Consistency of timbre patterns in expressive music performance
Mathieu Barthet, Richard Kronland-Martinet, Solvi Ystad

To cite this version:
Mathieu Barthet, Richard Kronland-Martinet, Solvi Ystad. Consistency of timbre patterns in expressive music performance. 9th International Conference on Digital Audio Effects, Sep 2006, Montréal, Canada. pp.19-25. hal-00463315

HAL Id: hal-00463315
https://hal.archives-ouvertes.fr/hal-00463315
Submitted on 11 Mar 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
CONSISTENCY OF TIMBRE PATTERNS IN EXPRESSIVE MUSIC PERFORMANCE

Mathieu Barthet, Richard Kronland-Martinet, Sølvi Ystad

CNRS - Laboratoire de Mecanique et d’Acoustique
31, chemin Joseph Aiguier 13402
Marseille Cedex 20, France

ABSTRACT

Musical interpretation is an intricate process due to the interaction of the musician’s gesture and the physical possibilities of the instrument. From a perceptual point of view, these elements induce variations in rhythm, acoustical energy and timbre. This study aims at showing the importance of timbre variations as an important attribute of musical interpretation. For this purpose, a general protocol aiming at emphasizing specific timbre patterns from the analysis of recorded musical sequences is proposed. An example of the results obtained by analyzing clarinet sequences is presented, showing stable timbre variations and their correlations with both rhythm and energy deviations.

1. INTRODUCTION

This article is part of a larger project aiming at analyzing and modelling expressive music performance. To follow the classification made by Widmer and Goebl in [1], we use an "Analysis-by-measurement" approach which first step is to define the performer's expressive patterns during the interpretation. Various approaches to identify performance rules have been proposed. Amongst these, the "Analysis-by-synthesis" approach developed at the KTH [2] [3] which relies on musical theory knowledge has led to the establishment of context-based performance rules. They mainly take into account the tempo and the intensity of musical notes or phrases, either to emphasize their similarity (grouping rules), or to stress their remarkableness (differentiation rules). Another approach has been proposed by Tobudic and al. [4], leading to a quantitative model of expressive performance based on artificial intelligence to reproduce the tempo and dynamic curves obtained from performances played by musicians. All these studies have mainly focused on rhythm and intensity variations.

In the present study, an investigation on the consistency of timbre expressive variations in music performance is proposed. A comparison between timbre, rhythmic and intensity expressive variations is also made, since the correlations between these parameters are probably strong. For this purpose, a professional clarinetist was asked to play a short piece of music (the beginning of a Bach’s Cello Suite) twenty times. The choice of the instrument was mainly related to the fact that it is self-sustained and that the performer easily controls the sound event after note onset. In addition, earlier studies by Wanderley [5], report that the movements of a clarinetist are highly consistent for various musical performances of the same piece. Since these movements seem to be closely linked to the interpretation, we also expect the expressive parameters to be highly consistent. In a previous study [6], the investigation of the performance parameters of a physically modelled clarinet indicates that timbre is involved in musical expressivity and seems to be governed by performance rules. In this study, we aim at checking if timbre also follows systematic variations on natural clarinet sounds.

We shall first describe a general methodology developed to analyze and compare recorded musical performances in order to point out consistency of timbre, rhythmic and intensity patterns in expressive music performance. An application of this methodology to twenty recorded musical sequences of the same clarinetist is then given. Eventually, we show that timbre, as rhythm and intensity, follows systematic variations, and that correlations exist between these parameters of the expressivity.

2. METHODOLOGY

In this section, we describe a general methodology to analyze and compare musical performances from recorded monophonic sequences.

Figure 1: Methodology

The hypothesis we want to verify is that when a performer plays several times a piece with the same musical intention, patterns of rhythm, intensity, and timbre over the course of the piece, show a high consistency. For that purpose, we derive from the
recorded sequences some performance descriptors characterizing
the musical expressivity of an interpret at a note-level. We then
calculate the mean of the performance descriptors to determine if
their variations are systematic. Figure 1 sums up the different steps
of the methodology.

2.1. Sound corpus

If the expressive variations introduced by the musician resist
an averaging over a large amount of performances played with the
same musical intention, they can be considered as systematic. We
thus need a large amount of recordings of the same musical piece
performed as similarly as possible to identify the consistency of
musical expressivity patterns.

To avoid influence from room acoustics, the recordings of these
performances has to take place in a non-reverberant acoustical en-
vironment.

In the following, we will note \(N \) the number of notes of the
musical melody, and \(n \) will refer to the \(n^{th} \) note played. We will
note \(P \) the number of recorded performances, and \(p \) will refer to
the \(p^{th} \) one.

2.2. Note segmentation

Note segmentation is an intricate task and is slowed down by
difficulties such as the detection of two successive notes having the
same pitch, or silences between musical phrases. In [7], the author
describes a way to determine the timing of the note onsets from
musical audio signals. Here the task can be facilitated by the a pri-
ori knowledge of the score giving an estimation of the fundamental
frequencies. The note segmentation process is composed of two
parts, the pitch tracking, consisting in estimating the fundamental
frequencies of the recorded sequences, and the segmentation.

2.2.1. Pitch tracking

A lot of studies have been carried out on this subject. A review
can be found, for instance, in [8].

In our case, we use the software LEA from the Genesis company
to generate filtered sequences from the original recordings
which only contain the fundamental frequencies of the notes played
during the performances. Since these new sequences only contain
a single frequency-varying sinusoidal component, it is pertinent to
calculate their analytic signals \(Z^p(t) \). Finally, we obtain the in-
stantaneous fundamental frequencies \(F0(t) \) thanks to the follow-
ing relation:

\[
F0^p(t) = \frac{1}{2\pi} \frac{d\phi^p(t)}{dt}
\]

(1)

where \(\phi^p(t) \) is the phase of \(Z^p(t) \).

2.2.2. Segmentation

As we have a large amount of recordings, we built an automatic
note segmentation method. It is also important that the pro-
cess remains identical for each sequence in order to segment each
note in the same way before the averaging of the performance des-
criptors.

Our method is based on the analysis of the fundamental fre-
quency variations \(F0(t) \). As a matter of fact, it presents instabil-
ities at the transitions between notes. A detection of these instabil-
ities gives the timing of the transitions between notes. By making
the assumption that the end of a note is also the beginning of the
next one, we get the note timings \(T^p_n \) for each note \(n \) and for each
performance \(p \).

2.3. Performance descriptors

Rhythm descriptors are obtained from the rhythm indications
of the score and from data obtained after the note segmentation
part. Intensity and timbre performance descriptors are high-level
 descriptors derived from a time/frequency representation of the
recorded sequences.

2.3.1. Rhythm descriptors

We obtain the note durations \(D^p_n \) of each performance \(p \) from
the note timings \(T^p_n \). The rhythm deviation descriptor \(\Delta D^p_n \)
is defined as the difference between the note durations given by the
score \(D^\text{score}_n \) (called nominal durations) and the durations of
the notes played during the performances \(D^p_n \) (called effective dura-
tions):

\[
\Delta D^p_n = D^p_n - D^\text{score}_n
\]

(2)

It is a discrete time function calculated for each note.

2.3.2. Intensity and timbre descriptors

We derive these descriptors from a time/frequency analysis of
the recorded sequences. They are also discrete functions of the
time, but depending on the time bins defined by the analysis. In
the following, \(d^p(t) \) will refer to the descriptors calculated over the
entire course of the performance \(p \), and \(d^p_n(t) \) will refer to the values of \(d^p(t) \) restricted to the duration of the note \(n \).

2.4. Retiming of the performance descriptors

To verify our hypothesis, we have to calculate the average of
the performance descriptors \(d^p(t) \) over all recorded sequences. As
the performances are played by a human musician, the durations
\(D^p_n \) of the notes are slightly different. In order to synchronize all
these performance descriptors, a retiming process is thus neces-
sary. This retiming consists in temporal contractions or dilations.
We will denote by \(\Gamma \) these transformations. In our case, we do
not need to realize an audio time-stretching keeping the frequency
content of the signal as it is described for instance in [9], since the
descriptors we derive from the signals are not going to be heard.

The dilation coefficient \(\alpha^p_n \) will be chosen so as to adjust the
duration \(D^p_n \) of the descriptors \(d^p_n(t) \) to the mean duration \(D^\text{mean}_n \)
of the notes over all the recorded performances. Thus, we will alter
the performance descriptors as little as possible. If \(\alpha^p_n > 1 \), \(\Gamma \) is a
dilation, and if \(\alpha^p_n < 1 \), \(\Gamma \) is a contraction.

The mean note duration \(D^\text{mean}_n \) is given by:

\[
D^\text{mean}_n = \frac{1}{P} \sum_{p=1}^{P} D^p_n
\]

(3)

The dilation coefficient \(\alpha^p_n \) is then given by:
Finally, the retiming transformations \(\Gamma \) applied on the note performance descriptors \(d_n^p(t) \) can be written as:

\[
\Gamma : d_n^p(t) \mapsto \Gamma[d_n^p(t)] = d_n^p(\alpha_n^p(t))
\]

2.5. Systematic and random variations of the descriptors

Once the synchronization of the note performance descriptors realized, we calculate their mean to point out systematic behavior, and their standard deviation to characterize random fluctuations.

The mean note descriptors \(\overline{d_n}(t) \) over all the recorded performances are given by:

\[
\overline{d_n}(t) = \frac{1}{P} \sum_{p=1}^{P} d_n^p(\alpha_n^p(t))
\]

Random fluctuations of the descriptors are characterized by their standard deviation \(\sigma_{\overline{d_n}}(t) \).

Hence, if the behavior of the performance descriptors \(d_n^p(t) \) is systematic over all the performances, they will be strongly correlated with their mean value, and the standard deviation will be rather low. Furthermore, the mean will be a smoothed version of the descriptors, loosing the random fluctuations. On the contrary, if the behavior of the descriptors is not systematic, then their mean will differ from the descriptors, and the standard deviation will be high.

We also evaluate the consistency of the performance descriptors by calculating the correlation coefficients \(r^2(\Gamma|d|) \) of the retimed observation \(p \) of the descriptor \(d \) and the \(P - 1 \) others. The mean of these correlation coefficients \(r^2(\Gamma|d|) \) measures the strength of the correlations.

3. AN APPLICATION TO THE CLARINET

3.1. Sound corpus

We asked the professional clarinettist C. Crousier to play the same excerpt of an Allemande of Bach (see Figure 2) twenty times with the same musical intention. This excerpt is destined to be played rather slowly and expressively (its score indication is "Lourd et expressif"). A 48 bpm reference pulsation was given to the musician by a metronome before the recordings. It was then stopped during the performance to give the player the freedom to accelerate or slow down. The reference pulsation let us calculate the notes’ nominal durations given by the score \(D_{\text{core}}^\text{n} \) and thus evaluate the performer’s rhythmic deviations.

The recordings of the clarinet were made in an anechoic chamber with a 44100 Hz sample frequency. We used SD System clarinet microphones fixed on the body and the bell of the instrument, avoiding recording problems due to the movements of the instrumentalist while playing.

3.2. Performance descriptors extraction

We applied the Short Time Fourier Transform (STFT) on each recorded musical sequences. Hannings windows of 1024 samples and 75% of overlap have been used for this purpose. Timbre descriptors were calculated considering \(N_{\text{har}} = 15 \) harmonics.

3.2.1. Rhythm descriptor

We normalized the rhythm descriptors \(\Delta D_n^p \) given by the equation (2) according to the notes nominal durations and expresses it in percent. Its mean expressed as a deviation percentage is hence given by:

\[
\Delta D_n^p(\%) = 100 \cdot \frac{\Delta D_n^p}{D_{\text{core}}^n}
\]

3.3. Intensity variations

We characterize intensity variations by the Root Mean Square envelopes of the recorded sequences.

3.4. Timbre variations

Three timbre descriptors adapted to clarinet sounds have been chosen to describe the timbre variation during musical performance: the spectral centroid, which can be regarded as the mean frequency of the spectrum, the spectral irregularity correlated to the differences between odd and even harmonics, and the odd and the even descriptors, correlated to the energy of odd and even harmonics in the spectrum. We will present a particular case showing that these timbre descriptors contain complementary information.

The Spectral Centroid

The definition we use for the spectral centroid \(SCB \) is the one given by Beauchamp in [10]. It differs from the classical definition by the presence of a term \(b_0 \) that forces the centroid to decrease when the energy in the signal is low, avoiding an increase of the spectral centroid at the end of the notes. It has been shown that the spectral centroid is correlated to the brightness of a sound and correlates with the main control parameters of the clarinettist, i.e. the mouth pressure and the reed aperture [11] [12]. It is defined by:

\[
SCB_n^p(t) = \frac{\sum_{k=1}^{N_{\text{sup}}} k A_k(t)}{b_0 + \sum_{k=1}^{N_{\text{sup}}} A_k(t)}
\]

where the \(A_k(t) \) are the modulus of the STFT considered up to the frequency bin \(N_{\text{sup}} \). The term \(b_0 \) is given by:

\[
b_0 = \text{Max}[A_k(t)], k = 1, ..., N_{\text{sup}}
\]

The Spectral Irregularity

Krimphoff has pointed out the importance of the spectral irregularity [13]. We here derived a new definition from the one...
Jensen gave in [14], including a term b_1 in the denominator for the same reason as for the spectral centroid. The spectral irregularity IRRB can then be defined by:

$$\text{IRRB}_n^p(t) = \frac{\sum_{h=1}^{N_{\text{harm}}}(A_{h+1}(t) - A_h(t))^2}{b_1 + \sum_{h=1}^{N_{\text{harm}}}A_h(t)^2}$$

where:

$$b_1 = (\text{Max}[A_h(t)])^2, h = 1, \ldots, N_{\text{harm}}$$

The Odd and Even descriptors

The lack of even harmonics compared to odd ones is characteristic of the clarinet timbre (see for instance [15]), but their energy increases as the breath pressure increases (see [12]). A measure of odd and even harmonics energy compared to the overall energy is given by the Odd and Even descriptors defined below. We will show a particular case where they explain subtle timbre variations of the clarinet.

$$\text{Odd}_n^p(t) = \frac{\sum_{h=1}^{N_{\text{odd}}}A_{2h+1}(t)}{\sum_{h=1}^{N_{\text{harm}}}A_h(t)}$$

$$\text{Even}_n^p(t) = \frac{\sum_{h=1}^{N_{\text{even}}}A_{2h}(t)}{\sum_{h=1}^{N_{\text{harm}}}A_h(t)}$$

where N_{odd} is the number of odd harmonics, and N_{even} the number of even harmonics.

4. CONSISTENCY OF THE PERFORMANCE DESCRIPTORS

4.1. Strong correlations between the performances

The mean correlation coefficients of the retimed performance descriptors are given in table 1. The high values of $r^2(\Gamma[d])$ point out a strong consistency of the rhythm descriptor ΔD, the intensity descriptor RMS, and the timbre descriptors SCB, IRRB, Odd and Even, over the various performances.

<table>
<thead>
<tr>
<th>d</th>
<th>ΔD</th>
<th>RMS</th>
<th>SCB</th>
<th>IRRB</th>
<th>Odd</th>
<th>Even</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r^2(\Gamma[d])$</td>
<td>0.76</td>
<td>0.89</td>
<td>0.84</td>
<td>0.71</td>
<td>0.74</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Table 1: Mean correlations of the performance descriptors

4.2. Rhythmic patterns

As the effective and nominal ”scores” show on figure 3, the duration of the mean effective performance is longer than the nominal one (almost a 2s difference). In order to play expressively, the performer affects rhythmic deviations compared to the rhythm indicated on the score. These rhythmic deviations lead to local accelerandi or decelerandi. In general, certain short notes tend to be shortened by the performer ($\Delta D_r < 0$, see for example notes 10 and 20), whereas certain long notes tend to be lengthened ($\Delta D_r > 0$, see for example notes 5, 11 and 12). From 7s to the end, almost all the notes are played longer, up to twice their nominal durations for some of them. This reveals a slowing down of the tempo by the performer which is very common in endings of musical phrases. These results are in agreement with the ”Duration Contrast” and ”Final Retard” rules defined by the Friberg and colleagues, which model the two rhythmic principles indicated above [2].

4.3. Intensity patterns

As can be seen on figure 5, the phrase begins forte and then there is a progressive decrescendo until the end of the phrase. The energy peak at time bin 1600 may be due to the fact that the note played has a very low frequency (147 Hz) and is more radiated by the clarinet.

4.4. Timbre patterns

Figure 6 represents the mean spectral centroid and its standard deviation. There is a strong, monotonously increasing correlation with the intensity variations (see figure 5). Indeed, we showed in the case of synthetic clarinet sounds that an increase of the breath...
pressure induces an increase of the energy of high-order harmonics and more particularly for even harmonics around the reed resonance frequency [12]. This is due to the non-linear coupling between the excitor (the reed) and the resonator (the bore) and explains the increase of the brightness of the sound. As shown in figure 6, these changes can be strong. For the fifth note (around time bin 200), the difference between the lowest value of the spectral centroid at the note onset and the highest, close to the end of the note, is about 500 Hz. A neat change in the note’s timbre is audible (sounds are given at http://w3lma.cnrs-mrs.fr/barthet/). It is worth noticing that the spectral irregularity doesn’t reflect such timbre variations and is quite stable within the note duration. Indeed, as figure 8 shows, the odd descriptor decreases after the attack phase, whereas the even descriptor increases and thus compensates for the spectral irregularity. This does not mean that the energy of the odd harmonics diminishes during the note, but that the energy of even harmonics grows faster. This is an example of one of the subtle timbre variation the performer can produce on a clarinet with great expertise.

Whereas the intensity globally decreases, the spectral irregularity globally increases. Actually, the difference between the odd and even harmonic energies gets higher as the intensity increases.

4.5. Timbre and Intensity correlation

Figure 5 and 6 show that there is a strong correlation between the spectral centroid and the envelope. Nevertheless, the spectral centroid of a note depends on its fundamental frequency and this biases the observation. Hence, we have normalized the spectral centroid according to the mean instantaneous fundamental frequency as follows:

$$SCB'(t) = \frac{SCB(t)}{F0(t)}$$ \hspace{1cm} (14)

Figure 9 represents the normalized spectral centroid SCB' as a function of the normalized mean RMS envelope for two categories of notes, the short and piano ones, and the long and forte ones. It is worth noticing that these two categories of notes seem to follow different kinds of trajectories. Indeed, the spectral centroids of the short and piano notes increases very quickly compared to the envelope, whereas the spectral centroids of the long and forte notes seems to increase less rapidly than the envelope. The correlations
we made are only qualitative but clearly proves that a link exist between the variations of the parameters of expression.

5. CONCLUSION AND FURTHER WORKS

The analysis and comparison of various recorded clarinet performances of the same piece played with the same musical intention showed that timbre (restricted to some pertinent descriptors) follows systematic patterns. We have hence verified on natural clarinet sounds what has been observed on synthetic clarinet sounds [6].

Qualitative results show that these timbre patterns seem to be related to the rhythmic and intensity deviations over the course of the musical piece. It seems natural then to consider the timbre as an attribute of the musical expressivity. Nevertheless, the relative influence of timbre, rhythm and intensity variations in expressive music performance is not fully understood. Multidimensional analysis are currently conducted to better understand these links. We also plan in the future to address this issue by associating signal processing techniques altering the interpretation to psychoacoustic evaluation.

6. ACKNOWLEDGEMENTS

We would like to thank C.Crousier for his excellent advices and implication in this project. We are also grateful to the GENESIS company for providing the LEA software.

7. REFERENCES