Independence Model estimation using Artificial Evolution

Olivier Barrière 1 Evelyne Lutton 2 Pierre-Henri Wuillemin 3
2 AVIZ - Analysis and Visualization
Inria Saclay - Ile de France
LIP6 - Laboratoire d'Informatique de Paris 6
Abstract : In this paper, we consider a Bayesian network structure estimation problem as a two step problem based on an independence model representation. We first perform an evolutionary search for an approximation of an independence model. A deterministic algorithm is then used to deduce a Bayesian network which represents the equivalence class of the independence model. This paper is a shortened version of a paper that has been published in a genetic algorithms conference [2].
Document type :
Conference papers
Complete list of metadatas

Cited literature [14 references]  Display  Hide  Download
Contributor : Evelyne Lutton <>
Submitted on : Tuesday, May 4, 2010 - 5:31:40 PM
Last modification on : Wednesday, May 15, 2019 - 3:38:42 AM
Long-term archiving on: Wednesday, November 30, 2016 - 4:51:05 PM


  • HAL Id : hal-00467586, version 1


Olivier Barrière, Evelyne Lutton, Pierre-Henri Wuillemin. Independence Model estimation using Artificial Evolution. 5èmes Journées Francophones sur les Réseaux Bayésiens (JFRB2010), May 2010, Nantes, France. ⟨hal-00467586⟩



Record views


Files downloads