
HAL Id: hal-00466144
https://hal.science/hal-00466144

Submitted on 22 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

On the wave equation associated to the Hermite and the
twisted Laplacian

Piero d’Ancona, Vittoria Pierfelice, Fulvio Ricci

To cite this version:
Piero d’Ancona, Vittoria Pierfelice, Fulvio Ricci. On the wave equation associated to the Hermite
and the twisted Laplacian. Journal of Fourier Analysis and Applications, 2010, 16 (2), pp.294-310.
�10.1007/s00041-009-9104-y�. �hal-00466144�

https://hal.science/hal-00466144
https://hal.archives-ouvertes.fr


ON THE WAVE EQUATION ASSOCIATED

TO THE HERMITE AND THE TWISTED LAPLACIAN

PIERO D’ANCONA, VITTORIA PIERFELICE, AND FULVIO RICCI

Abstract. The dispersive properties of the wave equation utt + Au = 0 are
considered, where A is either the Hermite operator −∆ + |x|2 or the twisted
Laplacian −(∇x − iy)2/2 − (∇y + ix)2/2. In both cases we prove optimal
L1 − L∞ dispersive estimates. More generally, we give some partial results
concerning the flows exp(itLν) associated to fractional powers of the twisted
Laplacian for 0 < ν < 1.

1. Introduction

The Hermite operator H = −∆ + |x|2 on R
d and the twisted Laplacian

(1.1) L = −1

2

d∑

j=1

[(
∂xj

− iyj

)2 −
(
∂yj

+ ixj

)2]
.

on R
2d have both a rich spectral theory and a basic geometric significance. Indeed,

besides their interpretation as Schrödinger operators perturbed with electromag-
netic fields, they are intimately connected with the sublaplacian on the Heisenberg
group H

d, which can be defined as the manifold C
d×R endowed with the Lie group

product

(z, t) · (w, s) =

(
z + w, t+ s+

1

2
ℑzw̄

)
.

In the coordinates (z, t) ≃ (x, y, t), the sublaplacian L can be written as

L = −∆x,y − 1

4
(|x|2 + |y|2)∂2

t −
d∑

j=1

(xj∂yj
− yj∂xj

)∂t.

Then the twisted Laplacian L is related to L via

Lf(z) = e−itL(eitf(z))

on functions f(z) independent of the variable t. On the other hand, if we consider
the operator valued group Fourier transform

f̂(λ) =

∫
f(z, t)πλ(z, t)dzdt, f ∈ L1(Hd)

where πλ(z, t) is for each (z, t) ∈ H
d the operator on L2(Rd) defined by

πλ(z, t)φ(ξ) = eiλ(t+x·ξ+x·y/2)φ(ξ + y),

then the Hermite operator satisfies the identity

L̂f(1) = f̂(1)H.

Here and in the following we refer to the standard literature on the subject (see
e.g. [19])
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From the spectral point of view, H and L are positive definite, selfadjoint oper-
ators on L2(Rd) and L2(R2d) with natural domains D(H) = {f ∈ L2 : Hf ∈ L2},
D(L) = {f ∈ L2 : Lf ∈ L2}. The spectrum is discrete and with strictly positive
bottom; indeed,

σ(H) = σ(L) = {d+ 2k : k = 0, 1, 2, . . . }.
The corresponding eigenspaces for H are finite dimensional and are spanned by the
basis of Hermite functions

hα = (−1)|α|e
|x|2

2 ∂α
x e

−|x|2 , Hhα = (n+ 2|α|)hα.

On the other hand the eigenspaces are infinite dimensional for L, with basis

fα,β = (−1)|α|+|β|e
|z|2

4 ∂α
z ∂

β
z̄ e

|z|2

2 , Lfα,β = (d+ 2|α|)fα,β ,

where we have used the complex notations

z = x+ iy, z̄ = x− iy, ∂z =
1

2
(∇x − i∇y) ∂z̄ =

1

2
(∇x + i∇y).

In both cases we shall denote with Pk the orthogonal projection on the eigespace
of d + 2k. We recall that optimal Lp estimates for the operators Pk have been
obtained in [9] and [8].

Moreover, in the case of the twisted Laplacian, the projections Pk admit a simple
representation using the normalized Laguerre functions

ϕk(x, y) = e−
|x|2+|y|2

2 L
(d−1)
k

( |x|2 + |y|2
2

)

(i.e. ‖ϕk‖L∞ ≤ ϕk(0) = 1) and the twisted convolution operation

ϕ× f =

∫

R2d

ei(xy′−x′y)ϕ(x− x′, y − y′)f(x′, y′)dx′dy′.

Notice that this normalization is not the standard one, but for simplicity we shall
keep the standard notation Ld

k for Laguerre polynomials. With these notations we
have

Pkf =

(
k + d− 1

d− 1

)
ϕk × f.

The simplest and most important flows eitHf , eitLf correspond to solutions of
the Schrödinger equations

(1.2) iut +Hu = 0, iut + Lu = 0

with initial value f . In this case the dispersive properties can be read from the
explicit representations

(1.3) eitHf(x) =
C

(sin 2t)d/2

∫
e
2
(|x|2+|x′|2) cos(2t)−2xx′

i sin(2t) f(x′)dx′

which is a version of Mehler’s formula, and

(1.4) eitLf(x, y) =
C

(sin 2t)d

∫
e
2
|x−x′|2+|y−y′|2

i tan(2t) ei(xy′−x′y)f(x′, y′)dx′dy′.

which can be derived by continuation of the corresponding heat kernel (see [11]).
Then for small times we have the standard L1 − L∞ dispersive estimates

(1.5) |eitHf | . (sin 2t)−d/2‖f‖L1 , |eitLf | . (sin 2t)−d‖f‖L1 .

Notice that both flows are time-periodic, with first refocusing at t = π/2. Thus
no global in time dispersive properties can be expected; on the other hand, for
small times |t| ≤ T (T < π/2) the behaviour is identical to the free Schrödinger
equation. As a consequence, the usual Ginibre-Velo-Keel-Tao argument applies and
local Strichartz estimates hold for the full range of indices ([5], [7]).
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We also mention that a parametrix for the Schrödinger equations

iut − (∇− iA(t, x))2u+ V (t, x)u = 0

perturbed with subquadratic electric potentials V (t, x) and sublinear magnetic po-
tentials A(t, x), was constructed by K.Yajima ([21]). The above results can be
obtained as special cases of this construction and thus hold in much greater gener-
ality.

The next natural flows to study are eit
√

Hf , eit
√

Lf , which describe solutions of
the wave equations

(1.6) utt +Hu = 0, utt + Lu = 0

via the usual identities (A = H or L)

(1.7) cos(t
√
A) =

eit
√

A + e−it
√

A

2
,

sin(t
√
A)√

A
=
eit

√
A − e−it

√
A

2i
√
A

.

This case has received quite a deal of attention. Most works concern extensions of
the well known sharp Lp bound for the euclidean wave equation

(1.8) (1 − ∆)−α/2eit
√
−∆ : Lp(Rd) → Lp(Rd)

which is true provided

α ≥ (d− 1)
∣∣p−1 − 2−1

∣∣ , 1 < p <∞

and also from the real Hardy space H1 into L1. The bound (1.8) was proved by
Peral [15] and Miyachi [10] and extended in various directions, including general
hyperbolic equations and FIOs [1], [16]; the wave equation associated to the Hermite
operator [18]; and the case of the H

d sublaplacian [13], [12]. Tie and Wong [20]
proved the finite speed of propagation in the case of the twisted Laplacian.

Our first goal here is to investigate the local dispersive properties of the flows

eit
√

Hf and eit
√

Lf . For the standard wave equation on R
d in the euclidean setting,

the optimal dispersive estimate is most easily expressed in the frequency truncated
form

(1.9)
∣∣∣φ0(

√
−∆/λ)eit

√
−∆f

∣∣∣ . λ
d+1

2 · |t|− d−1

2 ‖f‖L1

where φ0(r) is a fixed cutoff function with support in [1/2, 2], and a constant inde-
pendent of the frequency λ > 0. An equivalent global form of the same estimate
requires the introduction of Besov spaces: assuming that φ0 generates a partition
of unity φj(r) = φ0(2

−jr), j ∈ Z, with
∑

j∈Z

φj(|x|) = 1 for x 6= 0.

and defining the homogeneous Besov norm Ḃs
1,1 as

(1.10) ‖f‖Ḃs
1,1

=
∑

j∈Z

2js‖φj(
√
−∆)f‖L1 ,

we can sum estimates (1.9) over all dyadic frequencies obtaining the optimal dis-
persive estimate for the wave equation on R

d

(1.11) |eit
√
−∆f | . |t|− d−1

2 ‖f‖
Ḃ

d+1
2

1,1

(see e.g. [17]).
In our first result we extend the above estimates to the wave flows for H and L:
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Theorem 1.1. Let 0 < T < π/2. Let φ0(r) be smooth and supported in [1/2, 2],
and denote by A either the Hermite operator H on R

d or the twisted Laplacian L
on R

2d. Then the wave flow for A satisfies the following dispersive estimate (where
n = d for H and n = 2d for L):

(1.12)
∣∣∣φ0(λ

−1
√
A)eit

√
Af
∣∣∣ . λ

n+1

2 · |t|−n−1

2 ‖f‖L1 , λ > 0, |t| ≤ T.

Remark 1.1. The proof of Theorem 1.1 is based on a subordination formula intro-
duced by Müller and Seeger [12]; this method is quite solid and can be adapted to
much more general situations, including e.g. potential perturbations with quadratic
growth for the electric part and linear growth for the magnetic part. In particu-
lar, we can prove a local in time, optimal dispersive estimate (i.e., identical to the
case of the free wave equation) for any wave equation perturbed with a constant
magnetic field

utt −
∑

j

(∂j − iajxj)
2u = 0.

We omit the straightforward details.

Remark 1.2. Summing (1.12) over dyadic frequencies, we obtain an estimate like
(1.11) with a distorted Besov norm, based on the operators H or L instead of −∆:

‖f‖Bs
1,1(A) =

∑

j∈N

2js‖φj(
√
A)f‖L1 , A = H or L.

Notice that here the possible frequencies are bounded from below since the spectrum
is strictly positive and discrete, hence we can drop from the sum the terms with
dyadic 2j for j ≤ 0 (assuming in addition that φ0(r) = 1 on [1, 3/2]). Thus in par-
ticular the distorted homogeneous Besov norm coincides with the non-homogeneous
one Bs

1,1(A). For a thorough study of the spaces Bs
p,q(H), Bs

p,q(L) we refer to [14],
[3], [2]. A natural question is to compare such distorted norms with the standard
ones (1.10); we shall not pursue this problem here.

As mentioned above, the proof of Theorem 1.1 is based on a reduction to the
corresponding Schrödinger flow. This gives a very precise result for small times,
but has an important drawback too. Indeed, the Schrödinger flow is time periodic,
and in particular the L1 − L∞ dispersive estimate fails at t = π/2, the best bound
being of course the Sobolev embedding

‖φ0(λ
−1

√
L) exp(iπL/2)f‖L∞ ≡ ‖φ0(λ

−1
√
L)f‖L∞ . λ2d‖f‖L1

(more properly, this should be called a Berstein type inequality; see Lemma 2.1).
As a consequence our method breaks down at t = π/2 and a condition like |t| ≤
T < π/2 is necessary in the statement.

On the other hand, it is clear that the wave flow is not periodic but quasiperiodic
in a suitable sense, which can be made precise at least for initial data containing
a finite number of frequencies. Thus we expect that no refocusing effect should
occur for t 6= 0. In the following we restrict our attention to the case of the twisted
Laplacian L, and we consider a general fractional flow

exp(itLν)f, 0 < ν < 1,

which represents the solution to the Cauchy problem

iut + Lνu = 0, u(0, x) = f(x).

For ν = 1/2 we are back to the wave flow. The main advantage here is that the
flow can be represented quite explicitly via an exponential sum like

(1.13) eitLν

L−αf =
∑

k≥0

eit(d+2k)ν

(d+ 2k)α

(
k + d− 1

d− 1

)
ϕk × f
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with the notations introduced above. Our second result is the following:

Theorem 1.2. Let d ≥ 2. For all 0 < ν < 1, d > α > d− min{ν, 1 − ν}, we have
the estimate

(1.14) ‖eitLν

L−αf‖L∞(R2d) ≤ C
(
|t|α−d

ν + |t|
)
‖f‖L1(R2d) for t 6= 0.

In order to better appreciate the result, we specialize it to the case ν = 1/2. If
we apply estimate (1.14) to a solution truncated at frequency λ, using again the
Bernstein type inequalities of Lemma 2.1, we obtain

(1.15)
∣∣∣φ0(λ

−1
√
L)eit

√
Lf
∣∣∣ . λ2α ·

(
|t|2(α−d) + |t|

)
‖f‖L1 , d > α > d− 1/2.

Compare this with the dispersive estimate of Theorem 1.1, which can be written
(|t| ≤ T < π/2, C = C(T ))

∣∣∣φ0(λ
−1

√
L)eit

√
Lf
∣∣∣ . λ2α · |t|2(α−d)‖f‖L1 , α =

d

2
+

1

4

and with the Sobolev embedding (any t)
∣∣∣φ0(λ

−1
√
L)eit

√
Lf
∣∣∣ . λ2α · |t|2(α−d)‖f‖L1 , α = d.

Thus for small times (1.15) is an interpolation between the optimal dispersive es-
timate and Sobolev embedding. However, (1.15) holds for all t 6= 0, and gives an
improvement over Sobolev embedding which can be regarded as a measure of the
non-refocusing of the wave flow for large times.

2. Proof of Theorem 1.1

A useful tool to handle frequency truncations are Lp Bernstein inequalities, which
can be extended to the present setting:

Lemma 2.1 (Bernstein type inequalities). Let φ0(x) a radial cutoff supported in
1/2 ≤ |x| ≤ 2. Then the following estimate holds, for any f ∈ Lp(Rd), α ∈ R and
λ > 0:

(2.1) ‖φ0(λ
−1

√
H)Hαf‖Lq . λ2α+ d

p− d
q ‖f‖Lp , 1 ≤ p ≤ q ≤ ∞.

An analogous estimate holds for the twisted Laplacian L: for any f ∈ Lp(R2d),
α ∈ R and λ > 0:

(2.2) ‖φ0(λ
−1

√
L)Lαf‖Lq . λ2α+ 2d

p − 2d
q ‖f‖Lp , 1 ≤ p ≤ q ≤ ∞.

Proof. This kind of estimate is quite standard; we sketch a proof for the sake of
completeness. It is well known ([3], [14]) that the integral kernel of φ0(λ

−1
√
H)

satisfies for all N ≥ 0

|φ0(λ
−1

√
H)(x, y)| ≤ CN

λn

(1 + λ|x− y|)N

with a constant independent of λ; a similar estimate is satisfied by φ0(λ
−1

√
L).

Actually this holds for any operator whose heat kernel satisfies a gaussian bound

|e−tH(x, y)| ≤ c1t
−d/2e−c|x−y|2/t, c > 0

as proved in [14] (Proposition 5.1). By scaling, this extends to the slightly more
general estimate

|Hαφ0(λ
−1

√
H)(x, y)| ≤ CN

λd+2α

(1 + λ|x− y|)N
.

Then by Young’s inequality we deduce immediately (2.1), and in a similar way we
obtain (2.2). �
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We shall now prove Theorem 1.1 for the operator L; the proof for H is identical.
We distinguish two cases: the high frequency case λt ≥ 1, and the low frequency
case λt ≤ 1.

For the high frequency case, we shall use the following subordination formula
from [12]:

Proposition 2.2. Let φ0(s) ∈ C∞
c (R) be supported in [1/2, 2]. There exist a symbol

a0 ∈ C∞(R × R) with supp a(·, σ) ⊆ [1/16, 4] for every σ ∈ R, satisfying

|∂j
s∂

k
σa0(s, σ)| ≤ Cj,k(1 + |s|)−k ∀j, k ≥ 0

and a Schwartz class function ρ(s, σ) ∈ S(R2) such that

(2.3) φ0

(√
x

λ

)
eit

√
x = ρ

(
tx

λ
, λt

)
+ φ0

(√
x

λ

)√
λt

∫
a0(s, λt)e

i λt
4s ei ts

λ xds,

for every λ, t, x ≥ 0 with λt ≥ 1.

For the convenience of the reader, we give an independent proof of the formula
in the appendix at the end of the paper.

By spectral calculus for the nonnegative selfadjoint operator L on L2(R2d), using

Proposition 2.2 we can represent the operator φ0(λ
−1

√
L)eit

√
L as a sum

φ0(λ
−1

√
L)eit

√
L = Aλ +Bλ

where

Aλ = ρ
(
λ−1tL, λt

)

and

Bλ = φ0(λ
−1

√
L)

√
λt

∫
a0(s, λt)e

i λt
4s ei ts

λ Lds.

For all real N ≥ 0 we have

|ρ
(
λ−1tx, λt

)
| ≤ CN 〈λt〉−N ∀λ, x, t > 0

since ρ is Schwartz class. Notice from expression (2.3) that also ρ is supported in
λ/2 ≤ √

x ≤ 2λ, hence we have

Aλ ≡ ψ0

(√
L

λ

)
Aλ

where ψ0 is supported in [1/4, 4] and is equal to 1 on the support of φ0. Then using
the Bernstein inequalities (2.1) we can write

‖Aλf‖L∞ .λd‖Aλf‖L2 . λd 〈λt〉−N ‖ψ0(λ
−1

√
L)f‖L2

.λ1/2t−d+1/2‖ψ0(λ
−1

√
L)f‖L2

where we have chosen N = d− 1/2. Hence, again by (2.1),

(2.4) ‖Aλf‖L∞ . λd+1/2t−d+1/2‖f‖L1 .

We now estimate Bλ. As recalled in the Introduction, the Schrödinger flow
associated to L satisfies the dispersive estimate

|eitLf | . t−d‖f‖L1

for 0 < t < T < π/2. This gives immediately

‖Bλf‖L∞ .
√
λt

∫
|a0(s, λt)|(tsλ−1)−d‖f‖L1ds

=λd+1/2t−d+1/2‖f‖L1 ·
∫

|a0(s, λt)|s−dds
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Summing up, we have proved the estimate

(2.5) ‖φ0(λ
−1

√
L)eit

√
Lf‖L∞ . λd+1/2t−d+1/2‖f‖L1

for all λ, t > 0 such that λt ≥ 1.
It remains to estimate the case λt ≤ 1. This is especially easy using (2.1) since

we can write

‖ψ0(λ
−1

√
L)eit

√
Lf‖L∞ . λ2d‖ψ0(λ

−1
√
L)f‖L1

but now λ ≤ t−1 and hence

λ2d = λd+1/2λd−1/2 ≤ λd+1/2t−d+1/2

which gives the same estimate as before.

3. A Dirichlet series estimate

The proof of Theorem 1.2 is based on a direct estimate of the exponential sum
(1.13). The crucial tool is the following estimate (3.2) for a series of Dirichlet
type. This kind of exponential sum appeared earlier in the literature (e.g. they are
briefly mentioned in [6]) but only questions of convergence have been addressed;
the pointwise estimate (3.2) seems new.

Lemma 3.1. Let M,A,B, ν be nonnegative real numbers with

(3.1) B > min{ν, 1 − ν}.
Then the following estimate holds for t > 0, ǫ ≥ 0:

(3.2)

∣∣∣∣∣
∑

k>M

e(it−ǫ)(k+A)ν

(k +A)B

∣∣∣∣∣ .
1

(M +A)B

[
1

t(M +A)ν−1
+ 1 + t(M +A)ν

]

with a constant independent of M,A, t, ǫ.

Proof. Denote by k0 the minimal integer > M and write the sum to be estimated
as follows:

∑

k>M

e(it−ǫ)(k+A)ν

(k +A)B
= I − II − III

where

I =

∫ ∞

M

e(it−ǫ)(x+A)ν

(x+A)B
dx, II =

∫ M

k0

e(it−ǫ)(x+A)ν

(x+A)B
dx,

III =
∑

k>M

(∫ k+1

k

e(it−ǫ)(x+A)ν

(x+A)B
dx− e(it−ǫ)(k+A)ν

(k +A)B

)
.

In order to estimate the first term I, we perform the change of variable (x+A)ν =
st−1 to obtain

|I| = ν−1t
B−1

ν

∣∣∣∣∣

∫ +∞

t(M+A)ν

eise−ǫst−1

s
1−B

ν −1ds

∣∣∣∣∣ ≤ Ct−1(M +A)1−B−ν

where we used the fact that, for any σ > 0,
∣∣∣∣
∫ +∞

Z

eis−Kss−σds

∣∣∣∣ ≤ CZ−σ

uniformly in Z > 0 and K ≥ 0 (write eis−Ks = (i−K)−1∂s(e
is−Ks) and integrate

by parts). This gives the constraint B > 1 − ν.
For the second term II, since 0 ≤ k0 −M ≤ 1, we have simply

|II| ≤
∫ k0

M

dx

(x+A)B
≤ 1

(M +A)B
.
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Finally, we rewrite the last term as follows

III =
∑

k>M

∫ k+1

k

dx

∫ x

k

dy
d

dy

(
e(it−ǫ)(y+A)ν

(y +A)B

)

=
∑

k>M

∫ k+1

k

(k + 1 − y)
d

dy

(
e(it−ǫ)(y+A)ν

(y +A)B

)
dy,

and noticing that |k + 1 − y| ≤ 1 we have

|III| ≤
∑

k>M

∫ k+1

k

|(it− ǫ)ν(y +A)ν −B|
(y +A)B+1

e−ǫ(y+A)ν

dy

which gives

|III| ≤
∫ ∞

M

tν

(y +A)B+1−ν
dy +

∫ ∞

M

B

(y +A)B+1
dy +

∫ ∞

M

ǫ(y +A)νe−ǫ(y+A)ν

(y +A)B+1
dy.

Notice that re−r ≤ 1, hence we can write

|III| ≤ Ct

(M +A)B−ν
+

C

(M +A)B

provided B − ν > 0 and B > 0. This concludes the proof of the lemma. �

We can now prove Theorem 1.2. Given the series expansion

(3.3) eitLν

L−αf =
∑

k≥0

eit(d+2k)ν

(d+ 2k)α

(
k + d− 1

d− 1

)
ϕk × f

we have to prove the estimate for all t 6= 0

(3.4) ‖eitLν

L−αf‖L∞(R2d) .
(
|t|α−d

ν + |t|
)
‖f‖L1(R2d),

provided d ≥ 2, d > α > d− min{ν, 1 − ν}, 0 < ν < 1, with a constant depending
only on α, ν, d.

We can assume t > 0. By the Young inequality for twisted convolutions we see
that the estimate is equivalent to

∣∣∣∣∣∣

∑

k≥0

eit(d+2k)ν

(d+ 2k)α

(
k + d− 1

d− 1

)
ϕk

∣∣∣∣∣∣
. t

α−d
ν + t

for t > 0. We split the sum in two parts I + II, with

I =
∑

2k+d≤t−1/ν

and II =
∑

2k+d>t−1/ν

.

In part I the oscillations of the exponential are ineffective; recalling that |ϕk| ≤ 1,
it is sufficient to write

|I| ≤
∑

2k+d≤t−1/ν

1

(d+ 2k)α

(
k + d− 1

d− 1

)
.

Noticing that
(
k + d− 1

d− 1

)
=

d−1∑

j=0

cj(d+ 2k)j

for suitable integers cj , we are reduced to estimate the elementary sums

∑

2k+d≤t−1/ν

1

(d+ 2k)α−j
, 0 ≤ j ≤ d− 1,
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which are all dominated by the worst case j = d− 1

∑

2k+d≤t−1/ν

1

(d+ 2k)α−d+1

Under the condition α < d, this is a divergent series and its partials can be easily
estimated; we obtain

|I| . t
α−d

ν .

Notice that for large values of t the sum is empty.
Consider now the terms in II. We shall use the following summation by parts

formula to rearrange the series:

N∑

n=n0

anbn =

N∑

n=n0+1

(an − an−1)

N∑

k=n

bk + an0

N∑

k=n0

bk.

Thus, denoting by k0 the minimal integer k such that 2k+ d > t−1/ν and choosing
(for a fixed z)

ak =

(
k + d− 1

d− 1

)
ϕk(z) and bk =

eit(d+2k)ν

(d+ 2k)α
,

we obtain

II = II1 + II2

with

II1 =
∑

2k+d>t−1/ν+2

[(
k + d− 1

d− 1

)
ϕk −

(
k + d− 2

d− 1

)
ϕk−1

] ∞∑

j=k

eit(d+2j)ν

(d+ 2j)α
,

and

II2 =

(
k0 + d− 1

d− 1

)
ϕk0

∑

2k+d>t−1/ν

eit(d+2k)ν

(d+ 2k)α
.

We estimate the second part II2 as follows

|II2| . (d+ 2k0)
d−1

∣∣∣∣∣∣

∑

2k+d>t−1/ν

eit(d+2k)ν

(d+ 2k)α

∣∣∣∣∣∣

and applying directly Lemma 3.1 we obtain

|II2| . (d+ 2k0)
d−α

[
1

t(d+ 2k0)ν−1
+ 1 + t(d+ 2k0)

ν

]
.

provided α > 0, α > ν, α > 1 − ν. Since by definition d + 2k0 ≃ t−1/ν + 1, by
separating the cases t ≤ 1 and t ≥ 1 we conclude easily that

|II2| . t
α−d

ν + t.

We then rewrite II1 using the recurrence formula for Laguerre polynomials (see
e.g. Section 10.12 of [4])

(
k + d− 1

d− 1

)
L

(d−1)
k −

(
k + d− 2

d− 2

)
L

(d−1)
k−1 =

(
k + d− 2

d− 2

)
L

(d−2)
k ;

recall that in our notation ϕk differs from L
(d−1)
k only by a gaussian factor. This

gives ∣∣∣∣
(
k + d− 1

d− 1

)
ϕk −

(
k + d− 2

d− 2

)
ϕk−1

∣∣∣∣ . (d+ 2k)d−2.
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We plug the inequality into II1 to obtain

|II1| .
∑

2k+d>t−1/ν

(d+ 2k)d−2

∣∣∣∣∣∣

∞∑

j=k

eit(d+2j)ν

(d+ 2j)α

∣∣∣∣∣∣
.

Again by Lemma 3.1 we derive that

|II1| .
∑

2k+d>t−1/ν

(d+ 2k)d−2 1

(d+ 2k)α

[
1

t(d+ 2k)ν−1
+ 1 + t(d+ 2k)ν

]
.

If d−α− ν < 0, d− 1−α < 0, d+ ν −α− 1 < 0, we can sum the three convergent
series and we obtain as above

|II1| . (d+ 2k0)
d−α

[
1

t(d+ 2k0)ν−1
+ 1 + t(d+ 2k0)

ν

]
.

and by the same argument we deduce

|II1| . t
α−d

ν + t.

which concludes the proof of the Theorem.

Appendix A. Proof of Proposition 2.2

We begin by estimating an integral of the form

(A.1) I(p, t) =

∫ ∞

0

eit/4seipss−3/2ds, p, t > 0.

The integral is not absolutely convergent for s ∼ 0; we shall define it as the limit
for ǫ, δ → 0+ of

(A.2) Iǫ,δ(p, t) =

∫ ∞

0

eit/4s−ǫ/4seips−δss−3/2ds.

Let ψj(s), j = 1, 2, 3 be three functions in C∞(R) with

3∑

j=1

ψj = 1, suppψ1 ⊆ [3/2,∞), suppψ2 ⊆ (−∞, 1/8], suppψ3 ⊆ [1/16, 2]

and write for j = 1, 2, 3

Ij(p, t) =

∫ ∞

0

eit/4seipss−3/2ψj(s)ds

so that I = I1+I2+I3. We shall denote with Iǫ,δ = I1
ǫ,δ+I

2
ǫ,δ+I

3
ǫ,δ the corresponding

decomposition of the regularized integral Iǫ,δ.
Consider the first piece I1. The phase in the oscillating factor is ps+ t/4s with

derivative p− t/4s2; since the cutoff restricts s to [3/2,+∞[, we have

p− t

4s2
≥ p+ t

8
for p ≥ t

4
≥ 0

and this gives

p ≥ t

4
> 0 =⇒ |I1(p, t)| ≤ CN (p+ t)−N for all N

by a non-stationary phase argument. Moreover after an integration by parts we
can write

I1 = i

∫ ∞

0

eit/4seips d

ds

(
(p− 1/4s2)−1s−3/2ψ1(s)

)
ds.

Expanding the derivative shows that the new integral has a better convergence
since the various terms decay at least as s−5/2. Thus we can differentiate I1 with
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respect to p, t and repeat the non-stationary phase argument. The same holds for
higher order derivatives. We conclude that

(A.3) p ≥ t

4
> 0 =⇒ |∂α

p ∂
β
t I

1(p, t)| ≤ CN,α,β(p+ t)−N for all N,α, β.

It is elementary to check that I1
ǫ,δ satisfies the same estimate with the same con-

stants independent of ǫ, δ, and that I1
ǫ,δ → I1 as ǫ, δ → 0+.

Consider now the singular piece I2(p, t); if we formally integrate by parts as
above we can write

(A.4) I2 = −i
∫ ∞

0

eit/4seips d

ds

(
4s1/2ψ2(s)

(t− 4s2p)

)
ds.

which is now a convergent integral. We can make this argument rigorous by per-
forming a similar computation on I2

ǫ,δ and then taking the limit as ǫ, δ → 0+. This

proves both that I2
ǫ,δ converges and that its limit I2 can be equivalently written in

the form (A.4). Noticing that

t ≥ p

4
> 0 =⇒ t− 4s2p ≥ t− p

16
≥ t

2
≥ p+ t

32

since s < 1
8 in the integral, and proceeding as above, we obtain now

(A.5) t ≥ p

4
> 0 =⇒ |∂α

p ∂
β
t I2(p, t)| ≤ CN,α,β(p+ t)−N for all N,α, β.

The last term I3 can be written as

(A.6) I3(p, t) =

∫ ∞

0

eit/4seipsa(s)ds

where a(s) = s−3/2ψ3(s) is supported in [−1/16, 2].
Summing up we have proved that I(p, t) is well defined and can be decomposed

as follows

(A.7) I(p, t) = σ(p, t) +

∫ ∞

0

eit/4seipsa(s)ds, a ∈ C∞
0 , supp a ⊆ [1/16, 2]

where σ = I1 + I2 satisfies

(A.8) |∂α
p ∂

β
t σ(p, t)| ≤ CN,α,β(p+ t)−N for

1

4
≤ p

t
≤ 4.

We recall now the classical subordination formula

e−y
√

x =
y

2
√
π

∫ ∞

0

e−y2/4se−sxs−3/2ds, x, y > 0.

Changing s to sy and extending in the complex plane to y = ǫ− it, ǫ > 0 gives the
identity

(A.9) eit
√

xe−ǫ
√

x =
1

2
√
π

(ǫ− it)1/2

∫ ∞

0

eit/4seitxse−ǫ/4se−ǫxsds

with the choice

(ǫ− it)1/2 =
t

2
√
γ
− i

√
γ, γ =

(t2 + ǫ2)1/2 − ǫ

2
.

This can be expressed using the integral Iǫ,δ defined above as

eit
√

xe−ǫ
√

x =
1

2
√
π

(ǫ− it)1/2Iǫ,xǫ(xt, t).

Taking the limit ǫ→ 0+ we obtain the formula

(A.10) 2π1/2eit
√

x =
√
t · I(xt, t) =

√
t · σ(xt, t) +

√
t

∫ ∞

0

eit/4seipsa(s)ds
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with σ, a(s) as above.
Finally, let φ0 ∈ C∞

0 (R) be a cutoff with support in [1/2, 2], while φ(t) is smooth
with φ = 0 for t < 1/2 and φ = 1 for t > 1; multiplying both sides of (A.10) by
φ0(

√
x)φ(t) we get

(A.11) φ0(
√
x)φ(t)eit

√
x = ρ(xt, t) + φ0(

√
x)
√
t

∫ ∞

0

eit/4seipsa0(s, t)ds

where

(A.12) ρ(p, t) = φ0(
√
p/t)σ(p, t)φ(t)

√
t, a0(s, t) = a(s)φ(t).

It is easy to check that ρ and a0 satisfy the properties in the statement, using (A.8)
and noticing the restriction 1/4 ≤ p/t ≤ 4 imposed by φ0. A rescaling

(xt, t) →
(
xt

λ
, λt

)

concludes the proof.

References

[1] Richard Beals. Lp boundedness of Fourier integral operators. Mem. Amer. Math. Soc.,
38(264):viii+57, 1982.
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