
HAL Id: hal-00464222
https://hal.science/hal-00464222

Preprint submitted on 16 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reducing Costs of Spot Instances via Checkpointing in
the Amazon Elastic Compute Cloud

Sangho Yi, Derrick Kondo, Artur Andrzejak

To cite this version:
Sangho Yi, Derrick Kondo, Artur Andrzejak. Reducing Costs of Spot Instances via Checkpointing in
the Amazon Elastic Compute Cloud. 2010. �hal-00464222�

https://hal.science/hal-00464222
https://hal.archives-ouvertes.fr


Reducing Costs of Spot Instances via Checkpointing
in the Amazon Elastic Compute Cloud

Sangho Yi and Derrick Kondo
INRIA Grenoble Rhône-Alpes, France

{sangho.yi, derrick.kondo}@inrialpes.fr

Artur Andrzejak
Zuse Institute Berlin (ZIB), Germany

andrzejak@zib.de

Abstract—Recently introduced spot instances in the Amazon
Elastic Compute Cloud (EC2) offer lower resource costs in
exchange for reduced reliability; these instances can be revoked
abruptly due to price and demand fluctuations. Mechanisms
and tools that deal with the cost-reliability trade-offs under
this schema are of great value for users seeking to lessen their
costs while maintaining high reliability. We study how one such
a mechanism, namely checkpointing, can be used to minimize
the cost and volatility of resource provisioning. Based on the
real price history of EC2 spot instances, we compare several
adaptive checkpointing schemes in terms of monetary costs and
improvement of job completion times. Trace-based simulations
show that our approach can reduce significantly both price and
the task completion times.

I. I NTRODUCTION

The vision of computing as a utility has reached new heights
with the recent advent of Cloud Computing. Compute and
storage resources can be allocated and deallocated almost
instantaneously and transparently on an as-need basis.

Pricing of these resources also resembles a utility, and
resources prices can differ in at least two ways. First prices can
differ by vendor. The growing number of Cloud Computing
vendors has created a diverse market with different pricing
models for cost-cutting, resource-hungry users.

Second, prices can differ dynamically (as frequently as
an hourly basis) based on current demand and supply. In
December 2009, Amazon released spot instances, which sell
the spare capacity of their data centers. Their dynamic pricing
model is based on bids by users. If the users’ bid price is
above the current spot instance price, their resource request
is allocated. If at any time the current price is above the bid
price, the request is terminated. Clearly, there is a trade-off
between the cost of the instance and its reliability.

The current middleware run on top of these infrastructures
cannot cope or leverage changes in pricing or reliability.
Ideally, the middleware would have mechanisms to seek by
itself the cheapest source of computing power given the
demands of the application and current pricing.

In this paper, we investigate one mechanism, namely check-
pointing, that can be used to achieve the goal of minimizing
monetary costs while maximizing reliability. Using real price
traces of Amazon’s spot instances, we study various dynamic
checkpointing strategies that can adapt to the current instance
price and show their benefit compared to static, cost-ignorant
strategies. Our key result is that the dynamic checkpointing

strategies significantly reduce the monetary cost, while im-
proving reliability.

The remainder of this paper is organized as follows. Sec-
tion II presents checkpointing strategies on spot instances in
the Amazon Elastic Compute Cloud (EC2). Section III eval-
uates performance of several checkpointing strategies based
on the previous price history of the spot instances. SectionIV
describes related work. Finally, Section V presents conclusions
and possible extensions of this work.

II. SPOT INSTANCES ONAMAZON EC2

In this section we describe the system model used in this
paper and introduce the considered checkpointing schemes.

A. System Model

Figure 1. Spot price fluctuations ofeu-west-1.linuxinstance types

Amazon allows users to bid on unused EC2 capacity pro-
vided as42 types ofspot instancesthat differ by computing
/ memory capacity, OS type and geographical location [1].
Their prices calledspot priceschange dynamically based on
supply and demand. Figure 1 shows examples of spot price
fluctuations for threeeu-west-1.linuxinstance types during8
days in January 2010. Customers whose bids meet or exceed
the current spot price gain access to the requested resources.
Figure 2 shows how Amazon EC2 chargesper-hour price



Figure 2. Examples of pricing for Amazon EC2’s spot instance

for using a spot instance. The following system model was
made according to the characteristics of Amazon EC2’s spot
instances.

⋄ Amazon provides a spot instance when a user’s bid is
greater than the current price.

⋄ Amazon stops immediately without any notice when a
user’s bid is less than or equal to the current price. We
call this anout-of-bidevent or afailure.

⋄ Amazon does not charge the latest partial hour when
Amazon stops an instance.

⋄ Amazon charges the last partial hour when a user termi-
nates an instance.

⋄ The price of apartial-hour is considered the same as a
full-hour.

⋄ Amazon charges each hour by the last price.
⋄ Amazon freely provides the spot price history.
⋄ The price of Amazon’s storage service is negligible1.

B. Definitions

Let tr denote the remaining computing time of a task
to finish (for a fixed instance type), andT (t) the expected
execution time of a task without taking checkpoints. Bytc we
denote the time for taking a checkpoint. For a given bid price
ub on an instance type, we are interested in the probability of a
failure (i.e. out-of-bid situation). For this purpose we introduce
a probability density functionf(t, ub) of failure occurrences
where t is the time since the last checkpoint. This function
can be approximated from the history of price fluctuations. Let
ta be the time needed for analyzing this history in order to
approximatef(t, ub) (for a bidub). Figure 3 shows an example
of f(t, ub) for theeu-west-1.linux-c1.mediuminstance type. It
shows that the probability density function is a function of
both the time and the user’s bid. With the termrising edge,
we refer to the event (and its time) where the spot price for a

1Amazon provides free storage service up to June 30th 2010, and after July
1st, the price will be0.15 USD for 1 GB-month. This is much lower than
the price of computation [2].

Figure 3. Examples of probability density function of failure (out-of-bid)
occurrence,f(t, ub) on eu-west-1.linux-c1.mediuminstance type

Table I
NOTATIONS AND SYMBOLS USED IN THIS PAPER

Notation Description

tr remaining work of task in time
tc time to take a checkpoint
ta time to analyze price history for obtainingf(t, ub)
r time to restart a task
ub user’s bid on a spot instance type

f(t, ub) probability density function of a failure occurrence
wheret is time, andub is the user’s given bid

e(t, ub) probability density function of a rising edge occurrence
wheret is time, andub is the user’s given bid

ne number of rising edges of spot price that arrived in the
current availability interval

me(ub) mean number of rising edges in an availability interval
according toub

T (t) expected execution time of a task without checkpointing
when executingt time units

Htake(t) expected recovery time of a task withhour-boundary
checkpointing att time units after taking checkpoint

Hskip(t) expected recovery time of a task withouthour-boundary
checkpointing att time units after taking checkpoint

Etake(t) expected recovery time of a task withrising edge-driven
checkpointing att time units after taking checkpoint

Eskip(t) expected recovery time of a task withoutrising edge-
driven checkpointing att time units after taking checkpoint

given instance type has increased. Thee(t, ub) is a probability
density function of rising edge occurrences wheret is the time
since the last checkpoint.
Htake(t) and Hskip(t) are the expected recovery time

of a task if we take a checkpoint or skip it at the hour-
boundary time. Heret is time since last checkpoint.Etake(t)
and Eskip(t) are the expected recovery time if we take a
checkpoint or skip it at a rising edge. Table I describes
notations and symbols used in this paper. From the price
history, we can calculate other metrics shown in Table I such
as the mean spot price, and the mean number of rising edges
in an available duration.

C. Expected recovery time

In this section, we derive analytical formulas forHtake(t),
Hskip(t), Etake(t) andEskip(t) describing the expected re-
covery time in various situations. They are used in Section



Figure 4. Effects of skipping and taking a checkpoint on the recovery time

II-D3 for adaptive checkpointing schemes. To this aim, we
modify the determination functions and notations from [3],
[4]2. This yields the following Theorem 1 on the expected
execution time of a process without checkpointing.

Theorem 1:The expected execution timeT (t) of a process
without checkpointing when executingt time units is

T (t) =
t+

∑t−1
k=0 (k + r − t)f(k, ub)

1−
∑t−1

k=0 f(k, ub)
. (1)

Proof: The conditional expected execution time is written
as [3]:

T (t) =

{

t if k≥t

k + r + T (t) otherwise.

By the law of total expectation

T (t) =

∞
∑

k=t

tf(k, ub) +

t−1
∑

k=0

(k + r + T (t))f(k, ub).

Rearranging with respect toT (t), we obtain

T (t) =

∑

∞

k=0 tf(k, ub) +
∑t−1

k=0 (k + r − t)f(k, ub)

1−
∑t−1

k=0 f(k, ub)
.

Since
∑

∞

k=0 tf(k, ub) = t, we have

T (t) =
t+

∑t−1
k=0 (k + r − t)f(k, ub)

1−
∑t−1

k=0 f(k, ub)
.

In Eq. (1)f(k, ub) significantly affects theT (t). For example,
without failures

∑t−1
k=0 f(k, ub) goes to0, and thusT (t) = t.

Otherwise,T (t) is larger because
∑t−1

k=0 f(k, ub) > 0. Based
on Eq. (1) we can calculate the expected recovery time for both
cases of skipping and taking a checkpoint, which is illustrated
in Fig. 4.

Theorem 2:The expected recovery time when skipping
an hour-boundary checkpoint att time units after taking
checkpoint,Hskip(t) is given by

2We modified Theorem 1 in [3] because we use discrete time series and
the measured probability density function of failure occurrence based on the
real traces. For more information, please see Fig. 1 and Theorem 1 in [3].

Hskip(t) =

tr−1
∑

k=0

(k + r + T (t))f(k, ub). (2)

Proof: When a failure occurs withintr time units, the
task should be re-executed from the last checkpoint, and thus,

Hskip(t) =

{

k + r + T (t) if k < t

0 otherwise.

By integrating above, we obtain Eq. (2).
Theorem 3:The expected recovery time when taking an

hour-boundary checkpoint att time units after taking check-
point,Htake(t) is given by

Htake(t) =

tr−1
∑

k=0

(k + r)f(k, ub)

+

tc−1
∑

k=0

T (t)f(k, ub) + T (tc).

(3)

Proof: When a failure occurs withintc time units, the task
should be re-executed from the last checkpoint, and when a
failure occurs intc ≤ k < tr the task can be recovered from
the new checkpoint. In addition,Htake(t) has overheadT (tc)
of taking a checkpoint, and thus,

Htake(t) = T (tc) +











k + r + T (t) if k < tc

k + r else if tc ≤ k < tr

0 otherwise.

By the law of total expectation

Htake(t) =

tc−1
∑

k=0

(k + r + T (t))f(k, ub)

+

tr−1
∑

k=tc

(k + r)f(k, ub) + T (tc).

Simplifying above withk + r, we obtain Eq. (3).
To derive formulas forEtake(t) andEskip(t) we use the mean
rising edgeme(ub), the number of arrived rising edges in
the current durationne, and the probability density function
of rising edge occurrencee(k, ub). We obtainEskip(t) and
Etake(t) by substitutingnee(k,ub)

me(ub)
for f(k, ub) in Eq. (2) and

Eq. (3), respectively.

Eskip(t): The expected recovery time when skipping a
rising edge-driven checkpoint is given by

Eskip(t) =

tr−1
∑

k=0

(k + r + T (t))nee(k, ub)

me(ub)
(4)

Etake(t): The expected recovery time when taking a rising
edge-driven checkpoint is given by



Figure 5. Hour-boundary checkpointing

Figure 6. Rising edge-driven checkpointing

Etake(t) =

tr−1
∑

k=0

(k + r)nee(k, ub)

me(ub)

+

tc−1
∑

k=0

T (t)nee(k, ub)

me(ub)
+ T (tc)

(5)

In Eq. (4) and Eq. (5), the combined density factornee(k,ub)
me(ub)

denotes how the current point of time is close to (or far from)
the expected failure occurrence from the current time. For
example, when a system has a significantly large number of
rising edges for each availability duration, and a few rising
edges have arrived, then the density factor

∑tc−1
k=0

nee(k,ub)
me(ub)

goes to0. In this case,Eskip(t) goes to0, while Etake(t) =
T (tc). On the other hand, when thene approaches tome(ub),
the factor goes toe(k, ub). In this case,Eskip(t) may be
greater thanEtake(t).

D. Checkpointing Schemes

In the following we describe the proposed checkpointing
schemes in the considered scenario.

1) Hour-boundary Checkpointing:Figure 5 illustrates the
hour-boundary checkpointing method. Here checkpoints are
taken periodically at hour boundaries. It is the most intuitive
one for the spot instances, because anhour is the lowest gran-
ularity of spot instance pricing. It also provides a guarantee
of paying for the actual progress of computation.

A variation of this policy is the fine-grained checkpointing
which evaluates whether to take a checkpoint periodically
every10 or 30 minutes. See [3] for details.

2) Rising edge-driven Checkpointing:Figure 6 presents the
rising edge-driven checkpointing which is novel compared
to previous checkpoint methods. In the world of the spot
instances, rising (and falling) edges occur according to the
number of available resources, the bids from users, and the
number of bidders. A rising edge is likely to indicate that
the system has less available resources, more bidding users,
or higher bids from users, and so an out-of-bid event (for a
constant bid) is more likely. However, taking checkpoints at

Table II
DESCRIPTION OF CHECKPOINTING POLICIES

Name Description

OPT the optimal base (takes checkpoints just prior to failures)
NONE without checkpointing

H hour-boundary checkpointing
E rising edge-driven checkpointing

AH adaptive hour-boundary checkpointing
(decides every hour-boundary whether to take or skip)

AE adaptive rising edge-driven checkpointing
(decides every rising-edge whether to take or skip)

H+E hour-boundary and rising edge-driven checkpointing
H+AE hour-boundary and adaptive rising edge-driven checkpointing
AH+E adaptive hour-boundary and rising edge-driven checkpointing

AH+AE adaptive hour-boundary and adaptive rising edge-driven
checkpointing

AF(10) adaptive fine-grained checkpointing [3]
(decides every 10 minutes whether to take or skip)

AF(30) adaptive fine-grained checkpointing [3]
(decides every 30 minutes whether to take or skip)

all rising edges does not guarantee checkpointing at hourly
boundaries, and in some cases, rising edges may not occur
during an availability period. Consequently, the rising edge-
driven checkpointing might fail to reduce the execution time
if a sudden increase of the spot price occurs.

3) Checkpointing with Adaptive Decision:Figure 4 com-
pares effects of taking or skipping a checkpoint at the current
time. This decision significantly affects the recovery timeif a
failure occurs, and thus the execution time of the running task.
By using the formulas derived in Section II-C we can compare
whether it is more useful to take or to skip a checkpoint. In
more detail, our policy takes a checkpoint at an hour boundary
if Hskip(t) > Htake(t) and skips it otherwise. Analogously,
by comparingEtake(t) againstEskip(t), we learn whether to
take (Eskip(t) > Etake(t)) or to skip (Eskip(t) < Etake(t)) a
checkpoint at a rising edge. In those notations,t is a relative
time since the last checkpoint (or, when the task does not
have checkpoint, it is the time since the starting time of its
execution.)

4) Checkpointing Combinations:The above checkpointing
schemes areorthogonalto each other. We obtain12 different
types of checkpointing policies by combining them. The
detailed information is given in Table II.

E. Partial Improvement based on the Delayed Termination

Amazon EC2’s pricing rules allow the following method
to reduce the computation costs. As shown in Fig. 1, Amazon
does not charge the lastpartial-hour when EC2 terminates the
running instance (the last partial hour is charged if termination
is due to the user). Based on that fact, each user can delay
termination of the running instance up to the hour-boundary,
and Amazonmay terminate the running task with probability
pt, then the users may havept×price_per_hour reduction
from the total price.

III. E VALUATION OF THE CHECKPOINTING POLICIES

In this section, we analyze the impact of checkpointing
policies on all42 spot instance types in Amazon EC2. We



Table III
VALUES OF PARAMETERS USED IN THIS PAPER

Parameter Value

Starting date of past traces Jan. 11th, 2010
Ending date of past traces Feb. 5th, 2010

Past traces (for calculating pdf) 14,400 mins
Minimum bidding granularity 0.001 USD

Parameter tr tc ta r

Value 500 mins 5 mins 3 secs 10 mins

Figure 7. Total execution price oneu-west-1.linux.m1.largeinstance type

simulated the checkpointing schemes based on the real price
traces in terms of the task completion time, total price, and
the price×time product.

A. Simulation Setup

Table III shows our simulation setup in detail. We assume
that the checkpointing cost of running programs is known.
We used the constant value for thetc, but using a variable
checkpointing cost is also possible in our system model. We
assume that the total work of each program is500 minutes,
and we used the latest10-days (14, 400 minutes) of price
history to get the probability density function of the availability
durations.

We implemented a simulator which reads the past history
of spot price, calculates the probability density functionof
availability durations and rising edges, and simulates the12
types of checkpointing policies (see Table II) on the42 types
of spot instances. For each data point, we simulated 100
experiments to ensure confidence of our results.

B. Simulation Results and Evaluation

In the following, the policy OPT serves as a comparison
baseline and is optimal in the sense that checkpoints are taken
immediately before failures known in advance.

Figure 8. Task completion time oneu-west-1.linux.m1.largeinstance type

1) eu-west-1.linux.m1.large instance type:We have picked
the eu-west-1.linux.m1.largeas a representative instance type
to evaluate the total price of a task, its completion time, and
a product of both as a combined metric.

Total price. Figure 7 shows the total price for the investi-
gated instance type. Obviously the edge-driven checkpoint-
ing policies perform poorly. Policy AF(30) has lower cost
compared with the other combinations of hour-boundary and
edge-driven checkpointing policies. This result shows that the
edge-driven checkpointing is not effective in reducing price
compared with other checkpointing policies. Furthermore,we
have a10 ∼ 30 percent difference between OPT and the other
policies.

Task completion time.Figure 8 shows the task completion
time for theeu-west-1.linux.m1.largeinstance type. The adap-
tive fine-grained checkpointing performs more poorly than the
other combinations. The adaptive hour-boundary checkpoint-
ing shows slightly lower task completion times than the normal
hour-boundary policy. The difference between OPT and the
other policies is about10 ∼ 15 percent.

Combined metrics.Figure 9 shows the performance metrics
combined, i.e., the product of total price and task completion
time on our instance type. Policy AF(30) is better (lower
product) than the others when the user’s bid is less than0.159,
but this metric is slightly higher for other bid ranges. We also
observe that the performance gap between OPT and the other
policies is about20 ∼ 30 percent.

2) Evaluation on two us-east-1.windows instance types:We
have investigated twous-east-1.windowsinstance types as an
alternative to the aboveeu-west-1.linux.m1.largestudy. Figures
10 and 11 show the corresponding results. The rising edge-
driven checkpointing shows better performance than others
while AF(10) and AF(30) show worse results in most of the
range of user’s bids. This can happen when the movement of



Figure 9. Product of total price and task completion time oneu-west-
1.linux.m1.largeinstance type

spot price has a weaker relationship with the previous price
changes. In other words, the adaptive decision mechanism may
not perform well when the probability density function of
failures significantly (and, unexpectedly) changes over time.

3) Mean price bidding:Table IV shows the normalized
product of the total price and the task completion time when
a user bids the mean price based on the past price history. In
this result, we observe that checkpointing policies affectthe
real price significantly. In particular, using the hour-boundary
checkpointing can reduce significantly the cost compared with
the edge-driven policies or without checkpointing policies on
this instance type. Also, the cost of the adaptive fine-grained
checkpointing depends on its sampling (decision) rate. Using
a higher rate provides more available places to checkpoint,but
it may not be efficient because the decision is not the optimal,
and the decision requires overhead. This result shows that the
checkpointing policies give results30 ∼ 45 percent higher
than the optimal case. This means that finding a better strategy
to take a checkpoint is still required to save more monetary
costs. The detailed explanation of possible future approaches
are discussed in Section V.

4) Delayed termination:Table V shows the price reduction
when using delayed termination introduced in Section II-E.
This technique does not affect the task completion time but
may reduce cost of thelast partial-hour. For the long-term
tasks the savings may be trivial; however shorter tasks (of a
few hours or less) might benefit from it. The results shows
that we can save almost0.01 ∼ 0.20 USD, depending on the
size of the instance types.

5) Policy comparison and result summary:Table VI shows
the best checkpointing policies for all42 types of spot
instances. We observe that the hour-boundary checkpointing
performs best for most cases, while AF(30) and the rising-

Figure 10. Total execution price onus-east-1.windowsinstance types

edge driven checkpointing perform well in a small fraction of
the spot instance types. The policy combinations using rising
edge-driven checkpointing (E, AE, and AH+AE) perform well
only on Microsoft Windows-based spot instances while not
performing so well on the Linux-based spot instances.

Summarizing, we observe that checkpointing can signif-
icantly affect both the task completion time and the total
price. We found that using hour-boundary checkpointing can
reduce costs significantly in the presence of failures. But,we
also found that the rising edge-driven checkpointing is better
for some set of instance types. The results also show that
delayed termination can reduce a small amount of monetary
costs given our task’s size (which is 500 minutes), but this
scheme may reduce significantly costs when running relatively
short-term tasks. We also found that finding better placements
of checkpoints is required to minimize the performance gap
between the optimal and the other checkpointing policies.

IV. RELATED WORK

We start with work related to Cloud Computing, including
economics, management services, and fault-tolerant middle-
ware. Several previous works focus on the economics of
Cloud Computing [5], [6], [7], [8], [9]. However, these works
assume a static pricing model for EC2’s dedicated on-demand



Table IV
NORMALIZED PRICE×TIME PRODUCT FOR EXECUTION ON THE MEAN PRICE BIDDING(NORMALIZED BY OPT)

eu-west-1.linux type NONE H E AH AE H+E H+AE AH+E AH+AE AF(10) AF(30)

c1.medium 2.659 1.298 3.841 1.296 2.660 1.307 1.300 1.307 1.300 2.865 1.405
c1.xlarge 19.34 1.454 18.11 1.450 32.77 1.460 1.456 1.460 1.456 3.444 1.558
m1.large 6.826 1.408 4.261 1.405 5.147 1.420 1.417 1.420 1.417 3.275 1.428
m1.small 16.18 1.505 15.11 1.508 16.18 1.543 1.543 1.543 1.543 2.848 1.496
m1.xlarge 13.75 1.445 11.50 1.449 16.86 1.448 1.447 1.448 1.447 2.655 1.456
m2.2xlarge 2.894 1.462 2.900 1.462 2.897 1.465 1.464 1.459 1.464 2.690 1.428
m2.4xlarge 3.458 1.354 2.758 1.355 2.972 1.360 1.358 1.360 1.358 2.843 1.411

Table V
THE AMOUNT OF PRICE REDUCTION(IN USD) WHEN USING DELAYED TERMINATION (ON THE MEAN PRICE BIDDING)

eu-west-1.linux type OPT H E AH AE H+E H+AE AH+E AH+AE AF(10) AF(30)

c1.medium 0.021 0.006 0.001 0.006 0.014 0.007 0.006 0.007 0.006 0.003 0.002
c1.xlarge 0.101 0.109 0.067 0.109 0.067 0.105 0.109 0.105 0.109 0.074 0.015
m1.large 0.019 0.029 0.032 0.029 0.043 0.025 0.025 0.025 0.025 0.028 0.008
m1.small 0.004 0.015 0.000 0.015 0.000 0.012 0.012 0.012 0.012 0.008 0.004
m1.xlarge 0.034 0.065 0.275 0.065 0.000 0.065 0.065 0.065 0.065 0.039 0.015
m2.2xlarge 0.033 0.093 0.006 0.093 0.006 0.093 0.093 0.093 0.093 0.049 0.049
m2.4xlarge 0.110 0.257 0.175 0.257 0.175 0.257 0.257 0.268 0.257 0.130 0.022

Table VI
BEST CHECKPOINTING POLICY FOR EACH SPOT INSTANCE TYPE INAMAZON EC2 (ON THE MEAN PRICE BIDDING, IN TERMS OF PRICE×TIME PRODUCT,

EXCEPT FOROPT)

Instance types c1.medium type c1.xlarge type m1.large type m1.small type m1.xlarge type m2.2xlarge type m2.4xlarge type

eu-west-1.linux AH AH AH AF(30) H AF(30) H
eu-west-1.windows AF(30) AF(30) AH AH H, AH H, AH AH+AE

us-east-1.linux H, AH H, AH AF(30) H H, AH H, AH AH
us-east-1.windows AE H, AH H, AH AF(30) H AE E, AE

us-west-1.linux H, AH H, AH AF(30) AH H, AH H, AH AH
us-west-1.windows H, AH AF(30) AH H, AH E E AH

instances. They evaluate the cost-benefit of Cloud Computing
compared to self-built, dedicated infrastructures such astra-
ditional Grids or ISP’s. The authors focus on different types
of applications including task parallel, message passing,and
data-intensive applications.

Several services for monitoring and managing cloud ap-
plications exist [10], [11], [12], but these services currently
do not consider cloud costs that vary dynamically over time.
For instance, RightScale [12] is a third party cloud computing
broker that provides management services for clouds, such
as EC2. They provide several software tools that reduce the
complexity of managing and monitoring cloud computing
resources. However, they still do not have any service for
efficiently utilizing the spot instances on the Amazon EC2.
Instead, the users of spot instances have to manage spot
instance costs and reliability manually and individually.

Several middleware currently deployed over Clouds have
fault-tolerance mechanisms [13], [14], [15], but these mecha-
nisms currently are not cost-aware. For instance, Map-Reduce
[13] and Condor [14] are intrinsically fault-tolerant, buthow
to conduct fault-tolerance in a cost-effective way has not been
addressed. In particular, checkpointing has been well-studied,
but previous studies have not taken into account variable
resource costs. In [16], A. Duda studied the optimal placement
of a checkpoint if the performance overhead is constant. In [3],

Yi et al. proposed an adaptive checkpointing scheme which
provides adaptive taking point decision function when the cost
of checkpointing changes over time. Their results apply under
the assumption that failures occur according to thePoisson
process. In contrast, we use the probability density function
which is calculated from the previous traces of spot instances.

There are several challenges related to checkpointing in
context of unreliable resources such as spot instances. The
first one is finding the relationship between past and future
failures or availability for proactive checkpointing. Much work
exists on finding correlations and dependence between failure
events [17], [18], [19], [20]. Another challenge is using an
efficient checkpointing method for minimizing the expected
execution time in the presence of failures. This also has
been the subject of previous work described in [16], [3],
[21], [4], [22]. A new aspect is understanding the impact of
checkpointing methods on the spot instances for reducing both
the monetary costs and the task’s total execution time. Thisis
the focus of this work.

V. CONCLUSIONS ANDFUTURE WORK

We proposed an approach to reduce monetary costs of
computations using Amazon EC2’s spot instances for resource
provisioning. Based on the price history given by Amazon,
we simulated and compared several checkpointing schemes in
terms of both price and task completion time. Our simulation



Figure 11. Task completion time onus-east-1.windowsinstance types

results show that using an appropriate checkpointing scheme
can reduce significantly both the price and task completion
time.

Our future work will include identifying correlation between
past and current prices, between instance types, and between
rising edges. We are also interested in developing robust pre-
diction methods to minimize monetary costs and completion
times under this schema. We will also investigate how to gather
"hidden information" such as the amount of bids, the number
of available resources, and the number of bidders in order to
improve predictions.

ACKNOWLEDGMENTS

This work is carried out in part under the EC project eX-
treemOS (FP6-033576) and the ANR project Clouds@home
(ANR-09-JCJC-0056-01).

REPRODUCIBILITY OF RESULTS

All data used in this study, the full source code of the sim-
ulator and additional results are available under the following
URL:

http://spotckpt.sourceforge.net

REFERENCES

[1] Amazon EC2 Spot Instances, http://aws.amaz-
on.com/ec2/spot-instances/, 2010.

[2] Amazon Simple Storage Service FAQs, http://a-
ws.amazon.com/s3/faqs/, 2010.

[3] S. Yi, J. Heo, Y. Cho, and J. Hong, “Taking point decision mechanism
for page-level incremental checkpointing based on cost analysis of pro-
cess execution time,”Journal of Information Science and Engineering,
vol. 23, no. 5, pp. 1325–1337, September 2007.

[4] ——, “Adaptive page-level incremental checkpointing based on expected
recovery time,” in2006 ACM Symposium on Applied Computing (ACM
SAC’06), April 2006, pp. 1472–1476.

[5] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D. P. Anderson,
“Cost-benefit analysis of cloud computing versus desktop grids,” in
18th International Heterogeneity in Computing Workshop, Rome, Italy,
May 2009. [Online]. Available: http://mescal.imag.fr/membres/derrick.
kondo/pubs/kondo_hcw09.pdf

[6] A. Andrzejak, D. Kondo, and D. P. Anderson, “Exploiting non-dedicated
resources for cloud computing,” in12th IEEE/IFIP Network Operations
& Management Symposium (NOMS 2010), Osaka, Japan, Apr 19–23
2010.

[7] M. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel, “Amazon
S3 for Science Grids: a Viable Solution?” inData-Aware Distributed
Computing Workshop (DADC), 2008.

[8] S. Garfinkel, “Commodity grid computing with amazons s3 and ec2,”
in login, 2007.

[9] E. Deelman, S. Gurmeet, M. Livny, J. Good, and B. Berriman, “The
Cost of Doing Science in the Cloud: The Montage Example,” inProc.
of Supercomputing’08, Austin, 2008.

[10] CloudStatus,http://www.cloudstatus.com/, 2010.
[11] CloudKick: Simple, powerful tools to manage and monitor cloud servers,

https://www.cloudkick.com/, 2010.
[12] RightScale: Cloud Computing Management Platform,

http://www.rightscale.com/, 2010.
[13] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on

large clusters,” inOSDI, 2004, pp. 137–150.
[14] M. Litzkow, M. Livny, and M. Mutka, “Condor - A Hunter of Idle

Workstations,” inProceedings of the 8th International Conference of
Distributed Computing Systems (ICDCS), 1988.

[15] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain,
T. Herault, P. Lemarinier, O. Lodygensky, F. Magniette, V. Neri, and
A. Selikhov, “MPICH-V: Toward a Scalable Fault Tolerant MPIfor
Volatile Nodes,” inProceedings of SC’02, 2002.

[16] A. Duda, “The effects of checkpointing on program execution time,”
Information Processing Letters, vol. 16, no. 1, pp. 221–229, Jul. 1983.

[17] S. Fu and C.-Z. Xu, “Exploring event correlation for failure prediction
in coalitions of clusters,” inSC’07: Proceedings of the 2007 ACM/IEEE
conference on Supercomputing. New York, NY, USA: ACM, 2007, pp.
1–12.

[18] B. Javadi, D. Kondo, J. Vincent, and D. Anderson, “Mining for
availability models in large-scale distributed systems: Acase study of
seti@home,” in17th IEEE/ACM International Symposium on Modelling,
Analysis and Simulation of Computer and TelecommunicationSystems
(MASCOTS), September 2009.

[19] D. Kondo, A. Andrzejak, and D. P. Anderson, “On correlated availability
in internet distributed systems,” inIEEE/ACM International Conference
on Grid Computing (Grid), Tsukuba, Japan, 2008.

[20] A. Andrzejak, P. Domingues, and L. M. Silva, “Predicting machine
availabilities in desktop pools,” in10th IEEE/IFIP Network Operations
& Management Symposium (NOMS 2006), Vancouver, Canada, April
3–7 2006, pp. 1–4.

[21] J. S. Plank, K. Li, and M. A. Puening, “Diskless checkpointing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 9, no. 10, pp.
972–986, October 1998.

[22] P. Domingues, A. Andrzejak, and L. M. Silva, “Using checkpointing to
enhance turnaround time on institutional desktop grids,” in 2nd IEEE
International Conference on e-Science and Grid Computing (eScience
2006), Amsterdam, Netherlands, December 2006.


