N

N
N

HAL

open science

Discovering frequent closed itemsets for association rules
Nicolas Pasquier, Yves Bastide, Rafik Taouil, Lotfi Lakhal

» To cite this version:

Nicolas Pasquier, Yves Bastide, Rafik Taouil, Lotfi Lakhal. Discovering frequent closed itemsets for
association rules. ICDT’1999 International Conference on Database Theory, Jan 1999, Jerusalem,

Israel. pp.398-416. hal-00467747

HAL Id: hal-00467747
https://hal.science/hal-00467747
Submitted on 26 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00467747
https://hal.archives-ouvertes.fr

Discovering Frequent Closed Itemsets
for Association Rules

Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal

Laboratoire d’Informatique (LIMOS)
Université Blaise Pascal - Clermont-Ferrand II
Complexe Scientifique des Cézeaux
24, av. des Landais, 63177 Aubiére Cedex France
{pasquier,bastide,taouil,lakhal}@libdl.univ-bpclermont.fr

Abstract. In this paper, we address the problem of finding frequent
itemsets in a database. Using the closed itemset lattice framework, we
show that this problem can be reduced to the problem of finding frequent
closed itemsets. Based on this statement, we can construct efficient data
mining algorithms by limiting the search space to the closed itemset
lattice rather than the subset lattice. Moreover, we show that the set of all
frequent closed itemsets suffices to determine a reduced set of association
rules, thus addressing another important data mining problem: limiting
the number of rules produced without information loss. We propose a new
algorithm, called A-Close, using a closure mechanism to find frequent
closed itemsets. We realized experiments to compare our approach to
the commonly used frequent itemset search approach. Those experiments
showed that our approach is very valuable for dense and/or correlated
data that represent an important part of existing databases.

1 Introduction

The discovery of association rules was first introduced in [1]. This task con-
sists in determining relationships between sets of items in very large databases.
Agrawal’s statement of this problem is the following [1,2]. Let Z = {i1,42,... ,im}
be a set of m items. Let the database D = {t1,t2,... ,t,} be a set of n trans-
actions, each one identified by its unique TID. Each transaction ¢ consists of a
set of items I from Z. If ||I|| = k, then I is called a k-itemset. An itemset I is
contained in a transaction ¢ € D if I C ¢. The support of an itemset I is the
percentage of transactions in D containing I. Association rules are of the form
r: L S I,, with I;,I, C 7 and I; N I, = (. Each association rule r has a
support defined as support(r) = support(l; U I>) and a confidence ¢ defined as
confidence(r) = support(I;UIy) / support(I;). Given the user defined minimum
support minsup and minimum confidence minconf thresholds, the problem of
mining association rules can be divided into two sub-problems [1]:

1. Find all frequent itemsets in D, i.e. itemsets with support greater or equal
to minsup.

2. For each frequent itemset I; found, generate all association rules I N PP N
where I, C I, with confidence ¢ greater or equal to mincony.

Once all frequent itemsets and their support are known, the association rule
generation is straightforward. Hence, the problem of mining association rules is
reduced to the problem of determining frequent itemsets and their support.

Recent works demonstrated that the frequent itemset discovery is also the key
stage in the search for episodes from sequences and in finding keys or inclusion as
well as functional dependencies from a relation [12]. All existing algorithms use
one of the two following approach: a levelwise [12] bottom-up search [2, 5,13, 16,
17] or a simultaneous bottom-up and top-down search [3, 10,20]. Although they
are dissimilar, all those algorithms explore the subset lattice (itemset lattice) for
finding frequent itemsets: they all use the basic properties that all subsets of a
frequent itemset are frequent and that all supersets of an infrequent itemset are
infrequent in order to prune elements of the itemset lattice.

In this paper, we propose a new efficient algorithm, called A-Close, for find-
ing frequent closed itemsets and their support in a database. Using a closure
mechanism based on the Galois connection, we define the closed itemset lattice
which is a sub-order of the itemset lattice, thus often much smaller. This lat-
tice is closely related to the Galois lattice [4,7] also called concept lattice [19].
The closed itemset lattice can be used as a formal framework for discovering
frequent itemsets given the basic properties that the support of an itemset I is
equal to the support of its closure and that the set of maximal frequent itemsets
is identical to the set of maximal frequent closed itemsets. Then, once A-Close
has discovered all frequent closed itemsets and their support, we can directly
determine the frequent itemsets and their support. Hence, we reduce the prob-
lem of mining association rules to the problem of determining frequent closed
itemsets and their support.

Using the set of frequent closed itemsets, we can also directly generate a
reduced set of association rules without having to determine all frequent item-
sets, thus lowering the algorithm computation cost. Moreover, since there can
be thousands of association rules holding in a database, reducing the number
of rules produced without information loss is an important problem for the un-
derstandability of the result [18]. Empirical evaluations comparing A-Close to
an optimized version of Apriori showed that they give nearly always equivalent
results for weakly correlated data (such as synthetic data) and that A-Close
clearly outperforms Apriori for correlated data (such as statistical or text data).

The rest of the paper is organized as follows. In Section 2, we present the
closed itemset lattice. In Section 3, we propose a new model for association rules
based on the Galois connection and we characterize a reduced set of association
rules. In Section 4, we describe the A-Close algorithm. Section 5 gives experimen-
tal results on synthetic data' and census data using the PUMS file for Kansas
USA? and Section 6 concludes the paper.

! http://www.almaden.ibm.com/cs/quest/syndata.html
2 ftp://ftp2.cc.ukans.edu/pub/ippbr/census/pums/pums90ks.zip

2 Closed Itemset Lattices

In this section, we define data mining context, Galois connection, Galois closure
operators, closed itemsets and closed itemset lattice. Interested readers should
read [4,7,19] for further details on order and lattice theory.

Definition 1 (Data mining context). A data mining context® is a triple D =
(O,Z,R). O and T are finite sets of objects and items respectively. R C O x T
is a binary relation between objects and items. Each couple (0,1) € R denotes
the fact that the object o € O is related to the item i € T.

Definition 2 (Galois connection). Let D = (O,Z,R) be a data mining con-
text. For O C O and I C T, we define:

f(0): 29 — 27T g(I): 27 — 29
f(O)={i €T |Yoe€O,(o,i) € R} g(I)={oe O |VieI,(o,i) € R}

f(O) associates with O the items common to all objects o € O and g(I) associates
with I the objects related to all items i € I. The couple of applications (f,g) is
a Galois connection between the power set of O (i.e. 2°) and the power set of T
(i.e. 27). The following properties hold for all I,I;,Is C T and O,0,05 C O:

(1) I C I = g(I) 2 g(I2) (1) O1 € 02 = f(01) 2 f(O2)
(2) O Cg(I) <= 1C f(O)

Definition 3 (Galois closure operators). The operators h = fog in 27 and
h' = gof in 29 are Galois closure operators*. Given the Galois connection (f,g),
the following properties hold for all I,1,I, CZ and O,01,05 C O [4, 7, 19]:

Eaztension : (3) I C h(I) (3°) O C h'(0)
Idempotency : (4) h(h(I)) = h(I) (4°) W' (h'(0)) = 1'(0)
Monotom'city : (5) I - I, = h([l) - h(IQ) (5’) O, - 0y = hl(Ol) - hI(OQ)

Definition 4 (Closed itemsets). An itemset C C I from D is a closed itemset
iff h(C) = C. The smallest (minimal) closed itemset containing an itemset I is
obtained by applying h to I. We call h(I) the closure of I.

Definition 5 (Closed itemset lattice). Let C be the set of closed itemsets
derived from D using the Galois closure operator h. The pair Lo = (C,<) is
a complete lattice called closed itemset lattice. The lattice structure implies two
properties:

i) There exists a partial order on the lattice elements such that, for every ele-
ments 01,02 S ﬁc, C: < 02, zﬁCl - 025.

ii) All subsets of Lc have one greatest lower bound, the Join element, and one
lowest upper bound, the Meet element.

% By extension, we call database a data mining context afterwards.
* Here, we use the following notation: fog(I) = f(g(I)) and gof(O) = g(f(0)).
5 () is a sub-closed itemset of Cy and C. is a sup-closed itemset of C;.

Below, we give the definitions of the Join and Meet elements extracted from the
basic theorem on Galois (concept) lattices [4, 7, 19]. For all S C L¢:

Join (S) = h(|] ©), Meet (S) = () C

ces ces

OID| Items
ACD
BCE
ABCE
BE

ABCE

T W N

Fig. 1. The data mining context D and its associated closed itemset lattice.

3 Association Rule Model

In this section, we define frequent and mazimal frequent itemsets and closed
itemsets using the Galois connection. We then define association rules and valid
association rules, and we characterise a reduced set of valid association rules in
a data mining context D.

3.1 Frequent Itemsets

Definition 6 (Itemset support). Let I C T be a set of items from D. The
support count of the itemset I in D is:

lg(DI|

support(I) = el

Definition 7 (Frequent itemsets). The itemset I is said to be frequent if the
support of I in D is at least minsup. The set L of frequent itemsets in D is:

L ={I CZT| support(l)> minsup}

Definition 8 (Maximal frequent itemsets). Let L be the set of frequent
itemsets. We define the set M of maximal frequent itemsets in D as:

M={IeL| Al'eL, ICI'}

Property 1. All subsets of a frequent itemset are frequent (intuitive in [2]).

Proof. Let I,I' CZ, 1 € L and I' C I. According to Property (1) of the Galois
connection: I' C I = ¢g(I') 2 g¢(I) = support(I") > support(l) > minsup.
So, we get: I' € L.

Property 2. All supersets of an infrequent itemset are infrequent (intuitive in
[2]).-

Proof. Let I,I' CZ,I' ¢ L and I' C I. According to Property (1) of the Galois
connection: I D I' = ¢g(I) C g(I') = support(I) < support(I") < minsup.
So, we get: [¢ L.

3.2 Frequent Closed Itemsets

Definition 9 (Frequent closed itemsets). The closed itemset C' is said to
be frequent if the support of C' in D is at least minsup. We define the set FC of
frequent closed itemsets in D as:

FC={CCZT]| C=h(C) A support(C) > minsup}

Definition 10 (Maximal frequent closed itemsets). Let FC be the set of
frequent closed itemsets. We define the set MC of mazimal frequent closed item-
sets in D as:

MC={CeFC| AC' € FC, C c C'}

Property 8. The support of an itemset I is equal to the support of its closure:
support(I) = support(h(I)).

Proof. Let I C T be an itemset. The support of I in D is:

support(I) =

Now, we consider h(I), the closure of I. Let’s show that h'(g(I)) = g(I).
have g(I) C h(g(I)) (extension property of the Galois closure) and I C h(I)
g(h(I)) C g(I) (Property (1) of the Galois connection). We deduce that h'(g(I)) =
g(I), and therefore we have:

e W@ @l
support(h(1)) = o™ = o =]

We
=

= support(I)

Property 4. The set of maximal frequent itemsets M is identical to the set of
maximal frequent closed itemsets MC.

Proof. Tt suffices to demonstrate that VI € M, I is closed, i.e. I = h(I). Let
I € M be a maximal frequent itemset. According to Property (3) of the Galois
connection I C h(I) and, since I is maximal and support(h(I)) = support(I) >
minsup, we conclude that I = h(I). I is a maximal frequent closed itemset.

Since all maximal frequent itemsets are also maximal frequent closed itemsets,
we get: M = MC.

3.3 Association Rule Semantics

Definition 11 (Association rules). An association rule is an implication be-
tween itemsets of the form I = I, where I, I, C T and I, N I, = 0. Below, we
define the support and confidence ¢ of an association rule r : I, — I, using the
Galois connection:

LUL
support(r) = M, con fidence(r) =

101l

support(I; U I) _ llg(Iy U IL)||
support(I) llg(11)l]

Definition 12 (Valid association rules). A valid association rules is an as-
sociation rules with support and confidence greater or equal to the minsup and
minconf thresholds respectively. We define the set AR of valid association rules
in D using the set MC of mazimal frequent closed itemsets as:

AR(D, minsup, minconf) = {r : I Snh—-5, Lch |, e L= U 2¢ and
ceMC
confidence(r) > minconf}

3.4 Reduced Set of Association Rules

Let I1,I, ¢ T and I, N I, = (. An association rule r : I} = I, is an ezact
association rule if ¢ = 1. Then, r is noted r : I; = I,. An association rule
r: I 51, where ¢ < 1 is called an approzimate association rule. Let D be a
data mining context.

Definition 13 (Pseudo-closed itemsets). An itemset I C Z from D is a
pseudo-closed itemset iff h(I) # I and YI' C I such as I' is a pseudo-closed
itemset, we have h(I') C I.

Theorem 1 (Exact association rules basis [8]). Let P be the set of pseudo-
closed itemsets and R the set of exact association rules in D. The set € = {r:
Li=h(l)—1I| I, € P} is a basis for all exact association rules. Vr' € R where
confidence(r') = 1 > minconf we have € = r'.

Corollary 1 (Exact valid association rules basis). Let F'P be the set of fre-
quent pseudo-closed itemsets in D. The set BE = {r : 1=h(I,)—1,| I, € FP}
is a basis for all exact valid association rules. Vr' € AR where confidence(r') =
1 we have BE |=r'.

Theorem 2 (Reduced set of approximate association rules [11]). Let C
be the set of closed itemsets and R the set of approximate association rules in
D. The set A= {r: I ShL-1 | I, C I NI, I, € C} is a correct reduced set
for all approzimate association rules. ¥Vr' € R where minconf < confidence(r')
< 1 we have A |=1'.

Corollary 2 (Reduced set of approximate valid association rules). Let
FC be the set of frequent closed itemsets in D. The set BA = {r : I} 5 I —
L| I, c L AN, € FC} is a correct reduced set for all approzimate valid
assocition rules. Vr' € AR where confidence(r') < 1 we have BA=1r'.

4 A-Close Algorithm

In this section, we present our algorithm for finding frequent closed itemsets and
their supports in a database. Section 4.1 describes its principle. In Section 4.2
to 4.5, we give the pseudo-close of the algorithm and the sub-functions it uses.
Section 4.6 provides an example and the proof of the algorithm correctness.

4.1 A-Close Principle

A closed itemset is a maximal set of items common to a set of objects. For
example, in the database D in Figure 1, the itemset BCFE is a closed itemset
since it is the maximal set of items common to the objects {2, 3,5}. BCE is called
a frequent closed itemset for minsup = 2 as support(BCE) = ||{2,3,5}|| =3 >
minsup. In a basket database, this means that 60% of customers (3 customers
on a total of 5) purchase at most the items B,C and E. The itemset BC is
not a closed itemset since it is not a maximal group of items common to some
objects: all customers purchasing the items B and C also purchase the item FE.
The closed itemset lattice of a finite relation (the database) is dually isomorphic
to the Galois lattice [4, 7], also called concept lattice [19].

Based on the closed itemset lattice properties (Section 2 and 3), using the
result of A-Close we can generate all frequent itemsets from a database D through
the two following phases:

1. Discover all frequent closed itemsets in D, i.e. itemsets that are closed and
have support greater or equal to minsup.

2. Derive all frequent itemsets from the frequent closed itemsets found in phase 1.
That is generate all subsets of the maximal frequent closed itemsets and de-
rive their support from the frequent closed itemset supports.

A different algorithm for finding frequent closed itemsets and algorithms for
deriving frequent itemsets and generating valid association rules are presented
in [15].

Using the result of A-Close, we can directly generate the reduced set of
valid association rules defined in Section 3.4 instead of determining all frequent
itemsets. The procedure is the following:

1. Discover all frequent closed itemsets in D.

2. Determine the exact valid association rule basis: determine the pseudo-closed
itemsets in D and then generate all rules v : Iy = I, — I, | I C I where I,
is a frequent closed itemset and I is a frequent pseudo-closed itemset.

3. Construct the reduced set of approximate valid association rules: generate
all rules of the form: r: I} S I, — I | I; C I, where I; and I, are frequent
closed itemsets.

In the two cases, the first phase is the most computationally intensive part.
After this phase, no more database pass is necessary and the later phases can
be solved easily in a straightforward manner. Indeed, the first phase has given
us all information needed by the next ones.

A-Close discovers the frequent closed itemsets as follows. Based on the closed
itemset properties, it determines a set of generators that will give us all frequent
closed itemsets by application of the Galois closure operator h. An itemset p is a
generator of a closed itemset c if it is one of the smallest itemsets (there can be
more than one) that will determine ¢ using the Galois closure operator: h(p) = c.
For instance, in the database D (Figure 1), BC and CE are generators of the
closed itemset BCE. The itemsets B, C' and E are not generators of BC'E since
h(C) = C and h(B) = h(E) = BE. The itemset BCE is not a generator of itself
since it includes BC' and CE: BC'E is not one of the smallest itemsets for which
closure is BCE.

The algorithm constructs the set of generators in a levelwise manner: (i+1)-
generators® are created using i-generators in G;. Then, their support is counted
and the useless generators are pruned. According to their supports and the sup-
ports of their i-subsets in (;, infrequent generators and generators that have
the same closure as one of their subsets are deleted from G;1i. In the previ-
ous example, the support of the generator BC'E is the same as the support of
generators BC and CE since they have the same closure (Property 3).

Once all frequent useful generators are found, their closures are determined,
giving us the set of all frequent closed itemsets. For reducing the cost of the
closure computation when possible, we introduce the following optimization. We
determine the first iteration of the algorithm for which a (i+1)-generator was
pruned because it had the same closure as one of its i-subsets. In all iterations
preceding the i*" one, the generators created are closed and their closure com-
putation is useless. Hence, we can limit the closure computation to generators of
size greater or equal to i. For this purpose, the level variable indicates the first
iteration for which a generator was pruned by this pruning strategy.

4.2 Discovering Frequent Closed Itemsets

As in the Apriori algorithm, items are sorted in lexicographic order. The pseudo-
code for discovering frequent closed itemsets is given in Algorithm 1. The nota-
tion is given in Table 1. In each of the iterations that construct the candidate
generators, one pass over the database is necessary in order to count the support
of the candidate generators. At the end of the algorithm, one more pass is needed
for determining the closures of generators that are not closed. If all generators
are closed, this pass is not made.

First, the algorithm determines the set G of frequent 1-generators and their
support (step 1 to 5). Then, the level variable is set to 0 (step 6). In each of
the following iterations (step 7 to 9), the AC-Generator function (Section 4.4) is
applied to the set of generators G;, determining the candidate (i+1)-generators
and their support in Gy (step 8). This process takes place until G; is empty.
Finally, closures of all generators produced are determined (step 10 to 14). Using
the level variable, we construct two sets of generators. The set G which contains
generators p for which size is less than level — 1, and so that are closed (p = h(p)).

6 A generator of size i is called an i-generator.

Set Field Contains
G; generator A generator of size i.
support Support count of the generator: support = count(generator)
G, G generator A generator of size i.
closure Closure of the generator: closure = h(generator).
support Support count of the generator and its closure:
support = count(closure) = count(generator) (Property 3).
FC closure Frequent closed itemset (closed itemset with support > minsup).
support Support count of the frequent closed itemset.

Table 1. Notation

The set G’ which contains generators for which size is at least level — 1, among
which some are not closed, and so for which closure computation is necessary.
The closures of generators in G' are determined by applying the A C-Generator
function (Section 4.4) to G’ (step 15). Then, all frequent closed itemsets have
been produced and their support is known (see Theorem 3).

Algorithm 1 A-Close algorithm

) generators in G + {l-itemsets};
2) G; < Support-Count(G1);
3) forall generators p € G1 do begin
4) if (support(p) < minsup) then delete p from G;; // Pruning infrequent
5) end
6) level «+ 0;
7) for (i < 1; G;.generator # 0; i++) do begin
8) Git+1 + AC-Generator(G;); // Creates (i+1)-generators
9) end
10) if (level > 2) then begin
11 G« U{G; | j < level-1}; // Those generators are all closed
12 forall generators p € G do begin
3 p.closure p.generator;
end

G+ U{G; | j > level-1}; // Some of those generators are not closed
G' + AC-Closure(G');

>

nswer F'C <+ {c.closure,c.support|c € G UG'};

4.3 Support-Count Function

The function takes the set G; of frequent i-generators as argument. It returns
the set G; with, for each generator p € G, its support count: support(p) = ||{o €
O | p C f({o})|l. The pseudo-code of the function is given in Algorithm 2.

Algorithm 2 Support-Count function

1) forall objects 0 € O do begin

) G, <+ Subset(G;.generator, f({o})); // Generators that are subsets of f({o})
) forall generators p € G, do begin
)

)

)

p.support+-+;
end

2
3
4
5
6

end

The Subset function quickly determines which generators are contained in an
object”, i.e. generators that are subsets of f({o}). For this purpose, generators
are stored in a prefiz-tree structure derived from the one proposed in [14].

4.4 AC-Generator Function

The function takes the set G; of frequent i-generators as argument. Based on
Lemma 1 and 2, it returns the set G;11 of frequent (i+1)-generators. The pseudo-
code of the function is given in Algorithm 3.

Lemma 1. Let Iy, I> be two itemsets. We have:
h(I UIy) = h(h(I1) Uh(l2))

Proof. Let I; and I be two itemsets. According to the extension property of
the Galois closure operators:
I - h(Il) and I - h(IQ) — L1 UL - h([l) U h(IQ)

= h([; Uly) C h(h(I;) Uh(l2)) (1)

ObViOUSly, I1 g I1 U I2 and I2 g Il U I2. So h(Il) g h(Il U I2) and h(IQ) g
h(I;Ul). According to the idempotency property of the Galois closure operators:

h(h(I;)Uh(I3)) C h(h(IUlz)) = h(h(I1)Uh(I2)) C h([;Ul) (2)
From (1) and (2), we conclude that h(I; U Iz) = h(h(l1) U h(I3)).

Lemma 2. Let I} be an itemset and I, a subset of I, where support(l,) =
support(lz). Then we have h(Iy) = h(Il) and VI3 CZ, h(I; U I3) = h(Iy U I3).

Proof. Let I, I be two itemsets where Iy C I; and support(I1) = support(l).
Then, we have that ||g(I1)|| = ||g(I2)]] and we deduce that g(I;) = g(I). From
this, we conclude f(g(I1)) = f(g9(l2)) = h(l;) = h(l>). Let I3 C Z be an
itemset. Then according to Lemma 1:

h(Iy U Is) = h(h(I) U h(I3)) = h(h(I2) U h(I3)) = h(I; U I5)

7 We say that an itemset I is contained in object o if o is related to all items s € I.

Corollary 3. Let I be an i-generator and S = {s1,82,...,5;} a set of (i —1)-
subsets of I where |J,cgs = 1. If 3s € S such as support(s) = support(I), then
h(I) = h(s).

Proof. Derived from Lemma 2.

The AC-Generator function works as follows. We first apply the combinato-
rial phase of Apriori-Gen [2] to the set of generators GG; in order to obtain a set
of candidate (i+1)-generators: two generators of size 7 in G; with the same first
i — 1 items are joined, producing a new potential generator of size i + 1 (step 1
to 4). Then, the potential generators produced that will lead to useless com-
putations (infrequent closed itemsets) or redundancies (frequent closed itemsets
already produced) are pruned from G,y as follows.

First, like in Apriori-Gen, G4 is pruned by removing every candidate (i+1)-
generator ¢ such that some i-subset of ¢ is not in G; (step 8 and 9). Using this
strategy, we prune two kinds of itemsets: first, all supersets of infrequent gener-
ators (that are also infrequent according to Property 2); second, all generators
that have the same support as one of their subset and therefore have the same
closure (see Theorem 3). Let’s take an example. Suppose that the set of frequent
closed itemsets G5 contains the generators AB, AC. The AC-Generator function
will create ABC = AB U AC as a new potential generator in GG3 and the first
pruning will remove ABC since BC ¢ Gs.

Next, the supports of the remaining candidate generators in G;11 are de-
termined and, based on Property 2, those with support less than minsup are
deleted from G;41 (step 7).

The third pruning strategy works as follows. For each candidate generator
¢ in Giy1, we test if the support of one of its i-subsets s is equal to the sup-
port of ¢. In that case, the closure of ¢ will be equal to the closure of s (see
Corollary 3), so we remove ¢ from G;y; (step 10 to 13). Let’s give another
example. Suppose that the final set of generators G5 contains frequent gen-
erators AB, AC, BC and their respective supports 3,2,3. The AC-Generator
function will create ABC' = AB U AC as a new potential generator in G3
and suppose it determines its support is 2. The third prune step will remove
ABC from G35 since support(ABC) = support(AC). Indeed, we deduce that
closure(ABC) = closure(AC) and the computation of the closure of ABC is use-
less. For the optimization of the generator closure computation in Algorithm 1,
we determine the iteration at which the second prune suppressed a generator
(variable level).

4.5 AC-Closure Function

The AC-Closure function takes the set of frequent generators G, for which clo-
sures must be determined, as argument. It updates G with, for each generator
p € G, the closed itemset p.closure obtained by applying the closure operator
h to p. Algorithm 4 gives the pseudo-code of the function. The method used to
compute closures is based on Proposition 1.

Algorithm 3 AC-Generator function
1

) insert into Gii1

) select p.itemi, p.itemo, ..., p.item;, g.item;

) from G; p, G; q

) where p.item; = g.itemy, ..., p.item;_1 = g.item;_1, p.item; < ¢.item;;
) forall candidate generators ¢ € G;+1 do begin
) forall i-subsets s of ¢ do begin

) if (s ¢ G;) then delete ¢ from G;1;

)

)

0

1

2

D O W N

N

end
end
) Gi+1 < Support-Count(G;+1);
) forall candidate generators ¢ € Gi+1 do begin
) if (support(c) < minsup) then delete ¢ from G;;1; // Pruning infrequent

=== © 0

3) else do begin

14) forall i-subsets s of ¢ do begin
15) if (support(s) = support(c)) then begin
16) delete ¢ from Gi41;
17) if (level = 0) then level < i; // Iteration number of the first prune
18) endif
29) end
20) end
21) end

22) Answer + J {c € Gi11};

Proposition 1. The closed itemset h(I) corresponding to the closure by h of
the itemset I is the intersection of all objects in the database that contain I:

= ({f{o}) | TC f({o})}

0€O

Proof. We define H = [, g f({o}) where S = {o€ O | I C f({o})}. We have
WI) = F(9(D)) = Noegry F{0}) = Noes f({o}) where S" = {o € O o€ g(I)}.
Let’s show that S’ = S:

IC f({o}) =o€ g(I)
o€ g(I) <= 1C f(9(I)) C f({o})

We conclude that S = S’, thus h(I) = H.

Using Proposition 1, only one database pass is necessary to compute the closures
of the generators. The function works as follows. For each object o in D, the
set G, is created (step 2). G, contains all generators in G that are subsets
of the object itemset f({o}). Then, for each generator p in G,, the associated
closed itemset p.closure is updated (step 3 to 6). If the object o is the first one
containing the generator, p.closure is empty and the object itemset f({o}) is
assigned to it (step 4). Otherwise, the intersection between p.closure and the
object itemset gives the new p.closure (step 5). At the end, the function returns

Algorithm 4 AC-Closure function

1) forall objects 0 € O do begin

2) G, + Subset(G.generator, f({o})); // Generators that are subsets of f({o})
3) forall generators p € G, do begin

4) if (p.closure = P) then p.closure < f({o0});

5) else p.closure < p.closure N f({o});
6)

7)

8)

end
end
Answer < |J {p € G| Zp’ € G, closure(p')=closure(p)};

for each generator p in G, the closed itemset p.closure corresponding to the
intersection of all objects containing p.

4.6 Example and Correctness

Figure 2 gives the execution of A-Close for a minimum support of 2 (40%) on the
data mining context D given in Figure 1. First, the algorithm determines the set
G of 1-generators and their support (step 1 and 2), and the infrequent generator
D is deleted form G4 (step 3 to 5). Then, generators in G2 are determined by
applying the AC-Generator function to G; (step 8): the 2-generators are created
by union of generators in GGy, their support is determined and the three pruning
strategies are applied. Generators AC' and BE are pruned since support(AC) =
support(A) and support(BE) = support(B), and the level variable is set to 2.

Calling AC-Generator with G5 produces 3-generators in G3. The only gen-
erator created in GG3 is ABE since only AB and AFE have the same first item.
The three pruning strategies are applied and the second one removes ABFE form
G3 as BE ¢ G.. Then, G5 is empty and the iterative construction of sets Gj;
terminates (the loop in step 7 to 9 stops).

The sets G and G’ are constructed using the level variable (step 10 and 11): G
is empty and G’ contains generators from GG; and G5. The closure function AC-
Closure is applied to G’ and the closures of all generators in G' are determined
(step 15). Finally, duplicates closures are removed from G’ by AC-Closure and
the result is returned to the set F'C' which therefore contains AC,BE,C,ABCE
and BCE, that are all frequent closed itemsets in D.

Lemma 3. For p C T such as ||p|| > 1, if p ¢ G|p|| and support(p) > minsup

then 3s1,s2 C Z, s1 C s2 C p and ||s1]| = ||s2]| — 1 such as h(s1) = h(s2) and
S1 € G||s1||-
Proof. We show this using a recurrence. For ||p|| = 2, we have p = s, and

Jds; € Gy | s1 C s2 and support(s;) = support(s2) => h(s1) = h(s2) (Lemma 3
is obvious). Then, supposing that Lemma 3 is true for ||p|| = i, let’s show that
it is true for ||p|| =i+ 1. Let p C 7 | [|p|| = i + 1 and p & G- There are two
possible cases:

(D) I Cpl|lIpll=iandp' &Gy

(2) Ip' Cp | IPl =i and p' € G|,y and support(p) = support(p') => h(p) =

G

G1
Gen;rator Support Pruning |Generator|Support
EB% i infrequent {A} 3
Support-Count {ct 4 generators {B} 4
. (D} 1 — {C} 4
(E} 4 {E} 4
G>
Generator|Support G>
{AB} 2 Generator|Support
{AC} 3 Pruning {AB} 2
AC-Generator | {AE} 2 — {AE} 2
SN {BC} 3 {BC} 3
{BE} 4 {CE} 3
{CE} 3
GI
Generator| Closure |Support Answer : FC
Egi }gg}% i Closure [Support
AC-Closure {C} {C} 4 Pruning }gg}}: Z
— {E} {BE} 4 —) 4
{AB} |{ABCE} 2 (ABCE} 5
{AE} |{ABCE} 2 (BCE} 3
{BC} | {BCE} 3
{CE} | {BCE} 3

Fig. 2. A-Close frequent closed itemset discovery for minsup = 2 (40%)

h(p') (Lemma 2)
If (1) then according to the recurrence hypothesis, 3s; C so C p' C p such as
h(s1) = h(s2) and s1 € G|, |- If (2) then we identify s; to p’ and sz to p.

Theorem 3. The A-Close algorithm generates all frequent closed itemsets.

Proof. Using a recurrence, we show that Vp C 7 | support(p) > minsup we have
h(p) € FC. We first demonstrate the property for the 1-itemsets: Vp C 7 where
llpl] = 1, if support(p) > minsup then p € G; = h(p) € FC. Let’s suppose
that ¥p C 7 such as ||p]| = i we have h(p) € FC. We then demonstrate that
Vp C T where ||p|| = i + 1 we have h(p) € FC. If p € G| then h(p) € FC.
Else, if p ¢ G)p| and according to Lemma 3, we have: 3s; C s3 C p | 81 €
G)js,|| and h(s1) = h(s2). Now h(p) = h(sx Up — s2) = h(s1 Up — s2) and
[|s1 Up — s2|| = 4, therefore in conformity with the recurrence hypothesis we
conclude that h(s; Up — s2) € FC and so h(p) € FC.

5 Experimental Results

We implemented the Apriori and A-Close algorithms in C++, both using the
same prefix-tree structure that improves Apriori efficiency. Experiments were
realized on a 43P240 bi-processor IBM Power-PC running AIX 4.1.5 with a CPU
clock rate of 166 MHz, 1GB of main memory and a 9GB disk. Each execution
uses only one processor (the application was single-threaded) and was allowed a
maximum of 128MB.

Test Data We used two kinds of datasets: synthetic data, that simulate market
basket data, and census data, that are typical statistical data. The synthetic
datasets were generated using the program described in [2]. The census data were
extracted from the Kansas 1990 PUMS file (Public Use Microdata Samples),
in the same way as [5] for the PUMS file of Washington (unavailable through
Internet at the time of the experiments). Unlike in [5] though, we did not put an
upper bound on the support, as this distorts each algorithm results in different
ways. We therefore took smaller datasets containing the first 10,000 persons.

Parameter T10I4D100K|T20I6D100K|C20D10K|C73D10K
Average size of the objects 10 20 20 73
Total number of items 1000 1000 386 2178
Number of objects 100K 100K 10K 10K
Average size of the maximal poten- 4 6 - -
-tially frequent itemsets

Table 2. Notation

Results on Synthetic Data Figure 3 shows the execution times of Apriori
and A-Close on the datasets T10I4D100K and T20I6D100K. We can observe
that both algorithms always give similar results except for executions with min-
sup = 0.5% and 0.33% on T20I6D100. This similitude comes from the fact that
data are weakly correlated and sparse in such datasets. Hence, the sets of gener-
ators in A-Close and frequent itemsets in Apriori are identical, and the closure
mechanism does not help in jumping iterations. In the two cases where Apriori
outperforms A-Close, there was in the 4" iteration a generator that has been
pruned because it had the same support as one of its subsets. As a consequence,
A-Close determined closures of all generators with size greater or equal than 3.

Results on Census Data Experiments were conducted on the two census
datasets using different minsup ranges to get meaningful response times and
to accommodate with the memory space limit. Results for the C20D10K and
C73D10K datasets are plotted on Figure 4 and 5 respectively. A-Close always sig-
nificantly outperforms Apriori, for execution times as well as number of database
passes. Here, contrarily to the experiments on synthetic data, the differences be-
tween execution times can be measured in minutes for C20D10K and in hours for

AClose ——)) T AClose ——
Aprior —-x-- e

2% 1.5% 1% 0.75% 05% 0.33% 2% 15% % 0.75% 05% 0.33%

1
Minimum suj pport Minimum su pport

Execution times on T10I4D100K Execution times on T20I6D100K

Fig. 3. Performance of Apriori and A-Close on synthetic data

C73D10K. It should furthermore be noted that Apriori could not be run for min-
sup lower than 3% on C20D10K and lower than 70% on C73D10K as it exceeds
the memory limit. Census datasets are typical of statistical databases: highly
correlated and dense data. Many items being extremely popular, this leads to a
huge number of frequent itemsets from which few are closed.

Scale up Properties on Census Data We finally examined how Apriori and
A-Close behave as the object size is increased in census data. The number of
objects was fixed to 10,000 and the minsup level was set to 10%. The object size
varied from 10 (281 total items) up to 24 (408 total items). Apriori could not be
run for higher object sizes. Results are shown in Figure 6. We can see here that,
the scale up properties of A-Close are far better than those of Apriori.

6 Conclusion

We presented a new algorithm, called A-Close, for discovering frequent closed
itemsets in large databases. This algorithm is based on the pruning of the closed
itemset lattice instead of the itemset lattice, which is the commonly used ap-
proach. This lattice being a sub-order of the itemset lattice, for many datasets,
the number of itemsets considered will be significantly reduced. Given the set
of frequent closed itemsets and their support, we showed that we can either de-
duce all frequent itemsets, or construct a reduced set of valid association rules
needless the search for frequent itemsets.

We realized experiments in order to compare our approach to the itemset
lattice exploration approach. We implemented A-Close and an optimized ver-
sion of Apriori using prefix-trees. The choice of Apriori leads form the fact that,
in practice, it remains one of the most general and powerful algorithms. Those
experiments showed that A-Close is very efficient for mining dense and/or cor-
related data (such as statistical data): on such datasets, the number of itemsets
considered and the number of database passes made are significantly reduced

“Time (seconds)

Time (seconds)

3000 16

A-Close ——
1500 g
g
om |- |]
u
o preo TR FrayTa—_ Yo e e 7o ErTaE
Execution times Number of database passes

Fig. 4. Performance of Apriori and A-Close on census data C20D10K

P ol el
50000 - A]
H
5
[} = L L L L L
90% 85% 80% 75% 70% 90% 85% 80% 75% 70%
Execution times Number of database passes

Fig. 5. Performance of Apriori and A-Close on census data C73D10K

4000
ACiose —— }
3500 [
3000 [

2500 -

2000 -

“Time (seconds)

1500 |

1000 |

500 -

Fig. 6. Scale-up properties of Apriori and A-Close on census data

compared to those Apriori needs. They also showed that A-Close leads to equiv-
alent performances of the two algorithms for weakly correlated data (such as
synthetic data) in which many generators are closed. This leads from the adap-
tive characteristic of A-Close that consists in determining the first iteration for
which it is necessary to compute closures of generators. Such a way, we avoid
A-Close many useless closure computations.

We think these results are very interesting since dense and/or correlated data
represent an important part of all existing data, and since mining such data is
considered as very difficult. Statistical, text, biological and medical data are
examples of such correlated data. Supermarket data are weakly correlated and
quite sparse, but experimental results showed that mining such data is consider-
ably less difficult than mining correlated data. In the first case, executions take
some minutes at most whereas in the second case, executions sometimes take
several hours.

Moreover, A-Close gives an efficient unsupervised classification technic: the
closed itemset lattice of an order is dually isomorphic to the Dedekind-MacNeille
completion of an order [7], which is the smallest lattice associated with an order.
The closest work is Ganter’s algorithm [9] which works only in main memory.
This feature is very interesting since unsupervised classification is another im-
portant problem in data mining [6] and in machine learning.

References

1. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of
items in large databases. Proceedings of the ACM SIGMOD Int’l Conference on
Management of Data, pages 207-216, May 1993.

2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. Proceed-
ings of the 20th Int’l Conference on Very Large Data Bases, pages 478-499, June
1994. Expanded version in IBM Research Report RJ9839.

3. R. J. Bayardo. Efficiently mining long patterns from databases. Proceedings of the
ACM SIGMOD Int’l Conference on Management of Data, pages 85-93, June 1998.

4. G. Birkhoff. Lattices theory. In Coll. Pub. XXV, volume 25. American Mathemat-
ical Society, 1967. Third edition.

5. S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and
implication rules for market basket data. Proceedings of the ACM SIGMOD Int’l
Conference on Management of Data, pages 255-264, May 1997.

6. M.-S. Chen, J. Han, and P. S. Yu. Data mining: An overview from a database
perspective. IEEE Transactions on Knowledge and Data Engineering, 8(6):866—
883, December 1996.

7. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, 1994. Fourth edition.

8. V. Duquenne and L.-L. Guigues. Famille minimale d’implication informatives
résultant d’un tableau de données binaires. Math. Sci. Hum., 24(95):5-18, 1986.

9. B. Ganter and K. Reuter. Finding all closed sets: A general approach. In Order,
pages 283-290. Kluwer Academic Publishers, 1991.

10. D. Lin and Z. M. Kedem. Pincer-search: A new algorithm for discovering the max-
imum frequent set. Proceedings of the 6th Int’l Conference on Extending Database
Technology, pages 105-119, March 1998.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

M. Luxenburger. Implications partielles dans un contexte. Math. Inf. Sci. Hum.,
29(113):35-55, 1991.

H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery, 1(3):241-258, 1997.

H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering
association rules. Proceedings of the AAAI Workshop on Knowledge Discovery in
Databases, pages 181-192, July 1994.

A. M. Mueller. Fast sequential and parallel algorithms for association rules mining:
A comparison. Technical report, Faculty of the Graduate School of The University
of Maryland, 1995.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Pruning closed itemset lattices
for association rules. Proceedings of the BDA French Conference on Advanced
Databases, October 1998. To appear.

A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining
association rules in larges databases. Proceedings of the 21th Int’l Conference on
Very Large Data Bases, pages 432—444, September 1995.

H. Toivonen. Sampling large databases for association rules. Proceedings of the
22nd Int’l Conference on Very Large Data Bases, pages 134-145, September 1996.
H. Toivonen, M. Klemettinen, P. Ronkainen, K. Hatonen, and H. Mannila. Pruning
and grouping discovered association rules. ECML-95 Workshop on Statistics, Ma-
chine Learning, and Knowledge Discovery in Databases, pages 47-52, April 1995.
R. Wille. Concept lattices and conceptual knowledge systems. Computers and
Mathematics with Applications, 23:493-515, 1992.

M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast
discovery of association rules. Proceedings of the 3rd Int’l Conference on Knowledge
Discovery in Databases, pages 283-286, August 1997.

