, This implies that, for each sheet S G and sl 2 -triple S = (e, h, f ) as in §1.4, the set e + X(S G , S ) = e + X(S ) contains a semisimple element. For symmetric pairs of type AI or AII, the K-sheets are all of the

. ?-(cf, Theorems 3.2.1 and 4.1.2); thus, in these cases, any K-sheet is a Dixmier K-sheet

, In type AIII there exist K-sheets containing no semisimple element and one can characterize them in terms of the partition ? associated to the nilpotent element e ? S G ? p as follows

, In type AIII, a K-sheet is Dixmier if and only if the partition ? satisfies: ? i ? ? i+1 is odd for at most one i ?

, Corollary 1.6.4 and a study of semisimple elements in e + c. Observe that the condition for a K

, When g is of type A the only rigid nilpotent orbit is {0}. In other cases it may happen that a rigid orbit O 1 contains a non-rigid orbit O 2 in its closure (see the classification of rigid nilpotent orbits in [CM]). Observe that, since the nilpotent cone is closed, a sheet containing O 2 cannot be contained in the closure of O 1 . One gets in this way some sheets whose closure is not a union of sheets. One can ask if similar facts occur for symmetric pairs (g, k), in particular when g is of type A. Let (g, k, p) be a symmetric Lie algebra; a nilpotent K-orbit in p which is a K-sheet in p ?

, Assume that (g, k, p) is of type AIII, z(g) ? k, and recall from the proof of Proposition 4.1.3 (using Remark 1.4.8) that S K (K.e) = K.e if and only if dim c = 0. The arguments given in (2) about K-sheets can be, {0} is the only rigid nilpotent K-orbit in these cases

, Note that the previous result depends only on the partition ? and not on the ab-diagram of e. In particular, K.e is rigid if and only if each K-orbit

. Example, This orbit contains in its closure a nilpotent K-orbit O 2 with partition (3, 1, 1, 1), cf. [Oh2], but O 2 is not rigid

A. Altman and S. Kleiman, Introduction to Grothendieck Duality Theory, Lecture Notes in Math, vol.146, 1970.

S. Araki, On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ, vol.13, pp.1-34, 1962.

P. Bala and R. W. Carter, Classes of unipotent elements in simple algebraic groups, Math. Proc. Camb. Phil. Soc, vol.II, pp.1-18, 1976.

W. Borho and H. Kraft, Über Bahnen und deren Deformationen bei linear Aktionen reducktiver Gruppen, Math. Helvetici, vol.54, pp.61-104, 1979.

W. Borho, Über schichten halbeinfacher Lie-algebren, Invent. Math, vol.65, pp.283-317, 1981.

N. Bourbaki, Groupes et algèbres de Lie. Chapitres 7 et 8, 1975.

A. Broer, Decomposition varieties in semisimple Lie algebras, Can. J. Math, vol.50, issue.5, pp.929-971, 1998.

R. W. Carter, Finite Groups of Lie Type, 1989.

D. H. Collingwood and W. M. Mcgovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, 1993.

J. Dixmier, Polarisations dans les algèbres de Lie semi-simples complexes, Bull. Sc. Math, vol.99, pp.45-63, 1975.

J. Dixmier, Polarisations dans les algèbres de Lie II, vol.104, pp.145-164, 1976.

E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Trans, vol.6, issue.2, pp.111-244, 1957.

R. Goodman and N. R. Wallach, An algebraic group approach to compact symmetric spaces, Representations and Invariants of the Classical Groups, 1998.

R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, vol.52, 1977.

S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and applied mathematics, 1978.

S. Helgason, Fundamental solutions of invariant differential operators on symmetric spaces, Amer. J. Math, vol.86, pp.565-601, 1978.

S. Helgason, Some results on invariant differential operators on symmetric spaces, Amer. J. Math, vol.114, pp.789-811, 1992.

A. E. Hof, The sheets of classical Lie algebra, 2005.

B. Iversen, A fixed point formula for action of tori on algebraic varieties, Invent. Math, vol.16, pp.229-236, 1972.

P. I. Katsylo, Sections of sheets in a reductive algebraic Lie algebra, Math. USSR Izvestiya, vol.20, pp.449-458, 1983.

B. Kostant, Lie groups representations on polynomial rings, vol.85, pp.327-404, 1963.

B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math, vol.93, pp.753-809, 1971.

H. Kraft, Parametrisierung von Konjugationklassen in sl n, Math. Ann, vol.234, pp.209-220, 1978.

M. and L. Barbier, The variety of reductions for a reductive symmetric pair, 2010.

G. Lusztig and N. Spaltenstein, Induced unipotent classes, J. London Math. Soc, vol.19, issue.3, pp.41-52, 1979.

T. Ohta, The singularities of the closure of nilpotent orbits in certain symmetric pairs, Tohoku Math. J, vol.38, pp.441-468, 1986.

T. Ohta, The closure of nilpotent orbits in the classical symmetric pairs and their singularities, Tohoku Math. J, vol.43, pp.161-211, 1991.

T. Ohta, Induction of nilpotent orbits for real reductive groups and associated varieties of standard representations, Hiroshima Math. J, vol.29, pp.347-360, 1999.

D. I. Panyushev, On invariant theory of ?-groups, J. of Algebra, vol.283, pp.655-670, 2005.

D. I. Panyushev and O. Yakimova, Symmetric pairs and associated commuting varieties, Math. Proc. Cambr. Phil. Soc, vol.143, pp.307-321, 2007.

D. Peterson, Geometry of the adjoint representation of a complex semisimple Lie Algebra, 1978.

V. L. Popov and E. B. Vinberg, Invariant Theory, Algebraic Geometry IV, 1991.

R. W. Richardson, Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Math, vol.38, issue.3, pp.311-327, 1979.

R. W. Richardson, Normality of G-stable subvarieties of a semisimple Lie algebra, Algebraic groups, pp.243-264, 1271.

H. Rubenthaler, Paramétrisation d'orbites dans les nappes de Dixmier admissibles, vol.15, pp.255-275, 1984.

H. Sabourin and R. W. Yu, On the irreducibility of the commuting variety of the symmetric pair (so p+2 , so p × so 2 ), J. Lie Theory, vol.16, pp.57-65, 2006.

P. Slodowy, Simple singularities and simple algebraic groups, Lecture Notes in Math, vol.815, 1980.

R. Steinberg, Torsion in Reductive Groups, Adv. in Math, vol.15, pp.63-92, 1995.

P. Tauvel and R. W. Yu, Lie algebras and algebraic groups, 2005.