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Jorge Angeles, Stéphane Caro, Waseem Khan, Alexei Morozov
Department of Mechanical Engineering

McGill University

{angeles, caro, wakhan, alexvit}@cim.mcgill.ca

Abstract

In this paper, a novel parallel robot is introduced. The robot, a Schönflies-Motion
Generator (SMG), is capable of a special class of motions, namely, those produced with
serial robots termed SCARA, an acronym for Selective-Compliance Assembly Robot Arm.
These motions involve three independent translations and one rotation about an axis of
fixed direction. Such motions are known to form a subgroup of the displacement group of
rigid-body motions, termed the Schönflies subgroup. The SMG is composed of two identical
four-degree-of-freedom serial chains in a parallel array, sharing one common base and
one common moving platform. The proximal module of each chain is active and has two
controlled axes, the motors being installed on the fixed base. The links can thus be made
light, thereby allowing for higher operational speeds. The distal module, in turn, is passive
and follows the motions of its active counterpart, the whole mechanism giving, as a result,
a four-degree-of-freedom motion to its end-platform.

Keywords: Parallel Robot, Manipulator, Kinematics, SCARA, Schönflies displace-
ment subgroup

1 Historical Note and State of the Art

Most industrial robots have articulated structures of the serial type, where each link is coupled
to two other links, except for the end links, which are coupled to one single neighbour. However,
these simple, open kinematic chains of multi-axis machines exhibit some drawbacks, mostly due
to the pyramidal effect : each axis must carry all other axes located upstream in the chain.
For this reason, parallel robots have attracted the attention of researchers and end-users. First
prototypes of the parallel machines date back to the middle of the 20th century. Gough’s
machine was built in the early 50s and fully operational in 1954. Stewart produced a paper
in 1965 (Stewart, 1965); however, he had never built any real prototype (Bonev, 2003). The
history of the development of modern robots with a parallel structure can be traced back to
the early eighties (Merlet, 2006). As a milestone in this regard, Karl-Erik Neumann designed
and built a new type of machine, the “parallel kinematic robot”, in 1987 (Brumson, 2005). In
spite of the early invention of parallel robots, they were not used widely until the early 90’s,
since their architectures demanded sophisticated control not affordable with the computational
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means available at the time. After 1992, when Comau Pico launched the first multiprocessor
controller, new control systems appeared in the market, capable to run parallel-kinematics
machines (PKM). The six-rod machining centers (TM series) of Lapik (Russia) appeared on
the market in 1994, and measuring machines of similar kinematics (KIM series) in 1992 (the
development of KIMs started in the early 80s) (Lapic, 1994).

Most PKM are based on hexapods, also known as Gough-Stewart platforms (Stewart, 1965).
An example of PKM currently used in industry is displayed in Fig. 1.

The most widespread operation of PKMs is machining. This includes milling, cutting, drilling
and deburring of sheet and cast metal parts. For example, in 1999 more than two thirds of robotic
applications of the Tricept manipulator, a hybrid robot in which a 3-DOF spherical wrist is
mounted on the moving platform of a 3-DOF four-legged parallel manipulator (Siciliano, 1999),
were in the area of machining, where clients wanted to have 10 µm of repeatability, stiffer links,
and higher power.

Moreover, nowadays more and more PKMs are not used independently, but as parts of
precise machine-tools. The fact of the matter is that high stiffness and high accuracy are as yet
to be realized with PKMs. Other possible applications of PKMs are as medical manipulators,
educational test-benches, and pharmaceutical setups.

Parallel manipulators promise some advantages over their serial counterparts. Since PKMs
are built with closed-loop chains, the expected result of the parallel design is a robot with
higher stiffness, and hence, with increased structural stability. In PKMs there is no need to
carry motors, because all drives are installed on the fixed base; as a result, the links can be more
compact and lighter. This should allow for shorter cycle times than with serial architectures.

Therefore, in PKMs we should achieve the flexibility of a robot combined with the stiffness
of a machine tool. As a consequence, PKMs should have an accuracy comparable with those of
CNC machine-tools, but with much less material.

2 The Schönflies-Motion Generator

The Schönflies-Motion Generator (SMG) is an innovative robot, under development at McGill
University. The McGill University SMG has two legs, each supplied with four joints. Conse-
quently, it has a smaller number of joints as compared to that in conventional PKMs.

This manipulator is capable of a special class of motions, namely, those produced with
manipulators termed SCARA, an acronym for Selective-Compliance Assembly Robot Arm. These
motions involve three independent translations and one rotation about an axis of fixed direction,
similar to the motions undergone by the tray of a waiter. Such motions are known to form a
subgroup of the displacement group of rigid-body motions, termed the Schönflies subgroup
(Bottema and Roth, 1979; Hervé, 1999; Lee and Hervé, 2005). Besides, (Yang et al., 2001)
made a list of four-degree-of-freedom (3-translation and 1-Rotation) parallel robot mechanisms
based on single-open-chains, which is not complete, as it does not contain the architecture of
the McGill University SMG.

The SMG is a manipulator producing four-degree-of-freedom displacements of a rigid body,
its moving platform (Angeles and Morozov, 2003). This set of displacements was first studied
by the German mathematician-mineralogist Arthur Moritz Schönflies (1853–1928), who found
that these displacements have the algebraic structure of a group. For this reason, the set of
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such motions is known to geometers as the Schönflies subgroup of the group of rigid-body
displacements.

The SMG is composed of two identical four-degree-of-freedom serial chains in a parallel array,
sharing one common base and one common moving platform.

Each serial chain comprises, in turn, two cascaded modules producing, each, a set of two-
degree-of-freedom displacements: one rotation about a vertical axis fixed to the base, the pan
motion, and one rotation about a horizontal axis, the tilt motion.

On the one hand, the proximal module is active and has two controlled axes. The motors are
installed on the fixed base. The links can thus be made very light, thereby allowing for higher
operational speeds. On the other hand, the distal module is passive and follows the motions
of its active counterparts, the whole mechanism giving, as a result, a four-degree-of-freedom
motion to its end-platform. The prototype of the system is displayed in Fig. 2.

Each leg is driven by a pair of identical motors. The whole mechanism, with the four motors
installed either at the ceiling or on the floor, provides a manipulation system with a horizontal
end-effector having the motion capability of a SCARA end-effector, thereby giving such a motion
to a gripper holding rigidly a tool or a workpiece.

Identical motors performing identical tasks means ease of programming and maintenance as
well as equal wear. The location of motors on the base, moreover, allows for lighter links and,
as a consequence, higher operation speeds. A planetary gear train is used to drive each leg of
the SMG.

3 The Kinematics of the SMG

The kinematic chain of the SMG is shown in Figs. 3 and 4. Apparently, the moving plate M
carrying the operation point P , is coupled to the base frame F by means of two identical limbs.
Each limb, in turn, is a serial chain of the RΠΠR (Angeles, 2004) type, with Π indicating a
parallelogram linkage playing the role of a kinematic pair, which is termed a Π-joint. We now
introduce the notation that will be used throughout this paper. At the outset, all symbols with
double subscripts, comprising one Roman and one Arabic numeral, refer to the leg, I or II, and
to the corresponding item of the respective leg.

Notation Description
{X, Y, Z} the Cartesian coordinates of the operation point P of the end-effector ex-

pressed in the coordinate frame F(OI0, i, j,k)
φ angle of rotation of the end-effector about the vertical axis
θJi angle of rotation of the ith joint of the Jth leg, measured according with the

right-hand rule, for i = 1, 2, 3, 4, 5 and J = I, II

aJk

−−−−−−−→
OJ(k−1)OJk, for k = 1, 2, 3, 4 and J = I, II

aJ5
−−−→
OJ4P , for J = I, II

ai the projection of aJi onto the X − Y plane, for i = 4, 5 and J = I, II
bi the projection of aJi onto the Z axis, for i = 4, 5 and J = I, II
li ‖aJi‖ for i = 1, 2, 3, 4, 5 and J = I, II

Continuation in next page
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Notation Description

R “radius” of the end effector, i.e., the distance between the operation point
and the axis of second revolute joint of each limb

l0 distance between the two fixed bases (drive-units)
Table 1: Nomenclature

We further define θI1, θI2, θII1, and θII2 as the four actuated-joint angles, while θI3, θI4, θII3,
and θII4 are the four passive-joint angles. Correspondingly, θ̇I1, θ̇I2, θ̇II1, and θ̇II2 are the four
actuated-joint rates.

Then, from the geometric relationships shown in the above figures, we can obtain the geo-
metric relations for leg I:

x = −(l1 + l2 cos θI2 + l3 cos θI23) sin θI1 − R sinφ (1a)

y = − l0
2
+ (l1 + l2 cos θI2 + l3 cos θI23) cos θI1 +R cosφ (1b)

z = l2 sin θI2 + l3 sin θI23 + b4 + b5 (1c)

φ = θI1 + θI4 (1d)

where
θI23 ≡ θI2 + θI3

Similarly, for leg II, we have:

x = (l1 − l2 cos θII2 − l3 cos θII23) sin θII1 +R sinφ (2a)

y =
l0
2
− (l1 − l2 cos θII2 − l3 cos θII23) cos θII1 − R cosφ (2b)

z = l2 sin θII2 + l3 sin θII23 + b4 + b5 (2c)

φ = θII1 + θII4 (2d)

where
θII23 ≡ θII2 + θII3

4 The Kinetostatic Design

We understand here under kinetostatics the mechanical analysis of rigid-body mechanical sys-
tems moving under static, conservative conditions. Kinetostatics is thus concerned with the
relations between the feasible twists — point-velocity and angular velocity — and the con-
straint wrenches — force and moment — pertaining to the various links of a kinematic chain.
Kinetostatic design, therefore, refers to the dimensioning of the links under kinetostatic condi-
tions.
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4.1 Jacobian Matrices

The kinematic chain of the SMG is shown in Figs. 3 and 4. From Fig. 5, one readily derives

pI = aI1 + aI2 + aI3 (3a)

pII = aII1 + aII2 + aII3 + l0 j (3b)

where pI and pII denote the position vectors of point PI and PII , respectively. Moreover, notice
that all vectors of the above equations must be expressed in the same frame; otherwise, the
addition would not be possible. Upon differentiating both sides of eq. (3), we obtain

ṗJ = JJ θ̇J , J = I, II (4)

where θ̇J is the the 3-dimensional joint-rate vector of leg J , defined as

θ̇J =
[

θ̇J1 θ̇J2 θ̇J3
]T

, J = I, II (5)

and JJ is its 3× 3 Jacobian matrix, defined as

JJ =
[

k× rJ1 fJ × rJ2 fJ × rJ3
]

, J = I, II (6)

where rJi =

3
∑

k=i

aJk , i = 1, 2, 3, while k is the unit vector associated with the Z-axis, and fJ is

the unit vector normal to the plane of the Π joints of leg J , J = I, II.
In order to derive a dimensionless expression of eq.(4), let us divide it by L, which is a

characteristic length, as yet to be determined:

(k× ρJ1) θ̇J1 + (fJ × ρJ2) θ̇J2 + (fJ × ρJ3) θ̇J3 = σ̇J (7)

where

ρJi ≡ 1

L
rJi , i = 1, 2, 3 (8a)

σJ ≡ 1

L
pJ , J = I, II (8b)

In order to eliminate the passive joint rates θ̇J3, J = I, II, we cross-multiply both sides of
eq.(7) by fJ × ρJ3 from the left, thereby obtaining

vJ θ̇J1 +∆J fJ θ̇J2 = (fJ × ρJ3)× σ̇J (9)

with

vJ ≡
[

(fJ × ρJ3) · ρJ1

]

k−
[

(fJ × ρJ3) · k
]

ρJ1 (10)

≡
[

fJ , ρJ3, ρJ1

]

k−
[

fJ , ρJ3, k
]

ρJ1

and
∆J ≡

[

(fJ × ρJ3) · ρJ2

]

≡
[

fJ , ρJ3, ρJ2

]

(11)
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From Fig. 6, and the observation that points P and P ′ lying on a line parallel to the axis of
rotation of the Schönflies displacement subgroup, move with the same velocity ṗ, we have

σ̇J = σ̇ +
1

2
φ̇ s(J) k× (σI − σII) (12)

with

s(J) =

{

+1 if J = I
−1 if J = II

(13)

and

σ =
1

L
p (14)

From eqs.(12) and (13), we obtain

vJ θ̇J1 +∆J fJ θ̇J2 = (fJ × ρJ3)×
[

σ̇ +
1

2
φ̇s(J)k× (σI − σII)

]

(15)

which can be written in vector form

AJt = BJ γ̇J , J = I, II (16)

with the definitions below:

AJ ≡
[

1

2
s(J)ΦJ [k× (σI − σII)] ΦJ

]

∈ R
3×2, BJ ≡

[

vJ ∆J fJ
]

∈ R
2×4 (17a)

γ̇J ≡
[

θ̇J1
θ̇J2

]

, t ≡
[

φ̇
σ̇

]

, φJ ≡ fJ × ρJ3 (17b)

and ΦJ is the cross-product matrix of vector φJ (Angeles, 2002).
Next, we consider both legs. Upon “stacking” the two corresponding kinematic relations

derived from eq.(16), we obtain the kinematic relation for the whole system, namely,

At = Bθ̇ (18)

where the twist t was defined in eq.(17), the vector of active joint rates θ̇, the forward Jacobian
A, and the inverse Jacobian B being defined, in turn, as

θ̇ ≡
[

γ̇I

γ̇II

]

∈ R
4, A ≡

[

AI

AII

]

∈ R
6×4, B ≡

[

BI O32

O32 BII

]

∈ R
6×4 (19)

with O32 being the 3 × 2 zero matrix. Notice that the kinematic model (18) is redundant,
for it entails six equations for four independent variables. Redundancy is introduced here to
add robustness to the model. Robustness is needed to avoid formulation singularities (Ma and
Angeles, 1992).
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4.2 Singularity Analysis

The SMG meets a singular configuration whenever the 6×4 matrices A or B are rank-deficient.
We thus have two types of singularities, namely, the serial singularities, and the parallel sin-
gularities. The former occurs when B is rank-deficient. In the presence of these singularities,
there is a direction along which no Cartesian velocity can be produced. From eq.(19), B is
rank-deficient when either BI or BII is rank-deficient. As a matter of fact, BJ loses rank if and
only if

vJ ‖ fJ (20a)

or
∆J = 0 (20b)

From eq.(10), vJ lies the plane spanned by vectors k and ρJ1, which is perpendicular to fJ .
Therefore, eq.(20a) holds if and only if

fJ × ρJ3 · ρJ1 = 0 (21a)

and
fJ × ρJ3 · k = 0 (21b)

On the one hand, eq.(21a) holds if ρJ3 is parallel to ρJ1, i.e., if points OJ0, OJ2 and OJ3 are
aligned, as depicted in Fig. 7(a). On the other hand, eq.(21b) holds if ρJ3 ‖ k, i.e., if the distal
link of leg J is vertical as depicted in Fig. 7(b).

Moreover, from eq.(11), eq.(20b) holds if and only if ρJ2 is parallel to ρJ3, i.e., leg J is fully
extented, as illustrated in Fig. 7(c).

Parallel singularities, in turn, occur when A is rank-deficient. In the presence of these
singularities, it is possible to move locally the operation point P with the actuators locked, the
system thus resulting not in an isostatic structure, which should be the case, but in a mechanism,
which cannot resist arbitrary loads, thereby becoming uncontrollable. To avoid any performance
deterioration, it is necessary to have a Cartesian workspace free of parallel singularities.

From eq.(19), A loses rank if and only if its four columns are linearly dependent. From
eq.(17) this happens when the nullspace of ΦI , N (ΦI), is identical to the nullspace of ΦII ,
N (ΦII). Since the two nullspaces are of dimension 1, and spanned, respectively by vectors ΦI

and ΦII , A loses rank when
φI = ± φII (22)

From eq.(17), eq.(22) is equivalent to

fI × ρI3 = ± fII × ρII3 (23)

In the case where the planes of legs I and II are parallel to each other, i.e., fI = −fII , eq.(23)
holds if

ρI3 = ± ρI3 (24)

i.e., when segments OI2OI3 and OII2OII3 are both either vertical or horizontal, as illustrated in
Figs. 8(a) and 8(b), respectively.
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5 The Drive Units

The drive units of the robot deserve special attention, as their inertia plays a major role.
Each of the two identical units is to provide two independent motions, pan and tilt of the

parallelogram links, and hence, independent rotations, one about a vertical axis, the pan, the
other about a horizontal axis, the tilt. We want to produce each of these motions by the
concurrent action of the two motors, in order to minimize the actuation-sensor complexity, and
hence, to best distribute the load.

The drive units of the SMG are based on an innovative drive for the production of pan and
tilt motions of a robotic link. The Pan-Tilt Drive, as the unit is referred to, is made up of one
epicyclic gear train, which is driven by two grounded motors. Besides producing the pan motion
through the rotation of the planet-carrier, two of their three planets are used to produce the tilt
motion.

We could therefore use one motor in order to produce the pan motion and another one to
produce the tilt motion. However, it is possible to use both motors again to produce the tilt
motion. This can be achieved through the use of a differential gear train. As a result, with
a suitable design, it is possible to use the full power of both motors for the two independent
motions.

Figures 9(a) and 9(b) depict a schematic drawing and a 3D view of one of the two drive
units of the manipulator, respectively. The drive units consist of the elements described below:

• The two motors MA and MB, mounted on a fixed frame (not shown in the figure) and
driving gears 1 and 2, respectively, by means of the speed reducers GH1 and GH2;

• gear 1, meshing with gear 3, while gear 2 meshes with gear 4;

• an epicyclic train driven by the two motors: MA drives the sun gear 5 while MB drives
the internal ring gear 7, these two gears meshing with the planets 6; when rotating about
axis A1, these planets drive a planet carrier 8 rigidly attached to the housing of the whole
mechanism and not included in the figures. The planet-carrier 8 produces the pan motion;

• two of the three identical planets, when rotating about their own axes of symmetry, produce
the tilt motion;

The relations among the angular velocities are described by means of the notation below:

Ni: number of teeth of the ith gear, for i = 1, . . . , 6

r3,1 = N3/N1 = N4/N2: the gear ratio between gears 3 and 1, and between gears 4 and 2;

r0: the reduction ratio from motor A (B) to gear 1 (2) through the gear head GH1 (GH2);

r = r0r3,1: the total reduction ratio from the motors to the driven sun and ring gears;

r6,5 = N6/N5: the gear ratio between the planets 6 and the sun gear 5;

ωi: angular velocity of the corresponding gears, or planet-carriers for i = 1, . . . , 6;

ωA: angular velocity of motor MA;
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ωB: angular velocity of motor MB;

ωp: angular velocity of the pan motion, i.e., θJ1, J = I, II;

ωt: angular velocity of the tilt motion, i.e., θJ2, J = I, II.

5.1 Forward Kinematics

We obtain here all the necessary relations between meshing gears, starting with the motors and
ending with the relative velocity between the planet-carrier and the planets.

From the motors to the driven gears of the epicyclic train,

ω5 = −1

r
ωA (25a)

ω7 = −1

r
ωB (25b)

Inside the gear train, we have the well-known relations (Juvinall and Marshek, 2000)

ω8(N5 +N6)− ω6N6 = ω5N5 (26a)

ω7(N5 + 2N6) = ω8(N5 +N6) + ω6N6 (26b)

Dividing both sides of the above equations by N5 and solving for ω6 and ω8, we obtain

ω6 =
1

2r6,5
[−ω5 + (1 + 2r6,5)ω7] (27a)

ω8 =
1

2(1 + r6,5)
[ω5 + (1 + 2r6,5)ω7] (27b)

Substituting eqs.(25a) and (25b) into eqs.(27a) and (27b), while noticing that ωp = ω8 and
ωt = ω6 − ω8 yields

ωp = − 1

2r(1 + r6,5)
[ωA + (1 + 2r6,5)ωB] (28a)

ωt =
1 + 2r6,5

2rr6,5(1 + r6,5)
(ωA − ωB) (28b)

Let us finally define ωin and ωout by

ωin =

[

ωA

ωB

]

, ωout =

[

ωp

ωt

]

which are related by the drive-unit Jacobian JD in the form

ωout = JDωin (29)

where JD is defined as:

JD =
1

2r(1 + r6,5)

[

−1 −(1 + 2r6,5)
(1 + 2r6,5)/r6,5 −(1 + 2r6,5)/r6,5

]

(30)
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5.2 Inverse Kinematics

Regarding the control of the whole robot, a robot gesture is specified, for which the angular
velocities of the two motors are required. These are readily obtained from the forward-kinematics
relations, derived from eqs.(29) and (30).

Matrix JD is invertible, its inverse being

J−1
D = −r

[

1 −r6,5

1
r6,5

1 + 2r6,5

]

(31)

thereby deriving the inverse kinematics of the drive unit, namely,

ωin = J−1
D ωout (32)

6 Dimensioning

The SMG is designed for pick-and-place operations based on the path defined to test the perfor-
mance of SCARA robots, as depicted in Fig. 10. Moreover, one of the objectives of the project
underlying this paper is to realize a parallel system that outperforms both serial SCARA sys-
tems and the parallel robots currently available for Schönflies motion generation, i.e., the H4
(Pierrot and Company, 1999), the T3-R1 (Gogu, 2004), and the fully isotropic parallel mecha-
nisms developed by Carricato (2005). To this end, the design specifications for the McGill SMG
are given below:

• The robot must be capable of producing a test cycle that is commonly accepted for SCARA
systems, in at most 500 ms. The test cycle consists of:

– 25-mm vertical displacement up

– 300-mm horizontal displacement with a concomitant 180◦ turn

– 25-mm vertical displacement down

– 25-mm vertical displacement up

– 300-mm horizontal displacement with a reversed 180◦ turn

– 25-mm vertical displacement down

• The system is capable of attaining a configuration where kinetostatic robustness is achieved.
As a matter of fact, from kinetostatics, the SMG is maximally accurate and robust when its
forward and inverse Jacobians are maximally invertible, i.e., when their condition number
κ is as small as possible.

The dimensions of the SMG are mainly determined by the isotropy conditions derived in
the kinetostatic design, the geometric considerations, and the moveability of the end-effector to
achieve the 180◦ rotation of the test cycle

One of the isotropy conditions derived in the kinetostatic design requires that l3 =
√
2R

(Zhu, 2004). From geometric considerations, the radius R of the moving platform is equal to
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200 mm, and hence, l3 = 282.843 mm. R cannot be very large with respect to the dimensions
of the test-cycle path, for this would render the manipulator bulky, and would also affect the
moveability of the moving plate. If the R is too small, then the length of the distal links will
be correspondingly reduced, but it cannot be too small; the manufacturing and assembly of the
manipulator require the dimensions lie within the 1-meter scale.

The length of the proximal links is so determined that it would allow the maximum reach
of the SMG to be at least 600 mm, which is the range of the Adept Cobra s600 (Adept, 2005);
this length should lead to as low torques and forces as possible. Consequently, from the analysis
presented in (Zhu, 2004), the optimal length of the proximal links turns out to be equal to
600 mm, i.e., l2 = 600 mm.

7 Conclusions

In this paper an innovative robot, a Schönflies-Motion Generator, or SMG for brevity, capable
of SCARA motions, was introduced. Its kinematics chain was described, which is based on two
symmetric legs, each consisting of two Π-joints placed in series. Two proximal joints are driven
by four motors installed on the base, producing pan and tilt motions of each leg. Two distal
Π-joints are passive and follow the motion of the active ones. We found the singularities of
the SMG. The design of the drive units, based on planetary gear trains, was discussed. The
main expected advantages of the proposed design, with all motors fixed to the base and links,
fabricated of a carbon fiber composite, are high performance speed and high positioning accuracy
of the end platform.
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Figure 1: An example of a parallel robot: Hexel R2000
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Figure 3: Kinematic chain of the parallel Schönflies-Motion Generator: front view
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Figure 5: Vectors describing the kinematic chain of the parallel Schönflies-Motion Generator
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Figure 8: Two parallel singular configurations
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