label k-nearest neighbor (NN) classifier based on

Dempster-Shafer theory. This method will be briefly recalled in Section 6.1, and will be

extended to multi-label classification tasks in Section 6.2. An experimental comparison

with the multi-label k nearest neighbor (ML-kNN) method introduced in [38] using real-

world data will then be presented in Section 6.3.

6.1 Single-label Evidential k-NN Classification

The evidential k-NN method introduced in [4] for single-label classification problems can

be summarized as follows. Let L = {(x1, A1), . . . , (xn, An)} be a learning set of n in-

stances, where xi is a p-dimensional attribute vector describing instance i, and Ai ⊆ Ω =

{ω1, . . . , ωK} is a set of possible classes for instance i. We emphasize the fact that, in the

context considered here, each instance i actually belongs to one and only one class, but

this class is only known to lie somewhere in Ai.

Let x denote the feature vector for a new object with unknown class y. We want to

guess the value of y based on evidence provided by the learning set L. For that purpose,

we consider the set Φk(x) of the k nearest neighbors of x, according to some distance

measure d (usually, the Euclidean one). Each learning instance (xi, Ai) with xi ∈ Φk(x)

can then be regarded as a piece of evidence regarding the unknown value of y, represented

as the following simple mass function on Ω:

mi(Ai) = α exp (−γd(x,xi)) , (66)

mi(Ω) = 1 − α exp (−γd(x,xi)) , (67)

with 0 < α < 1 and γ > 0. Parameter α is usually fixed at a value close to 1 such

as α = 0.95, whereas γ should depend on the scaling of distances and can be either

fixed heuristically or optimized [39]. The evidence of the k NNs is then pooled using the
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conjunctive sum:

m = ∩©i:xi∈Φ(x)mi, (68)

and the class with highest plausibility or pignistic probability is selected. As remarked in

[7] and [6], this method can be easily extended to the case where each learning instance

in L is labeled by a general mass function on Ω.

6.2 Multi-label Evidential k-NN Classification

Let us now come back to the multi-label classification problem, in which objects may

belong simultaneously to several classes. Let L = {(x1, A1, B1), . . . , (xn, An, Bn)} be the

learning set, where Ai ⊆ Ω = {ω1, . . . , ωK} denotes a set of classes that surely apply to

instance i, and Bi ⊆ Ω a set of classes that surely do not apply to the same instance. If

Yi ⊆ Ω denotes the true label set of instance i, we thus only know that Yi ∈ ϕ(Ai, Bi).

As before, let Φk(x) denote the set of k nearest neighbors of a new instance described

by feature vector x, and xi an element of that set with label (Ai, Bi). This item of evidence

can be described by the following simple two-valued mass function:

mi(Ai, Bi) = α exp (−γd(x,xi)) , (69)

mi(∅, ∅) = 1 − α exp (−γd(x,xi)) , (70)

with, as before, 0 < α < 1 and γ > 0. These k mass functions are then combined using

the conjunctive sum (68) as in the single-label case.

For decision making, different procedures can be used. The following simple and

computationally efficient rule was implemented. Let Ŷ be the predicted label set for

instance x. To decide whether to include each class ω ∈ Ω or not, we compute the degree

of belief bel({ω}, ∅) that the true label set Y contains ω, and the degree of belief bel(∅, {ω})

that it does not contain ω. We then define Ŷ as

Ŷ = {ω ∈ Ω | bel({ω}, ∅) ≥ bel(∅, {ω})}.

6.3 Experiments

To study the above procedure experimentally, three real datasets3 were used:

3These datasets can be downloaded from http://mlkd.csd.auth.gr/multilabel.html.
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• The emotion dataset, presented in [31], consist of 593 songs annotated by experts

according to the emotions they generate. The emotions are: amazed-surprise, happy-

pleased, relaxing-calm, quiet-still, sad-lonely and angry-fearful. Each emotion corre-

sponds to a class. There are thus 6 classes, and each song was labeled as belonging

to one or several classes. The average size of the label set for each song is 1.87±0.67.

Each song was also described by 8 rhythmic features and 64 timbre features, result-

ing in a total of 72 features. The data was split into a training set of 391 examples

and a test set of 202 examples.

• The yeast dataset contains data regarding the gene functional classes of the yeast

Saccharomyces cerevisiae [11, 25]. It describes 2417 genes each represented by 103

features. There are 14 possible classes and the average size of the label set for each

gene is 4.24 ± 1.57. The data was split into a learning set of 1500 examples and a

test set of 917 examples.

• The scene dataset consists of 2407 natural scene images, where a label set is man-

ually assigned to each image. There are 6 classes and 294 attributes. The average

cardinality is 1.074± 0.26 (only 7.35% of observations are labeled by more than one

class). The data was split into a training set of 1211 examples and a test set of 1196

examples.

Each of these three datasets was constructed in such a way that each instance i is

assigned a single set of labels Yi. As explained above, this choice may be questioned since,

at least for the emotion and scene datasets, there is no ground truth and the data have

been labeled subjectively by a pool of experts. To assess the performances of our approach

in learning from data with imprecise labels such as postulated in Section 6.2 above, we

randomly simulated an imperfect labeling process by proceeding as follows.

Let yi = (yi1, . . . , yiK) be the vector of {−1, 1}K such that yik = 1 if ωk ∈ Yi and

yik = −1 otherwise. For each instance i and each class ωk, we generated a probability of

error pik between 0 and 0.5 by drawing a random number from a beta distribution with

parameters a = b = 0.5 (this is a bimodal distribution with modes at 0 and 1) and dividing

it by two. We then changed yik to −yik with probability pik, resulting in a noisy label
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vector y′
i. The imprecise label vector was finally defined as y′′

i = (y′′i1, . . . , y
′′
iK) with

y′′ik =






y′ik if pik < 0.2,

0 otherwise.

As remarked in Section 4.1, such a vector of {−1, 0, 1}K encodes an ordered pair (Ai, Bi)

of disjoint subsets of Ω such that Ai = {ωk ∈ Ω | y′′ik = 1} and Bi = {ωk ∈ Ω | y′′ik = −1}.

The intuition behind the above model may be described as follows. Each number pik

represents the probability that the membership of instance i to class ωk will be wrongly

assessed by the expert. This number may be turned into a degree of confidence ci by the

transformation cik = 1 − 2pik. We assume that these numbers can be provided by the

expert, which allows us to label each instance i by a pair of sets (Ai, Bi). The set Ai then

contains the classes ωk that can be definitely assigned to instance i with a high degree of

confidence (cik ≥ 0.6), while Bi is the set of classes which are definitely not assigned to

instance i. The remaining set Ω \ (Ai ∪Bi) contains those classes about which the expert

is undecided (cik < 0.6).

Our method (hereafter referred to as EML-kNN) was applied to the three datasets,

both with noisy labels y′
i and with imprecise labels (Ai, Bi). The features were normal-

ized so as to have zero mean and unit variance. Parameters α and γ were fixed at 0.95

and 0.5, respectively, for all three datasets. We note that γ could easily be determined

automatically by cross-validation. However, the results are not very sensitive to the value

of γ, so that this parameter could be fixed manually.

As a reference method, we used the ML-kNN method introduced in [38], which was

shown in [38] to have good performances as compared to most existing multi-label clas-

sification algorithms. It is also the closest to our method, as both methods are based on

nearest neighbors. The ML-kNN algorithm was applied to noisy labels only, as it is not

clear how imprecise labels could be handled using this method.

For evaluation, we used accuracy as a performance measure, defined as:

Accuracy =
1

n

n∑

i=1

|Yi ∩ Ŷi|

|Yi ∪ Ŷi|
,

where n is the number of test examples, Yi is the true label set for examples i, and Ŷi is

the predicted label set for the same example. This measure takes values between 0 and 1,

with higher values corresponding to better performance.
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Figure 2: Mean accuracy (plus or minus one standard deviation) over 5 trials as a function

of k for the emotions dataset with the following methods: EML-kNN with imprecise labels

(Ai, Bi), EML-kNN with noisy labels and ML-kNN with noisy labels.

Figures 2 to 4 show the mean accuracy plus or minus one standard deviation over

five generations of noisy and imprecise labels for the three datasets, with the following

methods: EML-kNN with imprecise labels (Ai, Bi), EML-kNN with noisy labels and ML-

kNN with noisy labels. The results are consistent over the three datasets: the EML-kNN

method with noisy labels outperforms the ML-kNN trained using the same data, while

the EML-kNN algorithm with imprecise labels clearly yields the best performances for the

three problems.

These preliminary results demonstrate the ability of our approach to handle imprecise

labels in multi-label classification tasks. More generally, they illustrate a practical situa-

tion where mass functions on a lattice (C(Ω),⊆) are a natural model for expert knowledge

and can be successfully exploited for uncertain reasoning with set-valued variables.

It should be noted, however, that these encouraging results are only a first step towards

a comprehensive assessment of our approach in multi-label classification tasks. A more

complete study would require more extensive comparisons with a wider range of algorithms

and datasets, and more sophisticated schemes for tuning hyperparameters. Such a study
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Figure 3: Mean accuracy (plus or minus one standard deviation) over 5 trials as a function

of k for the yeast dataset with the following methods: EML-kNN with imprecise labels

(Ai, Bi), EML-kNN with noisy labels and ML-kNN with noisy labels.
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Figure 4: Mean accuracy (plus or minus one standard deviation) over 5 trials as a function

of k for the scene dataset with the following methods: EML-kNN with imprecise labels

(Ai, Bi), EML-kNN with noisy labels and ML-kNN with noisy labels.
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goes beyond the scope of the present paper, and is left for future work.

7 Conclusion

We have presented a formalism for quantifying uncertainty on a set-valued variable X

defined on a domain Ω in the belief function framework. This approach relies on the

definition of a family C(Ω) of subsets of 2Ω that is closed under intersection and has a

lattice structure. Each element C in this family is indexed by two subsets A and B, and

is defined as the set of subsets of Ω containing A and not intersecting B. The number of

such elements (including the empty set of 2Ω) is equal to 3K +1, where K is the size of Ω:

it is thus much smaller than the size of 22Ω

, while being rich enough to express evidence

about X in many realistic situations.

Using recent results about belief functions on general lattices reported in [14], we have

shown that most notions from Dempster-Shafer theory can be defined on C(Ω) with only

a moderate increase in complexity as compared to the single-valued case, which contrasts

with the double-exponential complexity encountered when working in 22Ω

. This formalism

has been shown to be more general than previous attempts to apply the Dempster-Shafer

framework to this problem. It has also been shown to be somewhat similar to, but arguably

more general and flexible than other approaches introduced in the possibilistic framework.

Finally, our formalism has been applied to multi-label classification with imprecise

labels, using an extension of the single-label evidential k nearest neighbor rule. Preliminary

experimental results with real data and simulated uncertain labeling suggest that the

proposed approach allows for the development of powerful classification procedures and

can be applied to solve complex real-world problems. Further investigations into the belief

function approach to multi-label classification, including extensive comparison with other

methods, are currently under way and will be reported in future publications.
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