
HAL Id: hal-00463104
https://hal.science/hal-00463104v2

Submitted on 4 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A quasistatic evolution model for the interaction
between fracture and damage

Jean-François Babadjian

To cite this version:
Jean-François Babadjian. A quasistatic evolution model for the interaction between fracture and
damage. Archive for Rational Mechanics and Analysis, 2011, 200 (3), pp.945-1002. �10.1007/s00205-
010-0379-6�. �hal-00463104v2�

https://hal.science/hal-00463104v2
https://hal.archives-ouvertes.fr


A QUASISTATIC EVOLUTION MODEL FOR THE INTERACTION BETWEEN

FRACTURE AND DAMAGE

JEAN-FRANÇOIS BABADJIAN

Abstract. This paper is devoted to the investigation of a quasistatic evolution model for a con-
tinuum which undergoes damage and possibly fracture. In both cases, the model appears to be ill
posed so that it is necessary to introduce a relaxed variational evolution preserving the irreversibility
of the process, the minimality at each time, and the energy balance. From a mechanical point of
view, it turns out that the material prefers to form microstructures through the creation of fine mix-
tures between the damaged and healthy parts of the medium. The brutal character of the damage
process is then replaced by a progressive one, where the original damage internal variable, i.e. the
characteristic function of the damaged part, is replaced by the local volume fraction. The analysis
rests on a locality property for mixtures which enables to use an alternative formula for the lower
semicontinuous envelope of the elastic energy in terms of the G-closure set.
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1. Introduction

Damage in a brittle elastic medium is characterized by the decrease of its elastic properties during
a series of loading-unloading tests. In brutal damage, each point of the material is supposed to
exhibit only two states: either damaged or undamaged. Thus the natural internal variable describing
the damage phenomenon is the characteristic function of the damaged part of the body. When the
material is subjected to a time-dependent loading, where all rate dependent effects like viscosity or
inertia are neglected, one can consider damage as a rate independent process, and it is relevant to
understand how the damage internal variable evolves in time.

A general abstract theory of quasistatic evolution problems for rate independent materials has
been introduced in [35], and it is the subject of many applications as e.g. in plasticity [13, 16, 37] or
fracture [18, 28, 17] (see [36] for an exhaustive literature on the subject). All these models share the
same idea of adding a dissipation energy to the potential energy. The dissipation potential depends
on the internal variable(s) of the underlying process, and the fundamental property characterizing
the rate independency is that it is positively one homogeneous. Then the same methodology applies
by first discretizing the time variable, and then letting the time step tend to zero. A first difficulty
occurs at the discrete time level about the well posedness of the successive minimization problems
which may fail to have solutions. If so, it is then necessary to introduce the relaxed problem leading
to a relaxed variational evolution. This kind of problems has been studied in [38] in the more general
framework of stability of rate independent processes through Γ-convergence, which is a well suited
mode of convergence for static minimization problems (see [15]). More particular analysis have been
carried out for the stability of quasistatic crack evolution through homogenization in [32], or through
dimensional reduction in [6].

Partial brittle damage is an example where the original discrete evolution is ill posed (see [29, 27]).
Indeed, even at the first time step the minimization of the total energy (i.e. the sum of potential
energy and the dissipation energy) has no solution due to the non convexity of the elastic energy. From
a mathematical point of view, we observe that minimizing sequences oscillate so that they are unable
to reach a minimizer. From a mechanical point of view, these oscillations stand for microstructures
that the material needs to develop for energetic convenience. The relaxation of the original problem
consists thus in the creation of mixtures between the weak material (the part of the body which may
already be damaged) and the strong one (the undamaged part of the body), and the characteristic
function of the damaged part (the original internal variable) is replaced by the local volume fraction
which is a function taking its values in the full interval [0, 1]. Thus it may happen that some points
of the medium are no longer either healthy or damaged, but that they result from a fine mixture
between both phases. Our goal here is to state existence results (see Theorems 1.1 and 1.2) for
relaxed quasistatic evolution models involving damage (see [29]) and possibly fracture (see [30]) in
the framework of nonlinear elasticity, in contrast with [29, 27] where the authors considered linearized
elasticity. Our analysis will be close to that of [27]; we also refer to [31] where a threshold based model
is considered, by analogy with stress yield criteria used in plasticity or fracture. We also refer to [3, 4]
where are performed numerical simulations of the damage quasistatic evolution model introduced in
[29] that we are considering here. They use respectively the homogenization and the level set methods,
employed for shape optimization problems which are very close to damage.

The previous discussion shows the importance of the theory of homogenization, and in particular
mixtures, for the study of the quasistatic damage evolution. In fact, a localization property proved
in [7] for energies resulting from a mixture between two arbitrary materials will be instrumental
because it will enable us to obtain an alternative formula for the relaxed energy. The local character
of G-closure states that, at least for convex energies, any effective energy obtained by an arbitrary
mixture between two materials can be locally recovered as the pointwise limit of a sequence of effective
energies obtained as a periodic mixture between the same materials with the same local volume
fraction. More specifically, if W1 and W2 are convex functions being the stored energy densities
of two different materials, and χ is a characteristic function, then we define Wχ by Wχ(x, ξ) :=
χ(x)W1(ξ) + (1 − χ(x))W2(ξ), and by (Wχ)hom its homogenized energy density (see (4.2)). For any
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θ ∈ [0, 1], define the following set

Pθ(W1,W2) :=
{
f : ∃ χ satisfying

∫

Q

χdx = θ and f = (Wχ)hom

}
,

made of all energy densities obtained by a periodic mixture of W1 and W2 in proportions θ and
1 − θ. We denote by Gθ(W1,W2) the closure of Pθ(W1,W2) for the pointwise convergence. For any
θ ∈ L∞(Ω; [0, 1]), let us further introduce Gθ(W1,W2) as the set of all possible Carathéodory functions

f such that there exists a sequence of characteristic functions (χk) satisfying χk
∗−⇀ θ in L∞(Ω; [0, 1]),

and ∫

Ω

f(x,∇u) dx = Γ- lim
k→+∞

∫

Ω

Wχk
(x,∇u) dx.

The localization result proved in [7] states that if W1 and W2 have suitable growth and coercivity
conditions, then f ∈ Gθ(W1,W2) if and only if f(x, ·) ∈ Gθ(x)(W1,W2) for a.e. x ∈ Ω.

In our application, W1 and W2 will stand for, respectively, the stored energy densities of the dam-
aged and undamaged parts of the body occupying the open set Ω ⊂ R

N in its reference configuration.
Hence we have W1 ≤ W2 since damage decreases the rigidity of the structure. We assume that W1

and W2 ∈ F(α, β, p) satisfy suitable p-growth and p-coercivity conditions with p > 1 (see (2.1)), and
that they are uniformly convex (see (2.4)) and of class C1. We also assume that Ω has a Lipschitz
boundary which can be split into the union of two disjoint sets ∂Ω = ∂NΩ ∪ ∂DΩ, where ∂DΩ is
open in the relative topology of ∂Ω. We suppose that the Neumann part ∂NΩ of the boundary is
free, while the Dirichlet part ∂DΩ is subjected to a time dependent boundary deformation g(t), where
g ∈W 1,1([0, T ];W 1,p(Ω)). In view of the growth and coercivity properties of the stored energy density,
the natural space of all kinematically admissible deformation fields at time t is given by

A(t) := {v ∈W 1,p(Ω) : v = g(t) HN−1-a.e. on ∂DΩ}.
Note that we are considering here scalar valued functions so that, from the point of view of modeling,
only the two dimensional case (N = 2) is meaningful. Indeed, in that case Ω stands for the basis of an
infinite cylinder, and the field u is interpreted as the third component of an anti-plane deformation.

Our first main result is the following theorem.

Theorem 1.1. Let W1 and W2 ∈ F(α, β, p) be two uniformly convex functions of class C1 such that
W1 ≤ W2, and let g ∈ W 1,1([0, T ];W 1,p(Ω)). Then, for every t ∈ [0, T ], there exist u(t) ∈ A(t),
Θ(t) ∈ L∞(Ω; [0, 1]) and W (t) ∈ F(Ω, α, β, p) such that W (t)(x, ·) ∈ G1−Θ(t)(x)(W1,W2) for a.e.
x ∈ Ω, and

(i) Irreversibility: the maps t 7→ Θ(t) and t 7→W (t) are decreasing;
(ii) Unilateral minimality: for any v ∈ A(t), any θ ∈ L∞(Ω; [0, 1]) and any W ∈ F(Ω, α, β, p)

such that W (x, ·) ∈ Gθ(x)(W1,W (t)(x, ·)) for a.e. x ∈ Ω, then
∫

Ω

W (t)(x,∇u(t)) dx ≤
∫

Ω

W (x,∇v) dx+ κ

∫

Ω

Θ(t)θ dx;

(iii) Energy balance: the total energy

E(t) :=

∫

Ω

W (t)(x,∇u(t)) dx+ κ

∫

Ω

(1 − Θ(t)) dx

is absolutely continuous with respect to t and

E(t) = E(0) +

∫ t

0

∫

Ω

DW (τ)(x,∇u(τ)) · ∇ġ(τ) dx dτ.

We will also consider a model where the body can undergo both fracture and damage. A first
attempt to this problem has been initiated in [22]. We also refer to [19] where the authors study a
quasistatic evolution model for the interplay between fracture and plasticity. The presence of cracks
inside the structure implies that the deformation u can exhibit discontinuities. Thus u cannot live
anymore in a Sobolev space but in a suitable subspace SBV p(Ω) of functions of bounded variation.
Thus in this case, the space of all kinematically admissible deformation fields is

A(t) := {v ∈ SBV p(Ω) : v = g(t) HN−1-a.e. on ∂DΩ},
and we have the following existence result.
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Theorem 1.2. Let W1 and W2 ∈ F(α, β, p) be two uniformly convex functions of class C1 such that
W1 ≤W2, and let g ∈W 1,1([0, T ];W 1,p(RN ))∩L∞(RN × [0, T ]). Then, for every t ∈ [0, T ] there exist
u(t) ∈ A(t), Θ(t) ∈ L∞(Ω; [0, 1]), W (t) ∈ F(Ω, α, β, p) such that W (t)(x, ·) ∈ G1−Θ(t)(x)(W1,W2) for

a.e. x ∈ Ω, and a countably HN−1-rectifiable set Γ(t) ⊂ Ω satisfying

(i) Irreversibility: the maps t 7→ Θ(t) and t 7→W (t) are decreasing, and t 7→ Γ(t) is increasing;

(ii) Unilateral minimality: for any countably HN−1-rectifiable set K ⊂ Ω such that Γ(t) ⊂̃ K,

any v ∈ A(t) such that Jv ⊂̃ K, any θ ∈ L∞(Ω; [0, 1]) and any W ∈ F(Ω, α, β, p) such that
W (x, ·) ∈ Gθ(x)(W1,W (t)(x, ·)) for a.e. x ∈ Ω, then

∫

Ω

W (t)(x,∇u(t)) dx+HN−1(Γ(t) \ ∂NΩ) ≤
∫

Ω

W (x,∇v) dx+HN−1(K \ ∂NΩ) +κ

∫

Ω

Θ(t)θ dx;

(iii) Energy balance: the total energy

E(t) :=

∫

Ω

W (t)(x,∇u(t)) dx+ κ

∫

Ω

(1 − Θ(t)) dx+ HN−1(Γ(t) \ ∂NΩ)

is absolutely continuous with respect to t and

E(t) = E(0) +

∫ t

0

∫

Ω

DW (τ)(x,∇u(τ)) · ∇ġ(τ) dx dτ.

Let us now briefly comment our assumptions. Indeed, in this study, we make to main hypothesis.
The first one is that the densities W1 and W2 are restricted to be convex functions. The reason is
that the local character of G-closure proved in [7], and used many times here, has only been proved
in the convex case. To our knowledge, it is not known yet whether it holds or not in the general
quasiconvex case. Moreover, we not only assumed convexity but uniform convexity (defined in (2.4)).
This is mainly due to the results of [32] concerning the stability of quasistatic evolution through
Γ-convergence which require some technical assumptions on the elastic energy density (see Lemmas
3.1 and 3.2 and Theorem 3.5). We also choose to consider scalar valued functions instead of vector
valued ones (which would have been relevant if one wants to consider three-dimensional elasticity).
This assumption is due to two facts: first of all, since we are restricted by the convexity of the elastic
energy, we think that it is more relevant to consider scalar valued functions for which convexity is a
natural notion, in contrast with the vectorial case where the natural notion is rather quasiconvexity. As
explained before, since we are unable to consider the quasiconvex case, we think it is more appropriate
to deal with scalar valued functions. Moreover, in the study of the damage-fracture evolution problem,
the scalar nature of the problem is used through the application of the maximum principle which helps
to get compactness for the sequence of deformations in the space SBV p(Ω). In the general vectorial
case, the maximum principle would not hold anymore, and it would have been necessary to consider
a larger space of generalized special functions of bounded variation as in [17]. Note however that our
results (Theorems 1.1 and 1.2) could have been proved exactly in the same way in the vectorial case,
but still with the same uniform convexity assumption, and upon imposing the deformation to live
inside a fixed ”box” for the fracture problem in order to avoid a lack of compactness in SBV p(Ω).

The paper is organized as follows: in section 2, we introduce some notations about the functional
spaces used in the sequel. In section 3, we recall well known facts about Γ-convergence of integral
functionals in Sobolev and special functions of bounded variation spaces. We further prove new Helly
type results for sequences of functionals depending monotonically on the time variable. Then, section
4 is dedicated to the homogenization of integral functionals with special emphasis on mixtures. In
particular, we prove a finer continuity result on the G-closure set with respect to some Hausdorff
metric. Section 5 is devoted to the proof of the existence result (Theorem 1.1) for a relaxed model
of quasistatic damage evolution. Finally, in section 6 we prove the second existence result (Theorem
1.2) for another relaxed model of quasistatic evolution involving both fracture and damage.

2. Preliminaries

2.1. Function spaces. In the sequel, Ω will always stand for a bounded open subset of R
N . We

will also denote by Q := (0, 1)N the open unit square of R
N , and by Bρ(x) the ball of R

N of center
x ∈ R

N and radius ρ > 0. If x = 0, we simply write Bρ instead of Bρ(0).
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If p ≥ 1, we use standard notations for Lebesgue spaces Lp(Ω) and Sobolev spaces W 1,p(Ω). The
Lebesgue measure in R

N will be denoted by LN , while HN−1 will stand for the (N − 1)-dimensional
Hausdorff measure. The symbol −

∫
E

is used for the average LN (E)−1
∫

E
. We will use the notation ⊂̃

for the inclusion of sets, up to a set of zero HN−1 measure. The set of all countably HN−1-rectifiable
subsets of Ω is denoted by R(Ω). It is known (see [5]) that for any K ∈ R(Ω), it is possible to define
a generalized normal νK(x) for HN−1-a.e. x ∈ K.

We define the space SBV (Ω) of special functions of bounded variation as the space of all functions
u ∈ L1(Ω) such that the distributional derivative Du of u can be represented as a vector valued
bounded Radon measure of the form

Du = ∇uLN + (u+ − u−)νuHN−1 Ju.

Here ∇u ∈ L1(Ω; RN ) is the approximate gradient of u (the absolutely continuous part of Du with
respect to the Lebesque measure LN ), Ju is the jump set of u which is a countably HN−1-rectifiable
set on which one can define HN−1-a.e. a generalized normal denoted νu, as well as traces u±. We refer
to [5] for a detailed description of that space (see also [21]). The space SBV p(Ω), for p > 1, is a subset
of SBV (Ω) made of all functions u ∈ SBV (Ω) such that ∇u ∈ Lp(Ω; RN ) and HN−1(Ju ∩Ω) < +∞.
One of the main interests of the space SBV p(Ω) is that Mumford-Shah like functionals are coercive
in that space according to Ambrosio’s compactness Theorem (see [5, Theorem 4.8]).

Theorem 2.1. Let (un) ⊂ SBV p(Ω) be a sequence such that

sup
n∈N

(
‖un‖L∞(Ω) + ‖∇un‖Lp(Ω;RN ) + HN−1(Jun

)
)
< +∞.

Then, there exist a subsequence (unk
) and a function u ∈ SBV p(Ω) such that unk

→ u in L1(Ω),
∇unk

⇀ ∇u in Lp(Ω; RN ), and HN−1(Ju) ≤ lim infk→+∞ HN−1(Junk
).

The previous result suggests to define a notion of ”weak convergence” in SBV p(Ω).

Definition 2.1. Let (un) ⊂ SBV p(Ω) and u ∈ SBV p(Ω). We say that un converges weakly to u in
SBV p(Ω), and we write un ⇀ u in SBV p(Ω), if un → u in L1(Ω), ∇un ⇀ ∇u in Lp(Ω; RN ), and
supn∈N HN−1(Jun

) < +∞.

In the sequel we will also consider the family P (Ω) := {u ∈ SBV (Ω) : u(x) ∈ {0, 1} for a.e. x ∈ Ω}
of all characteristic functions of sets of finite perimeter in Ω.

2.2. Integrands. Let p > 1 and 0 < α ≤ β < +∞, then we define F(α, β, p) as the set of all
continuous functions f : R

N → [0,+∞) satisfying the following growth and coercivity conditions:

α|ξ|p ≤ f(ξ) ≤ β(1 + |ξ|p) for all ξ ∈ R
N . (2.1)

When f is convex, it also satisfies the following p-Lipschitz property (see e.g. [14] or [25]): there exists
γ > 0 (depending only on β and p) such that

|f(ξ1) − f(ξ2)| ≤ γ(1 + |ξ1|p−1 + |ξ2|p−1)|ξ1 − ξ2| for all ξ1, ξ2 ∈ R
N , (2.2)

and if f is further of class C1, then it differential Df : R
N → R

N satisfies the following (p− 1)-growth
condition

|Df(ξ)| ≤ γ(1 + |ξ|p−1) for all ξ ∈ R
N . (2.3)

We also define F(Ω, α, β, p) as the set of all Carathéodory functions f : Ω× R
N → [0,+∞) such that

f(x, ·) ∈ F(α, β, p) for a.e. x ∈ Ω.

We now define a notion of convexity which will be instrumental in the quasistatic evolution models
studied in sections 5 and 6. We say that a function f : R

N → [0,+∞) is uniformly convex if there
exists ν > 0 such that

f

(
ξ1 + ξ2

2

)
≤ 1

2
f(ξ1) +

1

2
f(ξ2) − ν|ξ1 − ξ2|2(1 + |ξ1|2 + |ξ2|2)(p−2)/2 (2.4)

for every ξ1 and ξ2 ∈ R
N . In [24, Proposition 2.2] and [23, Proposition 2.5], a complete characterization

of such functions is given. Indeed, a function f ∈ F(α, β, p) is uniformly convex if and only if there
exist and constant c > 0 and a convex function φ such that f(ξ) = c(1 + |ξ|2)p/2 + φ(ξ). By standard
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convex analysis, if f is further of class C1, then its differential Df : R
N → R

N is monotone, and
satisfies

(Df(ξ2) −Df(ξ1)) · (ξ2 − ξ1) ≥ ν′|ξ1 − ξ2|2(1 + |ξ1|2 + |ξ2|2)(p−2)/2 (2.5)

for every ξ1 and ξ2 ∈ R
N , and for some ν′ > 0. As an example, the function ξ 7→ (1 + |ξ|2)p/2

is uniformly convex. Another important example is the function f(ξ) := |ξ|p (for p > 1) which,
unfortunately, fails to be uniformly convex. However, it enjoys good properties as strict convexity and

(Df(ξ2) −Df(ξ1)) · (ξ2 − ξ1) ≥ ν′|ξ1 − ξ2|2(|ξ1|2 + |ξ2|2)(p−2)/2 if p > 1. (2.6)

Moreover, if p ≥ 2, one has

(Df(ξ2) −Df(ξ1)) · (ξ2 − ξ1) ≥ ν′|ξ1 − ξ2|p. (2.7)

These properties are actually enough for the study of the quasistatic evolution models in sections 5
and 6 (see Lemma 5.6).

3. Γ-convergence

In this section, we recall the definition and standard properties of Γ-convergence. We refer to [11, 15]
for a detailed description.

3.1. Definition and topology of Γ-convergence. We say that a sequence of functionals Fn :
Lp(Ω) → [0,+∞] (with p > 1) Γ-converges for the strong Lp(Ω)-topology to F : Lp(Ω) → [0,+∞] if
the following properties hold:

(i) for every u ∈ Lp(Ω) and every sequence (un) ⊂ Lp(Ω) such that un → u in Lp(Ω), then

F (u) ≤ lim inf
n→+∞

Fn(un);

(ii) for every u ∈ Lp(Ω), there exists a sequence (ūn) ⊂ Lp(Ω) such that ūn → u in Lp(Ω), and

F (u) = lim
n→+∞

Fn(ūn).

We now recall several facts about the metrizability of Γ-convergence for lower semicontinuous and
equi-coercive functionals. For every u ∈ Lp(Ω), we denote by

Ψ(u) :=





α

∫

Ω

|∇u|p dx if u ∈W 1,p(Ω),

+∞ otherwise,

and by SΨ the set of all lower semicontinuous functionals F : Lp(Ω) → [0,+∞] such that F ≥ Ψ on
Lp(Ω). For every F ∈ SΨ and λ > 0, we denote by Fλ the Moreau-Yosida transform of F defined by

Fλ(u) := inf
v∈Lp(Ω)

{
F (v) + λ‖u− v‖p

Lp(Ω)

}
for every u ∈ Lp(Ω).

Let Φ be an increasing homeomorphism between [0,+∞] and [0, 1], (uj) be a dense sequence in Lp(Ω),
and (λj) be a sequence of positive real numbers. For every F and G ∈ SΨ, we define

dΓ(F,G) :=
+∞∑

i,j=1

1

2i+j

∣∣Φ(Fλj (ui)) − Φ(Gλj (ui))
∣∣ .

From [15, Proposition 10.21], it is known that dΓ defines a distance over SΨ. Moreover, by [15,
Theorem 10.22], the metric space (SΨ,dΓ) is compact, and a sequence (Fn) in SΨ Γ-converges to a
functional F ∈ SΨ if and only if dΓ(Fn, F ) → 0.
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3.2. Time dependent functionals. In the sequel we will be interested in time-dependent sequences
of functionals Fn(t) : Lp(Ω) → [0,+∞] which are monotone with respect to the time parameter t. We
will need a version of Helly’s Theorem as stated below.

Theorem 3.1. Let Fn : [0, T ] → SΨ be a sequence of functionals which is decreasing with respect to
t, i.e., for all u ∈ Lp(Ω) and n ∈ N,

Fn(t)(u) ≤ Fn(s)(u) for every 0 ≤ s ≤ t ≤ T.

Then there exist a subsequence (nk) and a functional F : [0, T ] → SΨ, still decreasing with respect to
t, such that Fnk

(t) Γ-converges to F (t) for every t ∈ [0, T ].

Proof. We define the total variation of the map Fn : [0, T ] → SΨ by

VarΓ(Fn; [0, T ]) := sup

{
h−1∑

k=1

dΓ(Fn(tk), Fn(tk+1)) : 0 = t1 < t2 < . . . < th = T, h ∈ N

}
.

We claim that
sup
n∈N

VarΓ(Fn; [0, T ]) < +∞. (3.1)

Indeed, if k ∈ {1, . . . , h− 1}, by the monotonicity of t 7→ Fn(t) and Φ, we infer that

dΓ(Fn(tk), Fn(tk+1)) :=

+∞∑

i,j=1

1

2i+j
Φ((Fn(tk))λj (ui)) − Φ((Fn(tk+1))

λj (ui)).

Consequently, summing up for k = 1, . . . , h− 1 we deduce that

h−1∑

k=1

dΓ(Fn(tk), Fn(tk+1)) =
+∞∑

i,j=1

1

2i+j
Φ((Fn(0))λj (ui)) − Φ((Fn(T ))λj (ui))

≤
+∞∑

i,j=1

Φ((Fn(0))λj (ui))

2i+j
≤

+∞∑

i,j=1

1

2i+j
= 1.

Then taking the supremum over all partitions in the left hand side of the previous inequality leads
to the desired bound (3.1) on the total variation. Since the space (SΨ,dΓ) is compact, it suffices to
apply the general result [35, Theorem 3.2] stated below (Theorem 3.2) in a simpler form. �

Theorem 3.2. Let (Y, d) be a compact metric space, and let Yn : [0, T ] → Y be a sequence with equi-
bounded total variation Vard(Yn; [0, T ]) with respect to the distance d. Then, there exist a subsequence
(nk) and a function Y : [0, T ] → Y such that Ynk

(t) → Y (t) in (Y, d) for every t ∈ [0, T ].

When Fn(t) is an integral functional of the form

Fn(t)(u) :=





∫

Ω

fn(t)(x,∇u) dx if u ∈W 1,p(Ω),

+∞ otherwise,
(3.2)

we get a localized version of Theorem 3.1 which can be obtained by standard localization techniques
and integral representation results (see e.g. [11, 12]).

Theorem 3.3. Let fn : [0, T ] → F(Ω, α, β, p) be a sequence of functions which are decreasing with
respect to t, i.e., for all n ∈ N, all ξ ∈ R

N , and a.e. x ∈ Ω,

fn(t)(x, ξ) ≤ fn(s)(x, ξ) for every 0 ≤ s ≤ t ≤ T.

Assume further that the functions fn(t)(x, ·) are convex. Then there exist a subsequence (nk) and a
function f : [0, T ] → F(Ω, α, β, p), still decreasing with respect to t, such that Fnk

(t) : Lp(Ω) → [0,+∞]
defined by (3.2) Γ-converges to F (t) : Lp(Ω) → [0,+∞] given by

F (t)(u) :=





∫

Ω

f(t)(x,∇u) dx if u ∈W 1,p(Ω),

+∞ otherwise,

for every t ∈ [0, T ].
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3.3. Some technical results. We recall some results proved in [32]. The following lemma stated in
[32, Lemma 3.4] is a slight generalization of [17, Lemma 4.9] for varying sequences of functionals. It
will be instrumental for deriving energy inequalities in sections 5 and 6.

Lemma 3.1. Let (X,A, µ) be a finite measure space, and let Hn : X × R
N → R

N be a sequence of
Carathéodory functions which satisfy the following properties:

(i) there exists a constant γ > 0 such that

|Hn(x, ξ)| ≤ γ(1 + |ξ|p−1)

for every ξ ∈ R
N and µ-a.e. x ∈ X;

(ii) for all M > 0 and all sequences (ξn) and (ξ′n) in R
N such that |ξn| ≤ M , |ξ′n| ≤ M and

|ξn − ξ′n| → 0, then

|Hn(x, ξn) −Hn(x, ξ′n)| → 0 for µ-a.e. x ∈ X.

Assume that (Φn) is bounded in Lp
µ(X; RN ) and that (Ψn) converges strongly to 0 in Lp

µ(X; RN ).

Then for every Φ ∈ Lp
µ(X; RN ),

∣∣∣∣
∫

X

[Hn(x,Φn(x) + Ψn(x)) −Hn(x,Φn(x))] · Φ(x) dµ(x)

∣∣∣∣→ 0.

Using Lemma 3.1, the next result has been proved in [32] pp. 442-443 and generalizes in turn [17,
Lemma 4.11]. Under technical assumptions, it ensures the weak convergence of the stresses associated
to a sequence of weakly converging deformations (in a suitable topology) for which there holds the
convergence of the corresponding elastic energies.

Lemma 3.2. Let fn and f ∈ F(Ω, α, β, p) be Carathéodory functions satisfying

(i) fn(x, ·) and f(x, ·) are convex and of class C1 for a.e. x ∈ Ω;
(ii) for all M > 0 and all sequences (ξn) and (ξ′n) in R

N such that |ξn| ≤ M , |ξ′n| ≤ M and
|ξn − ξ′n| → 0, then |Dfn(x, ξn) −Dfn(x, ξ′n)| → 0 for a.e. x ∈ Ω;

(iii) the sequence of functionals

W 1,p(Ω) ∋ v 7→
∫

Ω

fn(x,∇v) dx

Γ-converges in Lp(Ω) to

W 1,p(Ω) ∋ v 7→
∫

Ω

f(x,∇v) dx.

Assume that (un) ⊂ SBV p(Ω) is a sequence weakly converging to some u in SBV p(Ω), and that
∫

Ω

fn(x,∇un) dx→
∫

Ω

f(x,∇u) dx.

Then Dfn(·,∇un(·)) ⇀ Df(·,∇u(·)) weakly in Lp′

(Ω; RN ) where 1/p+ 1/p′ = 1.

3.4. Γ-convergence in SBV and σ-convergence. We now recall several facts about Γ-convergence
of functionals involving bulk and surface energies defined on the space SBV p(Ω). The following result
is a particular case of [32, Theorem 5.1] (see also [8]).

Theorem 3.4. Let fn and f ∈ F(Ω, α, β, p) be Carathéodory functions, and let E be a Borel set
satisfying HN−1(E) < +∞. Then the sequence of functionals

W 1,p(Ω) ∋ v 7→
∫

Ω

fn(x,∇v) dx

Γ-converges in L1(Ω) to

W 1,p(Ω) ∋ v 7→
∫

Ω

f(x,∇v) dx

if and only if the sequence of functionals

SBV p(Ω) ∋ v 7→
∫

Ω

fn(x,∇v) dx+ HN−1(Jv \ E)
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Γ-converges in L1(Ω) to

SBV p(Ω) ∋ v 7→
∫

Ω

f(x,∇v) dx+ HN−1(Jv \ E).

It is also possible to account for boundary conditions (see [32, Lemma 8.1]). In the sequel, Ω′ is
an open set containing Ω and such that Ω′ \ Ω 6= ∅.
Lemma 3.3. Under the same assumptions than in Theorem 3.4, if (gn) ⊂ W 1,p(Ω′) is such that
gn → g strongly in W 1,p(Ω′), then the sequence of functionals Fn : L1(Ω) → [0,+∞] defined by

Fn(v) :=





∫

Ω

fn(x,∇v) + HN−1(Jv \ E) if v ∈ SBV p(Ω),

+∞ otherwise,

Γ-converges in L1(Ω) to the functional F : L1(Ω) → [0,+∞] defined by

F (v) :=





∫

Ω

f(x,∇v) + HN−1(Jv \ E) if v ∈ SBV p(Ω),

+∞ otherwise,

if and only if the sequence of functionals Gn : L1(Ω′) → [0,+∞] defined by

Gn(v) :=





∫

Ω

fn(x,∇v) + HN−1(Jv \ E) if

{
v ∈ SBV p(Ω′),
v = gn a.e. in Ω′ \ Ω,

+∞ otherwise,

Γ-converges in L1(Ω′) to the functional G : L1(Ω′) → [0,+∞] defined by

G(v) :=





∫

Ω

f(x,∇v) + HN−1(Jv \ E) if

{
v ∈ SBV p(Ω′),
v = g a.e. in Ω′ \ Ω,

+∞ otherwise.

We next recall a notion of convergence for countably HN−1-rectifiable sets introduced in [32] called
σ-convergence which is related to the Γ-convergence of interfacial energies (see also [17] for another
notion of convergence called σp-convergence related to the weak convergence in SBV p(Ω)). Indeed
consider a sequence (Kn) in R(Ω), and define for any u ∈ L1(Ω′)

Hn(u) :=

{
HN−1(Ju \Kn) if u ∈ P (Ω′),
+∞ otherwise.

Assume that Hn Γ-converges in L1(Ω′) to H : L1(Ω′) → [0,+∞] defined by

H(u) :=





∫

Ju

h(x, νu) dHN−1 if u ∈ SBV p(Ω′),

+∞ otherwise,

for some function h : Ω′ × S
N−1 → [0,+∞).

Definition 3.1. We say that the sequence (Kn) σ-converges in Ω to some K ∈ R(Ω) if the functional
Hn Γ-converges in L1(Ω′) to H, and if K is the (unique) set in R(Ω) such that

h(x, νK(x)) = 0 for HN−1-a.e. x ∈ K,

and such that for any K ′ ∈ R(Ω) we have

h(x, νK′(x)) = 0 for HN−1-a.e. x ∈ K ′ ⇒ K ′ ⊂̃ K.

The σ-convergence enjoys good compactness and lower semicontinuity properties as the next result
shows (see Propositions 6.3 and 6.7 in [32]).

Proposition 3.1. Let (Kn) be a sequence in R(Ω) such that

sup
n∈N

HN−1(Kn) < +∞.

Then, there exist a subsequence (Knk
) and K ∈ R(Ω) such that Knk

σ-converges to K in Ω, and

HN−1(K \ E) ≤ lim inf
n→+∞

HN−1(Kn \ E)
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for any Borel set E ⊂ Ω with HN−1(E) < +∞.

The notion of σ-convergence is relevant to study the stability of unilateral minimizers through
Γ-convergence of the energies (see [32, Theorem 7.2]). Indeed, let fn ∈ F(Ω, α, β, p) be a sequence
of Carathéodory integrands. We suppose that Ω has a Lipschitz boundary which can be split into
the union of two disjoint sets ∂Ω = ∂DΩ ∪ ∂NΩ, where ∂DΩ is open in the relative topology of ∂Ω.
In particular, there exists an open subset Ω′ of R

N such that Ω ⊂ Ω′ and ∂DΩ = Ω′ ∩ ∂DΩ. Then
consider three sequences (gn) ⊂ W 1,p(Ω′), (un) ⊂ SBV p(Ω′) and (Kn) ⊂ R(Ω) such that Jun

⊂̃ Kn

and un = gn a.e. in Ω′ \ Ω for each n ∈ N. We further assume that the pair (un,Kn) is a unilateral
minimizer with respect to the integrand fn, i.e.,

∫

Ω

fn(x,∇un) dx+ HN−1(Kn \ ∂NΩ) ≤
∫

Ω

fn(x,∇v) dx+ HN−1(K ′ \ ∂NΩ),

for any K ′ ∈ R(Ω) such that Kn ⊂̃ K ′, and any v ∈ SBV p(Ω′) satisfying v = gn a.e. in Ω′ \ Ω and
Jv ⊂̃ K ′.

Theorem 3.5. Suppose that gn → g in W 1,p(Ω), un ⇀ u in SBV p(Ω′) and Kn σ-converges to K in
Ω. Assume further that fn and f ∈ F(Ω, α, β, p) are Carathéodory functions satisfying

(i) fn(x, ·) and f(x, ·) are convex and of class C1 for a.e. x ∈ Ω;
(ii) for all M > 0 and all sequences (ξn) and (ξ′n) in R

N such that |ξn| ≤ M , |ξ′n| ≤ M and
|ξn − ξ′n| → 0, then |Dfn(x, ξn) −Dfn(x, ξ′n)| → 0 for a.e. x ∈ Ω;

(iii) the sequence of functionals

W 1,p(Ω) ∋ v 7→
∫

Ω

fn(x,∇v) dx

Γ-converges in Lp(Ω) to

W 1,p(Ω) ∋ v 7→
∫

Ω

f(x,∇v) dx.

Then (u,K) is a unilateral minimizer with respect to the integrand f , i.e.,
∫

Ω

f(x,∇u) dx+ HN−1(K \ ∂NΩ) ≤
∫

Ω

f(x,∇v) dx+ HN−1(K ′ \ ∂NΩ),

for any K ′ ∈ R(Ω) such that K ⊂̃ K ′, and any v ∈ SBV p(Ω′) satisfying v = g a.e. in Ω′ \ Ω and
Jv ⊂̃ K ′. Moreover, ∫

Ω

fn(x,∇un) dx→
∫

Ω

f(x,∇u) dx.

We conclude this section by stating a transfer of jump set result which was initialy proved in [28]
and further extended in [17]. The version below is taken from [32, Theorem 7.4].

Theorem 3.6. Let f and fn be as in Theorem 3.5, and consider a sequence (Kn) ⊂ R(Ω) such that

sup
n∈N

HN−1(Kn) < +∞,

which σ-converges in Ω to some K ∈ R(Ω). For every v ∈ SBV p(Ω), there exists a sequence (vn) ⊂
SBV p(Ω) with vn ⇀ v in SBV p(Ω) such that

∫

Ω

fn(x,∇vn) dx→
∫

Ω

f(x,∇v) dx,

and

lim sup
n→+∞

HN−1(Jvn
\ (∂NΩ ∪Kn)) ≤ HN−1(Jv \ (∂NΩ ∪K)).

Moreover, if v ∈ SBV p(Ω′) and if there is a sequence (gn) ⊂ W 1,p(Ω′) which converges strongly in
W 1,p(Ω′) to some w ∈W 1,p(Ω′) such that v = g a.e. in Ω′ \Ω, then one can assume that the sequence
(vn) ⊂ SBV p(Ω′) satisfies vn = gn a.e. in Ω′ \ Ω for each n ∈ N.
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4. Homogenization and G-closure

In this section we recall well known facts about the homogenization of (convex) integral functionals,
and then we will specialize our study to the case of mixtures for which local properties of effective
materials can be obtained (see [7]).

Given f ∈ F(Q,α, β, p), we denote by fhom(ξ) its homogenized energy density defined by

fhom(ξ) := lim
T→+∞

inf

{
−
∫

(0,T )N

f(〈y〉, ξ + ∇ϕ(y)) dy : ϕ ∈W 1,p
per((0, T )N )

}

= inf
k∈N

inf

{
−
∫

(0,k)N

f(〈y〉, ξ + ∇ϕ(y)) dy : ϕ ∈W 1,p
per((0, k)

N )

}
, (4.1)

where 〈y〉 denotes the fractional part of the vector y ∈ R
N . It is known (see [10, 39]) that the

functional Fhom : Lp(Ω) → [0,+∞] defined by

Fhom(v) :=





∫

Ω

fhom(∇v) dx if v ∈W 1,p(Ω),

+∞ otherwise,

is the Γ-limit in Lp(Ω) of the family Fε : Lp(Ω) → [0,+∞] given by

Fε(v) :=





∫

Ω

f
(〈x

ε

〉
,∇v

)
dx if v ∈W 1,p(Ω),

+∞ otherwise.

Moreover, since the functions v are scalar valued, the asymptotic formula (4.1) reduces to the following
single cell formula

fhom(ξ) = inf
ϕ∈W 1,p

per (Q)

∫

Q

f(y, ξ + ∇ϕ(y)) dy. (4.2)

We now deal with a particular case of composite materials which are mixtures. Given a charac-
teristic function χ ∈ L∞(Ω; {0, 1}) and two convex functions W1 and W2 ∈ F(α, β, p), we define the
Carathéodory integrand Wχ ∈ F(Ω, α, β, p) by

Wχ(x, ξ) := χ(x)W1(ξ) + (1 − χ(x))W2(ξ).

For any θ ∈ [0, 1], define the following set

Pθ(W1,W2) :=
{
f ∈ F(α, β, p) such that there exists χ ∈ L∞(Q; {0, 1})

satisfying

∫

Q

χdx = θ and f = (Wχ)hom

}
,

made of all energy densities obtained by a periodic mixture of W1 and W2 in proportions θ and 1− θ.
We denote by Gθ(W1,W2) := Pθ(W1,W2) the closure of Pθ(W1,W2) for the pointwise convergence.

For any θ ∈ L∞(Ω; [0, 1]), let us further introduce Gθ(W1,W2) as the set of all possible densities
f ∈ F(Ω, α, β, p) such that there exists a sequence of characteristic functions (χk) ⊂ L∞(Ω; {0, 1})
satisfying χk

∗−⇀ θ in L∞(Ω; [0, 1]), and
∫

Ω

f(x,∇v) dx = Γ- lim
k→+∞

∫

Ω

Wχk
(x,∇v) dx.

A localization result proved in [7] states that

Gθ(W1,W2) =
{
f ∈ F(Ω, α, β, p) : f(x, ·) ∈ Gθ(x)(W1,W2) for a.e. x ∈ Ω

}
. (4.3)

In other words, in the case of mixtures, periodic homogenization captures locally any kind of homog-
enization phenomena. Hence mixtures are completely characterized by periodic geometries.



12 JEAN-FRANÇOIS BABADJIAN

4.1. Some technical results. We now state several technical results about mixtures that will be of
use in the sequel. The first result is a generalization of [7, Theorem 3.5] which can be proved exactly
in the same way by using the Scorza-Dragoni Theorem (see [20, 25]).

Proposition 4.1. Let f and g ∈ F(Ω, α, β, p) be convex functions in the second variable, and θ ∈
L∞(Ω; [0, 1]). Given W ∈ F(Ω, α, β, p) such that W (x, ·) ∈ Gθ(x)(f(x, ·), g(x, ·)) for a.e. x ∈ Ω, then

there exists a sequence (χn) in L∞(Ω; {0, 1}) such that χn
∗−⇀ θ in L∞(Ω; [0, 1]), and

∫

Ω

W (x,∇v) dx = Γ- lim
n→+∞

∫

Ω

[
χnf(x,∇v) + (1 − χn)g(x,∇v)

]
dx.

The second result will also be useful. Its proof is very standard and relies on the Decomposition
Lemma [26], and the approximation of Lebesgue measurable sets by open or closed sets.

Lemma 4.1. Let fn and f ∈ F(Ω, α, β, p) be convex functions in the second variable such that
∫

Ω

f(x,∇v) dx = Γ- lim
n→+∞

∫

Ω

fn(x,∇v) dx.

Then, for every convex function g ∈ F(α, β, p) and every χ ∈ L∞(Ω; {0, 1}), one has
∫

Ω

[
χg(∇v) + (1 − χ)f(x,∇v)

]
dx = Γ- lim

n→+∞

∫

Ω

[
χg(∇v) + (1 − χ)fn(x,∇v)

]
dx.

The last result states that C1 regularity of the integrand is preserved by homogenization.

Lemma 4.2. Let W1 and W2 ∈ F(α, β, p) be convex and C1 functions, and θ ∈ [0, 1]. If f ∈
Gθ(W1,W2), then f is also of class C1.

Proof. If f ∈ Gθ(W1,W2), then there exists a sequence of characteristic functions (χn) ⊂ L∞(Q; {0, 1})
such that χn

∗−⇀ θ in L∞(Q; [0, 1]), and
∫

Q

f(∇v) dx = Γ- lim
n→+∞

∫

Q

(
χnW1(∇v) + (1 − χn)W2(∇v)

)
dx.

Set Wχn
(x, ξ) := χn(x)W1(ξ)+(1−χn(x))W2(ξ) for every (x, ξ) ∈ Q×R

N . Then Wχn
∈ F(Q,α, β, p)

is convex and of class C1 in the second variable, and for every ξ and ξ′ ∈ R
N , one has

|DWχn
(x, ξ) −DWχn

(x, ξ′)| ≤ |DW1(ξ) −DW1(ξ
′)| + |DW2(ξ) −DW2(ξ

′)|. (4.4)

In particular, if ξn and ξ′n ∈ R
N are two sequences in R

N such that |ξn − ξ′n| → 0 and |ξn| ≤ M and
|ξ′n| ≤ M for some M > 0, then |DWχn

(x, ξn) −DWχn
(x, ξ′n)| → 0 for a.e. x ∈ Ω. According to [32,

Proposition 3.5], we infer that f is of class C1. �

4.2. Regularity results. We next address more precise information on theG-closure setGθ(W1,W2).
We will prove that the map θ 7→ Gθ(W1,W2) is continuous with respect to the Hausdorff distance in
a suitable metric space. This property will be used in sections 5 and 6 to prove an alternative formula
for the lower semicontinuous envelope of the elastic energy in terms of the G-closure set. To do that,
we need to prove a regularity result of Meyers type for the solutions of the minimization problem
defining the cell formula (4.2).

Proposition 4.2. Let f ∈ F(Q,α, β, p) be a convex function in its second variable. There exist a
constant C > 0 and an exponent r > p (both depending only on N , p, α and β) such that for any
ξ ∈ R

N , if ϕξ ∈W 1,p
per(Q) is a solution of the cell problem (4.2), then

(∫

Q

|∇ϕξ|r dx
)1/r

≤ C(1 + |ξ|).

Proof. The proof is very closed to that of Theorem 3.1, Chapter V in [33] (see also [34, Theorem 6.7]).
It is clear from the growth and coercivity conditions (2.1) that there exists a constant c > 0 depending
only on p, α and β such that (∫

Q

|∇ϕξ|p dx
)1/p

≤ c(1 + |ξ|). (4.5)
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Extend ϕξ by Q-periodicity to R
N , and for all 1 < s < t < 2 consider a cut-off function η ∈

C∞
c ((0, 2)N ; [0, 1]) such that η = 1 on (0, s)N , η = 0 outside (0, t)N and |∇η| ≤ 2/(t− s). Let

ϕξ := −
∫

(0,2)N

ϕξ dx =

∫

Q

ϕξ dx

be the average of ϕξ over (0, 2)N and define v := η ϕξ + (1 − η)ϕξ ∈ W 1,p
per((0, 2)N ). In particular,

extending f(·, ξ) by Q-periodicity to R
N and using (4.1), we infer that

−
∫

(0,2)N

f(x, ξ + ∇ϕξ) dx = fhom(ξ) ≤ −
∫

(0,2)N

f(x, ξ + ∇v) dx,

and since v = ϕξ outside (0, t)N , it follows that
∫

(0,t)N

f(x, ξ + ∇ϕξ) dx ≤
∫

(0,t)N

f(x, ξ + ∇v) dx.

Using the growth and coercivity conditions (2.1) and the fact that s < t we obtain that

α

∫

(0,s)N

|ξ + ∇ϕξ|p dx ≤ β

∫

(0,t)N

(
1 + |ξ + ∇v|p

)
dx.

Hence there exists a constant c1 = c1(α, β, p,N) > 0 such that

∫

(0,s)N

|∇ϕξ|p dx ≤ c1

(∫

(0,t)N\(0,s)N

|∇ϕξ|p dx+
1

(t− s)p

∫

(0,2)N

|ϕξ − ϕξ|p dx+ (1 + |ξ|p)
)
. (4.6)

Applying the “hole filling” method, we eliminate the first term in the right hand side by summing to
(4.6) c1 times the left hand side of the previous inequality. We obtain

∫

(0,s)N

|∇ϕξ|p dx ≤ c1
1 + c1

∫

(0,t)N

|∇ϕξ|p dx+
1

(t− s)p

∫

(0,2)N

|ϕξ − ϕξ|p dx+ (1 + |ξ|p).

From Lemma 3.1, Chapter V in [33] (see also [34, Lemma 6.1]), we get that

∫

Q

|∇ϕξ|p dx ≤ c2

(∫

(0,2)N

|ϕξ − ϕξ|p dx+ (1 + |ξ|p)
)

where c2 = c2(α, β, p,N) > 0. Using the Sobolev-Poincaré inequality (see e.g. [21, Theorem 4.5-2]),
there exists a constant c3 = c3(α, β, p,N) > 0 such that

∫

Q

|∇ϕξ|p dx ≤ c3



(
−
∫

(0,2)N

|∇ϕξ|q dx
)p/q

+ (1 + |ξ|p)




where q∗ = p, i.e. q = Np/(N + p) < p. In view of Proposition 1.1, Chapter V in [33] (see also [34,
Theorem 6.6]), we obtain the existence of a constant C > 0 and an exponent r > p depending only
on α, β, p and N such that

(∫

Q

|∇ϕξ|r dx
)1/r

≤ C



(
−
∫

(0,2)N

|∇ϕξ|p dx
)1/p

+ (1 + |ξ|)


 .

The result follows from (4.5) and the Q-periodicity of ϕξ. �

We now use the previous result to prove several properties of functions of the type (Wχ)hom.

Lemma 4.3. For every ξ ∈ R
N and every χ, χ′ ∈ L∞(Q; {0, 1}), one has

|(Wχ)hom(ξ) − (Wχ′)hom(ξ)| ≤ c (1 + |ξ|p)
(∫

Q

|χ− χ′|r/(r−p) dx

)(r−p)/r

, (4.7)

where r > p is the same exponent as in Proposition 4.2.
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Proof. Let ϕ ∈W 1,p
per(Q) such that

∫

Q

Wχ(x, ξ + ∇ϕ) dx = (Wχ)hom(ξ).

By Proposition 4.2, there exist a constant C > 0 and an exponent r > p, depending only on α, β, p
and N , such that

(∫

Q

|∇ϕ|r dx
)1/r

≤ C(1 + |ξ|).

Hence Hölder’s inequality and the p-growth condition (2.1) imply that

(Wχ′)hom(ξ) − (Wχ)hom(ξ)

≤
∫

Q

Wχ′(x, ξ + ∇ϕ) dx−
∫

Q

Wχ(x, ξ + ∇ϕ) dx

≤ β

∫

Q

|χ′ − χ|
(
1 + |ξ + ∇ϕ|p

)
dx

≤ β

(∫

Q

|χ′ − χ|r/(r−p) dx

)(r−p)/r
(

1 +

(∫

Q

|ξ + ∇ϕ|r dx
)p/r

)

≤ c (1 + |ξ|p)
(∫

Q

|χ− χ′|r/(r−p) dx

)(r−p)/r

.

Relation (4.7) follows from the symmetric roles played by χ and χ′. �

We define the space Ep of all continuous functions f : R
N → R such that there exists the limit

lim
|ξ|→+∞

f(ξ)

1 + |ξ|p+1
= 0.

This space is isomorphic to the space C0(R
N ) of all continuous functions on R

N vanishing at infinity,
hence it is a separable Banach space for the norm

‖f‖ := sup
ξ∈RN

|f(ξ)|
1 + |ξ|p+1

.

We recall the definition of the Hausdorff distance between two closed sets A and B in Ep:

dH(A,B) := max

{
sup
g∈B

inf
f∈A

‖f − g‖ , sup
f∈A

inf
g∈B

‖f − g‖
}
.

We want to measure the Hausdorff distance between sets of the type Gθ(W1,W2) for varying θ ∈ [0, 1].
To do that we first need to prove that these sets are actually bounded and closed in Ep.

Lemma 4.4. For any θ ∈ [0, 1] the set Gθ(W1,W2) is a bounded and closed subset of Ep.

Proof. That Gθ(W1,W2) is a bounded subset of Ep is a direct consequence of the fact that every
functions f ∈ Gθ(W1,W2) satisfy the uniform p-growth and p-coercivity condition (2.1).

Let us show that Gθ(W1,W2) is closed. Since Ep is a metric space it is enough to check that f ∈
Gθ(W1,W2) whenever fj → f in Ep and fj ∈ Gθ(W1,W2) for each j ∈ N. Let (χj

k)k∈N ⊂ L∞(Q; {0, 1})
be such that ∫

Q

χj
k(y) dy = θ (4.8)

and (Wχj

k

)hom → fj pointwise as k → +∞. Since (Wχj

k

)hom ∈ F(α, β, p), by (2.1) and (2.2), the

sequence ((Wχj

k

)hom)k∈N is locally bounded and uniformly equi-continuous. Hence by the Ascoli

Theorem, (Wχj

k

)hom → fj locally uniformly as k → +∞, and consequently, for every M > 1,

lim
j→+∞

lim
k→+∞

sup
|ξ|≤M

∣∣(Wχj

k

)
hom

(ξ) − f(ξ)
∣∣

1 + |ξ|p+1
= 0.
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On the other hand, from the p-growth condition (2.1) we have that

sup
|ξ|>M

∣∣(Wχj

k

)
hom

(ξ) − f(ξ)
∣∣

1 + |ξ|p+1
≤ 2β sup

|ξ|>M

1 + |ξ|p
1 + |ξ|p+1

≤ c

1 +M
−−−−−→
M→+∞

0

uniformly with respect to j and k. As a consequence

lim
j→+∞

lim
k→+∞

∥∥(Wχj

k

)
hom

− f
∥∥ = 0,

and by a diagonalization argument, it is possible to find an increasing sequence kj → +∞ as j → +∞
such that

(
Wχj

kj

)
hom

→ f in Ep (and also pointwise). Together with (4.8) it ensures that f ∈
Gθ(W1,W2). �

The following result is an adaptation of [40, Lemma 4.1] (see also [2, Lemma 2.1.7]) which states
that the map θ 7→ Gθ is continuous with respect to the Hausdorff convergence in Ep.

Proposition 4.3. There exist a constant c > 0 and an exponent r > p (depending only on α, β, p
and N) such that for every θ1, θ2 ∈ [0, 1]

dH(Gθ1(W1,W2), Gθ2(W1,W2)) ≤ c|θ1 − θ2|(r−p)/r.

Proof. Assume without loss of generality that θ1 < θ2. Let f ∈ Gθ2
(W1,W2), there exists a sequence

(χk) ⊂ L∞(Q; {0, 1}) such that ∫

Q

χk dx = θ2 (4.9)

and (Wχk
)hom(ξ) → f(ξ). Define Ek := {χk = 1} and set ℓk(ρ) := LN (Bρ ∩ Ek). The function ℓk

is continuous and increasing, and it satisfies ℓk(0) = 0 and ℓk(
√
N) = θ2. As a consequence there

exists ρk ∈ (0,
√
N) such that ℓk(ρk) = θ1. We define now Ẽk := Bρk

∩ Ek and χ̃k := χẼk
. By the

Ascoli Theorem, one may extract a subsequence (not relabeled) such that (Wχ̃k
)hom converges locally

uniformly (hence also pointwise) to some continuous fonction g ∈ F(α, β, p). Moreover, since
∫

Q

χ̃k dx = θ1, (4.10)

we deduce that g ∈ Gθ1
(W1,W2).

By construction, we have Ẽk ⊂ Ek, and thus χ̃k ≤ χk. Consequently by (4.7), (4.9) and (4.10) we
obtain that

|g(ξ) − f(ξ)| = lim
k→+∞

∣∣∣(Wχ̃k
)hom(ξ) − (Wχk

)hom(ξ)
∣∣∣

≤ lim
k→+∞

c (1 + |ξ|p)
(∫

Q

(χk − χ̃k)r/(r−p) dx

)(r−p)/r

≤ c (1 + |ξ|p)(θ2 − θ1)
(r−p)/r,

and then ‖f − g‖ ≤ c |θ1 − θ2|(r−p)/r. Since this estimate holds for a particular g ∈ Gθ1(W1,W2) and
for any arbitrary f ∈ Gθ2(W1,W2) we deduce that

sup
f∈Gθ2

inf
g∈Gθ1

‖f − g‖ ≤ c |θ1 − θ2|(r−p)/r.

Similarly one can show that

sup
g∈Gθ1

inf
f∈Gθ2

‖f − g‖ ≤ c |θ1 − θ2|(r−p)/r,

which concludes the proof of the Proposition in view of the definition of the Hausdorff distance. �

5. Quasistatic damage evolution

This section is devoted to the investigation of a model of quasistatic evolution for a continuum that
undergoes damage. Specifically, we prove Theorem 1.1.
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5.1. Description of the damage evolution model. Let Ω ⊂ R
N be a bounded open set with

Lipschitz boundary which represents the reference configuration of a nonlinearly elastic material. We
assume that at each point of Ω, the stored energy density of this body can take only two values W1

or W2 ∈ F(α, β, p) which are supposed to be uniformly convex functions (see (2.4)) of class C1. The
density W1 is that of the damaged material while W2 is that of the undamaged one so that W1 ≤W2.

Denoting by χ : Ω → {0, 1} the characteristic function of the damaged part of Ω, the stored energy
density of the material is

Wχ(x, ξ) := χ(x)W1(ξ) + (1 − χ(x))W2(ξ).

We now describe the boundary conditions. To do that, we split the boundary of Ω into the union
of two sets ∂Ω = ∂NΩ∪ ∂DΩ, where ∂DΩ is open in the relative topology of ∂Ω. We suppose that the
Neumann part ∂NΩ is free, while on the Dirichlet part ∂DΩ, a time dependent boundary deformation
g(t) is imposed. We assume that g ∈ W 1,1([0, T ];W 1−1/p,p(∂DΩ)) is the trace on ∂DΩ of a function
still denoted g ∈ W 1,1([0, T ];W 1,p(Ω)). In view of the growth and coercivity properties of the stored
energy density, the natural space of all kinematically admissible deformation fields at time t is given
by

A(t) := {v ∈W 1,p(Ω) : v = g(t) HN−1-a.e. on ∂DΩ}.
Note that the Dirichlet boundary condition is the only driving mechanism which will make evolve

the damage process. Here the internal variable which will describe this evolution is the characteristic
function χ of the damaged zone. Following [29] we adopt the yield criterion that the deformation
gradient ∇u must stay inside the set

R := {ξ ∈ R
N : W2(ξ) −W1(ξ) < κ},

where κ > 0 is a constant of the material. Hence at a discrete time level, if ui ∈ A(ti) denotes the
current deformation field, and χi is the characteristic function of the damaged part of the material at
time ti, the evolution law for χi to pass from time ti to time ti+1 is

χi+1(x) =

{
0 if χi(x) = 0 and ∇ui(x) ∈ R,
1 if χi(x) = 1 or ∇ui(x) 6∈ R,

taking into account the irreversibility of the damage process. Hence the globally dissipated energy
from the initial time up to time ti is given by

κ

∫

Ω

χi(x) dx.

The evolution of damage as previously described may be formulated by a two fields partial minimiza-
tion problem upon introducing the functional Li defined by

Li(u, χ) :=

∫

Ω

[χ(x)W1(∇u(x)) + (1 − χ(x))W2(∇u(x))] dx+ κ

∫

Ω

χ(x) dx

for u ∈ A(ti) and χ ∈ Xi := {χ ∈ L∞(Ω; {0, 1}) : χ ≥ χi−1}. Then one looks for (ui, χi) as a global
minimizer of Li over A(ti) × Xi. Unfortunately, even at the first time step, this minimization may
fail to have solutions and it is necessary to relax the original problem. The mechanical reason for
this phenomenon is that, for energetic convenience, the material prefers to create microstructures.
Thus the brittle character of the damage process is loosed for a progressive evolution where the
characteristic function of the damaged part is replaced by the volume fraction which takes its values
in the full interval [0, 1] (instead of {0, 1}). Hence, at a given point x of Ω, the effective material will
not be exclusively either healthy or damaged anymore, but it can also result from a mixture between
the weak and strong materials leading to a composite material.

5.2. Time discretization. Let 0 = tk0 < tk1 < . . . < tkn(k) = T be a discretization of the time interval

[0, T ] such that

max
1≤i≤n(k)

(tki − tki−1) → 0, (5.1)

as k → +∞. We define gk
i := g(tki ) ∈W 1,p(Ω).
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5.2.1. First time step. At the initial time, gk
0 = g(0), and one wants to minimize

(v, χ) 7→
∫

Ω

[
χW1(∇v) + (1 − χ)W2(∇v) + κχ

]
dx,

among all (v, χ) ∈ A(0) × L∞(Ω; {0, 1}). Minimizing first with respect to χ leads to the following
nonconvex integrand

ψ0(ξ) := min{W1(ξ) + κ,W2(ξ)},
and the previous minimization problem is equivalent to

I0 := inf
v∈A(0)

∫

Ω

ψ0(∇v) dx. (5.2)

The lack of convexity of the integrand ψ0 may prevent (5.2) to have solutions, so that it is necessary
to compute the relaxed problem. It is well known (see [25]) that it suffices to replace ψ0 by its
convexification. In the scalar case, it also coincides with its quasiconvexification Qψ0 defined by

Qψ0(ξ) := inf
ϕ∈W 1,p

per (Q)

∫

Q

ψ0(ξ + ∇ϕ) dx,

and

I0 = min
v∈A(0)

∫

Ω

Qψ0(∇v) dx. (5.3)

There is another way to express Qψ0 in terms of G-closure. In [22] (see [27] in the case of linearized
elasticity and [29]), it is stated that the quasiconvexification of ψ0 can be expressed in terms of the
sets Pθ(W1,W2) or Gθ(W1,W2). Namely,

Lemma 5.1. For every ξ ∈ R
N ,

Qψ0(ξ) = inf
θ∈[0,1]

[
inf

W∗∈Pθ(W1,W2)
W ∗(ξ) + κθ

]

= min
θ∈[0,1]

[
min

W∗∈Gθ(W1,W2)
W ∗(ξ) + κθ

]
.

Proof. To prove the first equality, we remark that for any θ ∈ [0, 1],

inf
W∗∈Pθ(W1,W2)

W ∗(ξ) + κθ

= inf
{χ∈L∞(Q;{0,1}):

R

Q
χ dy=θ}

inf
ϕ∈W 1,p

per (Q)

∫

Q

(
Wχ(y, ξ + ∇ϕ(y)) + κχ(y)

)
dy

so that, inverting the orders of infimum,

inf
θ∈[0,1]

[
inf

W∗∈Pθ(W1,W2)
W ∗(ξ) + κθ

]

= inf
ϕ∈W 1,p

per (Q)
inf

χ∈L∞(Q;{0,1})

∫

Q

(
Wχ(y, ξ + ∇ϕ(y)) + κχ(y)

)
dy

= inf
ϕ∈W 1,p

per (Q)

∫

Q

ψ0(ξ + ∇φ(y)) dy = Qψ0(ξ).

To prove the second equality, let θk ∈ [0, 1] and fk ∈ Pθk
(W1,W2) be minimizing sequences such that

fk(ξ)+κθk → Qψ0(ξ) as k → +∞. Up to a subsequence, there is no loss of generality to assume that
θk → θ. Moreover, since fk ∈ F(α, β, p), using an argument similar to that of the proof of Lemma
4.4 based on the Ascoli Theorem, one can assume that fk converges to some W ∗ in Ep. Moreover, by
Proposition 4.3, we deduce that Gθk

(W1,W2) converges in the sense of Hausdorff to Gθ(W1,W2), and
thus W ∗ ∈ Gθ(W1,W2) and W ∗(ξ) + κθ = Qψ0(ξ). �

Let u0 ∈ A(0) be a minimizer of (5.3), and let θ0(x) ∈ [0, 1] and W0(x, ·) ∈ Gθ0(x)(W1,W2) be
such that

Qψ0(∇u0(x)) = W0(x,∇u0(x)) + κθ0(x)

for a.e. x ∈ Ω. The next result asserts that it is possible to select θ0 and W0 as measurable functions
of x.
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Lemma 5.2. The functions θ0 and W0 can be chosen to be respectively measurable and Carathéodory.
Consequently θ0 ∈ L∞(Ω; [0, 1]), W0 ∈ F(Ω, α, β, p) and W0(x, ·) is uniformly convex and of class C1

for a.e. x ∈ Ω.

Proof. Since W0(x, ·) ∈ Gθ0(x)(W1,W2), it follows that it is a convex function, and according to

Lemma 4.2 it is also of class C1.
We now prove the measurability properties of θ0 and W0(·, ξ). Assume first that ∇u0 is a simple

measurable function, then θ0 and W0(·, ξ) are simple measurable functions as well. In the general
case, there exists a sequence of simple measurable functions ξn which pointwise a.e. converges to
∇u0. Let θn(x) and fn(x, ξ) be simple measurable functions of x such that for each n ∈ N, fn(x, ·) ∈
Gθn(x)(W1,W2) and

Qψ0(ξn(x)) = fn(x, ξn(x)) + κθn(x)

for a.e. x ∈ Ω. Define

W0(x, ξ) := lim sup
n→+∞

fn(x, ξ) and θ0(x) := lim sup
n→+∞

θn(x)

which are consequently measurable functions of x as well. For fixed x ∈ Ω, extract a suitable subse-
quence (possibly depending on x) such that

W0(x, ξ) := lim
j→+∞

fnj
(x, ξ) and θ0(x) := lim

j→+∞
θnj

(x).

Arguing exactly as in the proof of Lemma 4.4, we can show that fnj
(x, ·) → W0(x, ·) in Ep. On the

other hand, since fnj
(x, ·) ∈ Gθnj

(x)(W1,W2) and θnj
(x) → θ0(x), we infer thanks to Proposition 4.3

that W0(x, ·) ∈ Gθ0(x)(W1,W2). Then, by the continuity of Qψ0 we get that

Qψ0(∇u0(x)) = lim
j→+∞

Qψ0(ξnj
(x)) = lim

j→+∞

{
fnj

(x, ξnj
(x)) + κθnj

(x)
}

= W0(x,∇u0(x)) + κθ0(x).

To show that it is uniformly convex, we first note that thanks to the local character of G-closure
(4.3), then W0(x, ·) ∈ Gθ0(x)(W1,W1) for a.e. x ∈ Ω. Now fix such a point x ∈ Ω, and consider

ξ1 and ξ2 ∈ R
N . There exist a sequence of characteristic functions (χn) ⊂ L∞(Q; {0, 1}) such that

χn
∗−⇀ θ0(x) in L∞(Q; [0, 1]), and sequences (ϕn), (φn) ⊂W 1,p(Q) weakly converging to 0 in W 1,p(Q)

satisfying

W0(x, ξ1) = lim
n→+∞

∫

Q

[
χn(y)W1(ξ1 + ∇ϕn(y)) + (1 − χn(y))W2(ξ1 + ∇ϕn(y))

]
dy,

and

W0(x, ξ2) = lim
n→+∞

∫

Q

[
χn(y)W1(ξ2 + ∇φn(y)) + (1 − χn(y))W2(ξ2 + ∇φn(y))

]
dy.

Note that from the p-growth and p-coercivity conditions (2.1), we have that

lim sup
n→+∞

‖∇ϕn‖p
Lp(Q;RN )

≤ C(1 + |ξ1|p), lim sup
n→+∞

‖∇φn‖p
Lp(Q;RN )

≤ C(1 + |ξ2|p), (5.4)

for some constant C > 0 depending only on α, β and p. Define ψn = (ϕn + φn)/2 ∈ W 1,p(Q) with
ψn ⇀ 0 in W 1,p(Q) so that

W0

(
x,
ξ1 + ξ2

2

)
≤ lim inf

n→+∞

∫

Q

[
χn(y)W1

(
ξ1 + ξ2

2
+ ∇ψn(y)

)

+(1 − χn(y))W2

(
ξ1 + ξ2

2
+ ∇ψn(y)

)]
dy.

Then using the uniform convexity (2.4) of W1 and W2, we deduce that

W0

(
x,
ξ1 + ξ2

2

)
≤ 1

2
W0(x, ξ1) +

1

2
W0(x, ξ2)

− 2ν lim inf
n→+∞

∫

Q

|ξ1 + ∇ϕn − ξ2 −∇φn|2
(
1 + |ξ1 + ∇ϕn|2 + |ξ2 + ∇φn|2

)(p−2)/2
dy.
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We now distinguish two cases. First if p ≥ 2, then by the convexity of the map

R
N × R

N ∋ (ξ1, ξ2) 7→ |ξ1 − ξ2|2(1 + |ξ1|2 + |ξ2|2)(p−2)/2,

and by lower semicontinuity we deduce that

W0

(
x,
ξ1 + ξ2

2

)
≤ 1

2
W0(x, ξ1) +

1

2
W0(x, ξ2) − 2ν|ξ1 − ξ2|2

(
1 + |ξ1|2 + |ξ2|2

)(p−2)/2
.

If on the other hand 1 < p < 2, then p/2 < 1 and by the reverse Hölder’s inequality, we have

∫

Q

|ξ1 + ∇ϕn − ξ2 −∇φn|2
(

1 +
1

2
|ξ1 + ∇ϕn − ξ2 −∇φn|2

)(p−2)/2

dy

≥
(∫

Q

|ξ1 + ∇ϕn − ξ2 −∇φn|p dy
)2/p(∫

Q

(
1 + |ξ1 + ∇ϕn|2 + |ξ2 + ∇φn|2

)p/2
dy

)(p−2)/p

.

Then by lower semicontinuity, we have that

lim inf
n→+∞

(∫

Q

|ξ1 + ∇ϕn − ξ2 −∇φn|p dy
)2/p

≥ |ξ1 − ξ2|2,

and according to (5.4), together with the fact that (p− 2)/2 < 0, we infer that

lim inf
n→+∞

(∫

Q

(
1 + |ξ1 + ∇ϕn|2 + |ξ2 + ∇φn|2

)p/2
dy

)(p−2)/p

≥ c
(
1 + |ξ1|2 + |ξ2|2

)(p−2)/2
,

for some constant c > 0 depending only on α, β and p. Hence,

W0

(
x,
ξ1 + ξ2

2

)
≤ 1

2
W0(x, ξ1) +

1

2
W0(x, ξ2) − c|ξ1 − ξ2|2

(
1 + |ξ1|2 + |ξ2|2

)(p−2)/2
,

which completes the proof of the lemma. �

We now define the total energy at the initial time by

E0 :=

∫

Ω

Qψ0(∇u0) dx =

∫

Ω

W0(x,∇u0) dx+ κ

∫

Ω

(1 − Θ0) dx = I0,

where Θ0 := 1 − θ0 is the local volume fraction of the undamaged material.

5.2.2. Subsequent time steps. Let i ≥ 1, and assume that there exist a Carathéodory function W k
i−1 ∈

F(Ω, α, β, p) and Θk
i−1 ∈ L∞(Ω; [0, 1]) such that W k

i−1(x, ·) ∈ G1−Θk
i−1(x)(W1,W2) for a.e. x ∈ Ω.

Following [27], at time tki and at every points x ∈ Ω of the material, we look for all possible rearrange-
ments between the damaged material W1 and the one obtained at the previous time step W k

i−1(x, ·).
The latter has a volume fraction Θk

i−1(x) corresponding to the undamaged material W2, and thus

the quantity of dissipated energy paid up to time tki−1 is 1 − Θk
i−1(x). Consequently, if the material

remains in the same state, the cost of dissipated energy in 0, while if the material becomes damaged,
the cost is Θk

i−1(x). By irreversibility, there is no other choice, and thus, at time tki one wants to
minimize

(v, χ) 7→
∫

Ω

[
χW1(∇v) + (1 − χ)W k

i−1(x,∇v) + κχ
]
dx+ κ

∫

Ω

Θk
i−1χdx,

among all (v, χ) ∈ A(tki ) × L∞(Ω; {0, 1}). We first minimize with respect to χ which leads to the
following nonconvex integrand

ψk
i (x, ξ) := min{W1(ξ) + κΘk

i−1(x),W
k
i−1(x, ξ)},

and the previous minimization problem is equivalent to

Ik
i := inf

v∈A(tk
i
)

∫

Ω

ψk
i (x,∇v) dx. (5.5)
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Once again, the integrand ψk
i is not convex, and thus (5.5) may fail to have solutions. We need then

to consider the relaxed problem, and as before it suffices to replace ψk
i by its (quasi)convexification

defined by

Qψk
i (x, ξ) := inf

ϕ∈W 1,p
per (Q)

∫

Q

ψk
i (x, ξ + ∇ϕ(y)) dy,

or by Lemma 5.1,

Qψk
i (x, ξ) = min

θ∈[0,1]

[
min

W∗∈Gθ(W1,W k
i−1(x,·))

W ∗(ξ) + κΘk
i−1(x)θ

]
, (5.6)

with

Ik
i = min

v∈A(tk
i
)

∫

Ω

Qψk
i (x,∇v) dx. (5.7)

Let uk
i ∈ A(tki ) be a solution of (5.7), then

Ik
i =

∫

Ω

Qψk
i (x,∇uk

i ) dx,

and there exists θk
i (x) ∈ [0, 1] and W k

i (x, ·) ∈ Gθk
i
(x)(W1,W

k
i−1(x, ·)) such that

Qψk
i (x,∇uk

i (x)) = W k
i (x,∇uk

i (x)) + κΘk
i−1(x)θ

k
i (x)

for a.e. x ∈ Ω. Let us denote by

Θk
i := Θk

i−1(1 − θk
i ) (5.8)

the volume fraction of the strong (undamaged) material.

Lemma 5.3. The functions θk
i and W k

i can be chosen to be respectively measurable and Carathéodory.
Moreover, θk

i ∈ L∞(Ω; [0, 1]), W k
i ∈ F(Ω, α, β, p) and W k

i (x, ·) ∈ G1−Θk
i
(x)(W1,W2) is uniformly

convex and of class C1 for a.e. x ∈ Ω.

Proof. We first show that

W k
i (x, ·) ∈ G1−Θk

i
(x)(W1,W2) for a.e. x ∈ Ω. (5.9)

Indeed, since

W k
i (x, ·) ∈ Gθk

i
(x)(W1,W

k
i−1(x, ·)) and W k

i−1(x, ·) ∈ G1−Θk
i−1(x)(W1,W2),

then one can find sequences of characteristic functions (χn
i ) and (χn

i−1) in L∞(Q; {0, 1}) satisfying

χn
i

∗−⇀ θk
i (x) and χn

i−1
∗−⇀ 1 − Θk

i−1(x) in L∞(Q; [0, 1]), and such that

Γ- lim
n→+∞

∫

Ω

[
χn

i (y)W1(∇v(y)) + (1 − χn
i (y))W k

i−1(x,∇v(y))
]
dy =

∫

Ω

W k
i (x,∇v(y)) dy,

and

Γ- lim
n→+∞

∫

Ω

[
χn

i−1(y)W1(∇v(y)) + (1 − χn
i−1(y))W2(∇v(y))

]
dy =

∫

Ω

W k
i−1(x,∇v(y)) dy.

As a consequence of Lemma 4.1, we derive that

Γ- lim
n→+∞

Γ- lim
m→+∞

∫

Ω

[(
χn

i (y) + (1 − χn
i (y))χm

i−1(y)
)
W1(∇v(y)

+(1 − χn
i (y))(1 − χm

i−1(y))W2(∇v(y))
]
dy =

∫

Ω

W k
i (x,∇v(y)) dy,

and for every ϕ ∈ L1(Ω),

lim
n→+∞

lim
m→+∞

∫

Ω

[
χn

i (y)+ (1−χn
i (y))χm

i−1(y)
]
ϕ(y) dy =

(
θk

i (x)+ (1− θk
i (x))(1−Θk

i−1(x))
) ∫

Ω

ϕ(y) dy.
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Using a diagonalization argument together with the metrizability of both L∞(Ω; [0, 1]) and SΨ, we

obtain the existence of a sequencem(n) → +∞ as n→ +∞ such that, setting χ̃n := χn
i +(1−χn

i )χ
m(n)
i−1 ,

then χ̃n
∗−⇀ θk

i (x) + (1 − θk
i (x))(1 − Θk

i−1(x)) in L∞(Ω; [0, 1]) and

Γ- lim
n→+∞

∫

Ω

[
χ̃n(y)W1(∇v(y)) + (1 − χ̃n(y))W2(∇v(y))

]
dy =

∫

Ω

W k
i (x,∇v(y)) dy.

Consequently, W k
i (x, ·) ∈ Gθk

i
(x)+(1−θk

i
(x))(1−Θk

i−1(x))(W1,W2), and by the localization property (4.3) of

theG-closure set, we conclude thatW k
i (x, ·) ∈ Gθk

i
(x)+(1−θk

i
(x))(1−Θk

i−1(x))(W1,W2). Then by definition

(5.8) of Θk
i we deduce that W k

i (x, ·) ∈ G1−Θk
i
(x)(W1,W2).

Now thanks to (5.9) and Lemma 4.2, it follows that the function W k
i (x, ·) is of class C1 and convex.

Then a similar argument than that used in the proof of Lemma 5.2 implies that W k
i (x, ·) is actually

uniformly convex, and the functions θk
i and W k

i (·, ξ) can be chosen to be measurable. �

We deduce from Lemma 5.3 that

Ik
i =

∫

Ω

W k
i (x,∇uk

i ) dx+ κ

∫

Ω

(Θk
i−1 − Θk

i ) dx, (5.10)

and we define the total energy at time tki by

Ek
i := Ik

i + κ

∫

Ω

(1 − Θk
i−1) dx =

∫

Ω

W k
i (x,∇uk

i ) dx+ κ

∫

Ω

(1 − Θk
i ) dx. (5.11)

5.3. A few properties of the discrete evolution. We now establish some minimality, monotonicity
and energy inequality properties of the discrete evolution, that will used to pass to the limit as the
time step tends to zero.

5.3.1. Minimality. Since uk
i is a solution of (5.7) and W k

i (x, ·) ∈ Gθk
i
(x)(W1,W

k
i−1(x, ·)), it follows

immediately that uk
i is also a solution of

inf
v∈A(tk

i
)

∫

Ω

W k
i (x,∇v) dx. (5.12)

5.3.2. Monotonicity. We now show that the stored energy of the damaged material decreases as the
time increases. This is in agreement with the fact that the irreversible damage process decreases the
rigidity of the body.

Lemma 5.4. For each i ≥ 1, one has

W k
i (x, ξ) ≤W k

i−1(x, ξ) (5.13)

for all ξ ∈ R
N and a.e. x ∈ Ω.

Proof. We first establish that W1(ξ) ≤ W k
i (x, ξ). From Lemma 5.3 we know that W k

i (x, ·) ∈
G1−Θk

i
(x)(W1,W2), and thus there exists a sequence (χn) ⊂ L∞(Q; {0, 1}) with

∫
Q
χn(y) dy = 1 −

Θk
i (x) for every n ∈ N, and

W k
i (x, ξ) = lim

n→+∞
inf

ϕ∈W 1,p
per (Q)

∫

Q

[
χn(y)W1(ξ + ∇ϕ(y)) + (1 − χn(y))W2(ξ + ∇ϕ(y))

]
dy

≥ inf
ϕ∈W 1,p

per (Q)

∫

Q

W1(ξ + ∇ϕ(y)) dy ≥W1(ξ),

where we used the fact that W2 ≥ W1 in the first inequality, and the convexity of W1 in the second
one.

We are now in position to establish the claimed monotonicity property. Indeed, since W k
i (x, ·) ∈

Gθk
i
(x)(W1,W

k
i−1(x, ·)), then one can find a sequence (χn) ⊂ L∞(Q; {0, 1}) with

∫
Q
χn(y) dy = θk

i (x)

for every n ∈ N, and

W k
i (x, ξ) = lim

n→+∞
inf

ϕ∈W 1,p
per (Q)

∫

Q

[
χn(y)W1(ξ + ∇ϕ(y)) + (1 − χn(y))W k

i−1(x, ξ + ∇ϕ(y))
]
dy

≤
∫

Q

(χn(y)W1(ξ) + (1 − χn(y))W k
i−1(x, ξ)) dy ≤W k

i−1(x, ξ),
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where we used the fact that W1(ξ) ≤W k
i−1(x, ξ) in the last inequality. �

The next result will be of use to derive the lower bound on the total energy in Proposition 5.3. It
is based on a diagonalization argument similar to that of Lemma 5.3.

Lemma 5.5. For every j ≥ i, one has

W k
j (x, ·) ∈ G

1−
Θk

j
(x)

Θk
i
(x)

(W1,W
k
i (x, ·))

for a.e. x ∈ Ω.

Proof. For every i ≥ 2, one has

W k
i (x, ·) ∈ Gθk

i
(x)(W1,W

k
i−1(x, ·)) and W k

i−1(x, ·) ∈ Gθk
i−1(x)(W1,W

k
i−2(x, ·)).

Using a diagonalization argument exactly as in the proof of Lemma 5.3, we can prove that

W k
i (x, ·) ∈ G

1−
Θk

i
(x)

Θk
i−2

(x)

(W1,W
k
i−2(x, ·)),

and the conclusion follows from an induction argument. �

5.3.3. Upper bound on the total energy. We now derive an energy inequality for discrete times which
will be used in passing to the time-continuous limit. For every i ≥ 0, sinceW k

i (x, ·) ∈ G0(W1,W
k
i (x, ·)),

by definition (5.6) of Qψk
i+1, we derive that Qψk

i+1(x, ξ) ≤W k
i (x, ξ) for a.e. x ∈ Ω and every ξ ∈ R

N .
Consequently, by (5.7), we deduce that

Ik
i+1 ≤

∫

Ω

W k
i (x,∇uk

i + ∇gk
i+1 −∇gk

i ) dx.

Using the fact that the map

t 7→
∫

Ω

W k
i (x,∇uk

i + t(∇gk
i+1 −∇gk

i )) dx

is of class C1 from R to R with derivative given by

t 7→
∫

Ω

DW k
i (x,∇uk

i + t(∇gk
i+1 −∇gk

i )) · (∇gk
i+1 −∇gk

i ) dx,

then by the Mean Value Theorem one can find sk
i ∈ [0, 1] such that

∫

Ω

W k
i (x,∇uk

i + ∇gk
i+1 −∇gk

i ) dx =

∫

Ω

W k
i (x,∇uk

i ) dx

+

∫

Ω

DW k
i (x,∇uk

i + sk
i (∇gk

i+1 −∇gk
i )) · (∇gk

i+1 −∇gk
i ) dx.

Consequently,

Ik
i+1 ≤ Ik

i − κ

∫

Ω

(Θk
i−1 − Θk

i ) dx+

∫

Ω

DW k
i (x,∇uk

i + sk
i (∇gk

i+1 −∇gk
i )) · (∇gk

i+1 −∇gk
i ) dx,

and from the definition (5.11) of the total energy, we get that

Ek
i+1 ≤ Ek

i +

∫

Ω

DW k
i (x,∇uk

i + sk
i (∇gk

i+1 −∇gk
i )) · (∇gk

i+1 −∇gk
i ) dx.

Hence summing up for i = 0 to j − 1 leads to

Ek
j ≤ E0 +

j−1∑

i=0

∫

Ω

DW k
i (x,∇uk

i + sk
i (∇gk

i+1 −∇gk
i )) · (∇gk

i+1 −∇gk
i ) dx. (5.14)
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5.4. Piecewise constant interpolation. Before taking the limit as the time step tends to zero, we
need to define piecewise constant interpolations for all the discrete time functions considered before.
For each t ∈ [tki , t

k
i+1), we set

gk(t) := gk
i , uk(t) := uk

i , Θk(t) := Θk
i , Wk(t) := W k

i ,

and we define Ak(t) := A(tki ) and Ek(t) := Ek
i . In particular, (5.12) implies that uk(t) ∈ Ak(t) is a

solution of

min
v∈Ak(t)

∫

Ω

Wk(t)(x,∇v) dx,

the monotonicity property (5.13) and the definition (5.8) of Θk
i yield Wk(t) ∈ F(Ω, α, β, p), Θk(t) ∈

L∞(Ω; [0, 1]) for every k ∈ N and t ∈ [0, T ], and

Wk(t)(x, ξ) ≤Wk(s)(x, ξ) and Θk(t)(x) ≤ Θk(s)(x)

for every 0 ≤ s ≤ t ≤ T , every ξ ∈ R
N and a.e. x ∈ Ω.

Let us define the function Φk : [0, T ] → Lp(Ω; RN ) by

Φk(t) := sk
i (∇gk

i+1 −∇gk
i ) = sk

i

∫ tk
i+1

tk
i

∇ġ(τ) dτ

for t ∈ [tki , t
k
i+1). Then Φk is Bochner integrable, and from (5.1) together with the fact that ∇ġ ∈

L1(0, T ;Lp(Ω; RN )), we deduce that ‖Φk(t)‖Lp(Ω;RN ) → 0 uniformly with respect to t ∈ [0, T ]. From
the energy estimate (5.14), we infer that

Ek(t) ≤ E0 +

∫ t

0

∫

Ω

DWk(τ)(x,∇uk(τ) + Φk(τ)) · ∇ġ(τ) dx dτ. (5.15)

5.5. The time continuous limit. We now pass to the limit as the time step tends to zero. We first
establish a compactness result on (uk(t),Θk(t),Wk(t)).

Proposition 5.1. There exist a subsequence (not relabeled) and functions u(t) ∈ A(t), Θ(t) ∈
L∞(Ω; [0, 1]) and W (t) ∈ F(Ω, α, β, p) such that for every t ∈ [0, T ],





uk(t) ⇀ u(t) in W 1,p(Ω),

Θk(t)
∗−⇀ Θ(t) in L∞(Ω; [0, 1]),

∫

Ω

W (t)(x,∇v) dx = Γ- lim
k→+∞

∫

Ω

Wk(t)(x,∇v) dx.

Moreover the map u : [0, T ] →W 1,p(Ω) is strongly measurable and u ∈ L∞([0, T ];W 1,p(Ω)), the maps
t 7→ Θ(t) and t 7→W (t) are decreasing, and W (t)(x, ·) ∈ G1−Θ(t)(x)(W1,W2) is uniformly convex and

of class C1 for a.e. x ∈ Ω and every t ∈ [0, T ].

Proof. According to [27, Remark 4] and Theorem 3.3 (see also Theorem 3.2 with L∞(Ω; [0, 1]) endowed
with the weak* topology which is a compact metric space), there exist a subsequence (still denoted
k) independent of t, Θ(t) ∈ L∞(Ω; [0, 1]) and W (t) ∈ F(Ω, α, β, p) such that for every t ∈ [0, T ]





Θk(t)
∗−⇀ Θ(t) in L∞(Ω; [0, 1]),

∫

Ω

W (t)(x,∇v) dx = Γ- lim
k→+∞

∫

Ω

Wk(t)(x,∇v) dx,
(5.16)

where Θ(t) and W (t) are still decreasing with respect to t. Since Wk(t)(x, ·) ∈ G1−Θk(t)(x)(W1,W2),
by the local character of G-closure (4.3) we deduce that Wk(t) ∈ G1−Θk(t)(W1,W2), and using a
diagonalization argument together with (5.16) and the metrizability of Γ-convergence and L∞(Ω; [0, 1])
(endowed with the weak* convergence), we infer that W (t) ∈ G1−Θ(t)(W1,W2). Hence, using again
(4.3) we obtain that W (t)(x, ·) ∈ G1−Θ(t)(x)(W1,W2). Moreover, as in the proof of Lemma 5.2, one
can show that W (t)(x, ·) is uniformly convex.
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From the minimality property satisfied by uk(t), the fact that the sequence (gk) is bounded in
L∞(0, T ;W 1,p(Ω)) and Poincaré’s inequality, we infer that

sup
t∈[0,T ]

sup
k∈N

‖uk(t)‖W 1,p(Ω) < +∞. (5.17)

For each t ∈ [0, T ], there exist a t-dependent subsequence (kj) and u(t) ∈W 1,p(Ω) such that

ukj
(t) ⇀ u(t) in W 1,p(Ω).

Moreover, the continuity of the trace and the fact that gk(t) → g(t) strongly in W 1,p(Ω) ensure that
u(t) = g(t) HN−1-a.e. on ∂DΩ, so that u(t) ∈ A(t). From standard properties of Γ-convergence we
get that u(t) is a solution of

min
v∈A(t)

∫

Ω

W (t)(x,∇v) dx. (5.18)

Note that since W (t)(x, ·) is in particular strictly convex, then the previous minimization problem
admits a unique solution which must be u(t). Hence by uniqueness the whole sequence uk(t) weakly
converges to u(t) in W 1,p(Ω). If L ∈ [W 1,p(Ω)]′, then t 7→ 〈L, uk(t)〉 is a simple scalar valued
measurable function, and since uk(t) ⇀ u(t) in W 1,p(Ω) for each t ∈ [0, T ], then 〈L, uk(t)〉 → 〈T, u(t)〉
for every t ∈ [0, T ] which proves that the map t 7→ 〈L, u(t)〉 is measurable. Consequently, t 7→ u(t)
is weakly measurable from [0, T ] to W 1,p(Ω), and according to the Pettis Theorem (see [25, Theorem
2.104]) together with the separability of W 1,p(Ω), we deduce that t 7→ u(t) is actually strongly
measurable from [0, T ] to W 1,p(Ω). Thanks to (5.17), we get that

sup
t∈[0,T ]

‖u(t)‖W 1,p(Ω) < +∞,

and thus u ∈ L∞([0, T ];W 1,p(Ω)). �

We define the total energy at time t ∈ [0, T ] by

E(t) :=

∫

Ω

W (t)(x,∇u(t)) dx+ κ

∫

Ω

(1 − Θ(t)) dx.

Our next goal is to prove the energy balance. We first prove a technical lemma which will allow us to
apply Lemmas 3.1 and 3.2 to get a first energy inequality. Note that this is the only part of the proof
where the uniform convexity is really essential. Indeed, this hypothesis ensures the strong continuity
of the map R

N ∋ ξ 7→ ϕξ ∈W 1,p
per(Q), where ϕξ is the (unique) solution of the cell problem (4.2).

Lemma 5.6. The following properties hold:

(i) There exists a constant γ > 0 such that for every k ∈ N, ξ ∈ R
N , t ∈ [0, T ] and a.e. x ∈ Ω,

then

|DWk(t)(x, ξ)| ≤ γ(1 + |ξ|p−1);

(ii) For any sequences (ξk) and (ξ′k) ⊂ R
N such that |ξk| ≤ M , |ξ′k| ≤ M and |ξk − ξ′k| → 0 as

k → +∞, for some M > 0, then

|DWk(t)(x, ξk) −DWk(t)(x, ξ′k)| → 0,

for every t ∈ [0, T ] and a.e. x ∈ Ω.

Proof. The first item is a consequence of the fact that Wk(t)(x, ·) ∈ F(α, β, p) is a convex function of
class C1 together with (2.3).

We now investigate the proof of (ii). By a diagonalization argument, there is no loss of generality
to assume that Wk(t)(x, ·) ∈ P1−Θk(t)(x)(W1,W2). From Lemmas 5.2 and 5.3 we know that for each

k ∈ N, t ∈ [0, T ] and a.e. x ∈ Ω, the function Wk(t)(x, ·) is uniformly convex and of class C1. Thus by
(2.5), there exists ν′ > 0 such that

(DWk(t)(x, ξ2) −DWk(t)(x, ξ1)) · (ξ2 − ξ1) ≥ ν′|ξ1 − ξ2|2(1 + |ξ1|2 + |ξ2|2)(p−2)/2 (5.19)
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for every ξ1 and ξ2 ∈ R
N . Let M > 0 and ξk, ξ′k ∈ R

N such that |ξk| ≤ M , |ξ′k| ≤ M and
|ξk − ξ′k| → 0 as k → +∞. Consider χk ∈ L∞(Q; {0, 1}) such that

∫
Q
χk(y) dy = 1 − Θk(t)(x) and

Wk(t)(x, ·) = (Wχk
)hom. Let ϕξk

and ϕξ′

k
∈W 1,p

per(Q) satisfying

Wk(t)(x, ξk) =

∫

Q

Wχk
(y, ξk + ∇ϕξk

) dy and Wk(t)(x, ξ′k) =

∫

Q

Wχk
(y, ξ′k + ∇ϕξ′

k
) dy.

By the p-growth and p-coercivity conditions (2.1), we have that

‖∇ϕξk
‖Lp(Q;RN ) ≤ C(1 + |ξk|) and ‖∇ϕξ′

k
‖Lp(Q;RN ) ≤ C(1 + |ξ′k|), (5.20)

for some constant C > 0 independent of k. Note that since W1 and W2 are uniformly convex, then
Wχk

(y, ·) is in particular strictly convex, and thus the solutions ϕξk
and ϕξ′

k
of the cell problem (4.2)

are actually unique. Moreover, the weak formulation of the Euler-Lagrange equation gives
∫

Q

DWχk
(y, ξk + ∇ϕξk

) · ∇φdy = 0 and

∫

Q

DWχk
(y, ξ′k + ∇ϕξ′

k
) · ∇φdy = 0, (5.21)

for every φ ∈W 1,p
per(Q).

For any v ∈ S
N−1 and any t ∈ R, one has

Wk(t)(x, ξk + tv) −Wk(t)(x, ξk)

t
≤
∫

Q

Wχk
(y, ξk + tv + ϕξk

) −Wχk
(y, ξk + ∇ϕξk

)

t
dy.

Since Wχk
∈ F(Q,α, β, p) by the p-growth condition (2.1), (5.20) and Fatou’s Lemma, we get letting

t→ 0,

DWk(t)(x, ξk) · v ≤
∫

Q

DWχk
(y, ξk + ∇ϕξk

) dy · v,

and thus changing v in −v, we infer that

DWk(t)(x, ξk) · v =

∫

Q

DWχk
(y, ξk + ∇ϕξk

) dy · v.

Consequently, we proved that

DWk(t)(x, ξk) =

∫

Q

DWχk
(y, ξk + ∇ϕξk

) dy (5.22)

and similarly

DWk(t)(x, ξ′k) =

∫

Q

DWχk
(y, ξ′k + ∇ϕξ′

k
) dy. (5.23)

By (5.19) and (5.21), we get that

ν′
∫

Q

|(ξk − ξ′k) + (∇ϕξk
−∇ϕξ′

k
)|2
(
1 + |ξk + ∇ϕξk

|2 + |ξ′k + ∇ϕξ′

k
|2
)(p−2)/2

dy

≤
∫

Q

(
DWχk

(y, ξk + ∇ϕξk
) −DWχk

(y, ξ′k + ∇ϕξ′

k
)
)
·
(
(ξk + ∇ϕξk

) − (ξ′k + ∇ϕξ′

k
)
)
dy

=

∫

Q

(
DWχk

(y, ξk + ∇ϕξk
) −DWχk

(y, ξ′k + ∇ϕξ′

k
)
)
· (ξk − ξ′k) dy.

Therefore, since DWχk
satisfies the (p− 1)-growth condition (2.3), we deduce that

∫

Q

|(ξk − ξ′k) + (∇ϕξk
−∇ϕξ′

k
)|2
(
1 + |ξk + ∇ϕξk

|2 + |ξ′k + ∇ϕξ′

k
|2
)(p−2)/2

dy

≤ C1(1 + |ξk|p−1 + |ξ′k|p−1)|ξk − ξ′k|, (5.24)

for some constant C1 > 0 independent of k. We claim that ∇ϕξk
− ∇ϕξ′

k
→ 0 in L1(Q; RN ). To

show this property, we first consider exponents p ≥ 2. Then from (5.24), since (p − 2)/p ≥ 0, we
immediately get that ∫

Q

|∇ϕξk
−∇ϕξ′

k
|2 dy ≤ C2|ξk − ξ′k|,
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where C2 > 0 is a constant depending only on p, N , M and ν′. On the other hand, if 1 < p < 2, then
p/2 < 1, and by the reverse Hölder’s Inequality (see e.g. [1, Theorem 2.6]), we have
∫

Q

|(ξk − ξ′k) + (∇ϕξk
−∇ϕξ′

k
)|2
(
1 + |ξk + ∇ϕξk

|2 + |ξ′k + ∇ϕξ′

k
|2
)(p−2)/2

dy

≥
(∫

Q

|(ξk − ξ′k) + (∇ϕξk
−∇ϕξ′

k
)|pdy

)2/p(∫

Q

(
1 + |ξk + ∇ϕξk

|2 + |ξ′k + ∇ϕξ′

k
|2
)p/2

dy

)(p−2)/p

≥ C3(1 +Mp)(p−2)/p

(∫

Q

|(ξk − ξ′k) + (∇ϕξk
−∇ϕξ′

k
)|pdy

)2/p

,

for some constant C3 > 0 (independent of k), where we used (5.20) and the fact that (p − 2)/p < 0.
Then using again (5.24), we deduce that

∫

Q

|∇ϕξk
−∇ϕξ′

k
|p dy ≤ C4|ξk − ξ′k|,

where C4 > 0 is a constant which only depends on p, N , M and ν′. Gathering both cases, it turns out
that indeed ∇ϕξk

− ∇ϕξ′

k
→ 0 in L1(Q; RN ) and also a.e. (up to a subsequence). From (4.4) (with

χk instead of χn) together with (5.22) and (5.23), we get that

|DWk(t)(x, ξk) −DWk(t)(x, ξ′k)| ≤
∫

Q

|DWχk
(y, ξk + ∇ϕξk

) −DWχk
(y, ξ′k + ∇ϕξ′

k
)| dy

≤
∫

Q

|DW1(ξk + ∇ϕξk
) −DW1(ξ

′
k + ∇ϕξ′

k
)| dy

+

∫

Q

|DW2(ξk + ∇ϕξk
) −DW2(ξ

′
k + ∇ϕξ′

k
)| dy. (5.25)

It remains to show that the right hand side of (5.25) is infinitesimal. To do that, we split the above
integrals as a first integral over the set

Ak
R := {x ∈ Q : |ξk + ∇ϕξk

(x)| ≤ R and |ξ′k + ∇ϕξ′

k
(x)| ≤ R},

where R > 1, and a second one over the complementary Q \ Ak
R, and we estimate separately both

terms. Concerning the integral over Ak
R, we denote by ω1,R (resp. ω2,R) the modulus of continuity of

DW1 (resp. DW2) in BR. Since DW1 and DW2 are uniformly continuous on BR, then ω1,R(t) → 0
and ω2,R(t) → 0 as t → 0. Then for i = 1 and 2, we get from the Dominated Convergence Theorem
that
∫

Ak
R

|DWi(ξk +∇ϕξk
)−DWi(ξ

′
k +∇ϕξ′

k
)| dy ≤

∫

Ak
R

ωi,R(|ξk − ξ′k|+ |∇ϕξk
−∇ϕξ′

k
|) dy → 0 (5.26)

as k → 0 for fixed R > 1. We now deal with the integral over Q \ Ak
R. We first remark that thanks

to (5.20), there exists a constant C > 0 (independent of k and R) such that LN (Q \ Ak
R) ≤ C/Rp.

Therefore, using the (p− 1)-growth condition (2.3) satisfied by Wi, Hölder’s inequality and (5.20), we
get that

∫

Q\Ak
R

|DWi(ξk + ∇ϕξk
) −DWi(ξ

′
k + ∇ϕξ′

k
)| dy

≤ γ

∫

Q\Ak
R

(2 + |ξk + ∇ϕξk
|p−1 + |ξ′k + ∇ϕξ′

k
|p−1) dy

≤ C
(
1 + ‖ξk + ∇ϕξk

‖p−1
Lp(Q;RN )

+ ‖ξ′k + ∇ϕξ′

k
‖p−1

Lp(Q;RN )

)
LN (Q \Ak

R)1/p

≤ C(1 +Mp−1)

R
→ 0 (5.27)

as R → +∞, uniformly with respect to k. Now gathering (5.26) and (5.27), and passing to the limit
first as k → +∞ and then as R→ +∞, we obtain that

lim
k→+∞

∫

Q

|DWi(ξk + ∇ϕξk
) −DWi(ξ

′
k + ∇ϕξ′

k
)| dy = 0,
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which implies, in view of (5.25), that |DWk(t)(x, ξk) −DWk(t)(x, ξ′k)| → 0. �

Remark 5.1. As noticed in section 2.2, the functions W1(ξ) = α|ξ|p and W2(ξ) = β|ξ|p (with p > 1
and 0 < α ≤ β < +∞) do not fulfill the assumption of uniform convexity, although they are very
important examples. However, the proof of Lemma 5.6 still works in that case since the differentials
DW1 and DW2 (and thus also DWk(t)(x, ·)) are strongly monotone by (2.6) and (2.7).

We are now in position to state a first energy inequality.

Proposition 5.2. For any t ∈ [0, T ], one has Ek(t) → E(t), and

E(t) ≤ E0 +

∫ t

0

∫

Ω

DW (τ)(x,∇u(τ)) · ∇ġ(τ) dx dτ. (5.28)

Proof. By the Γ-convergence result (5.16), we have that

E(t) ≤ lim inf
k→+∞

{∫

Ω

Wk(t)(x,∇uk(t)) dx+ κ

∫

Ω

(1 − Θk(t)) dx

}
,

hence from the upper bound estimate (5.15), we get that

E(t) ≤ E0 + lim sup
k→+∞

∫ t

0

∫

Ω

DWk(τ)(x,∇uk(τ) + Φk(τ)) · ∇ġ(τ) dx dτ.

As a consequence of Lemma 3.1 (with µ = LN+1 (Ω× [0, T ]) and A = L(Ω)⊗B([0, T ]), where L(Ω)
is the σ-algebra of all Lebesgue measurable subsets of Ω, and B([0, T ]) is the σ-algebra of all Borel
subsets of [0, T ]) and Lemma 5.6, since Φk → 0 in Lp(Ω × (0, T ); RN ), we infer that

E(t) ≤ E0 + lim sup
k→+∞

∫ t

0

∫

Ω

DWk(τ)(x,∇uk(τ)) · ∇ġ(τ) dx dτ. (5.29)

Next we would like to apply Lemma 3.2 to deduce (5.28) from (5.29). To do that, we need to show
the convergence of the elastic energy. First, by the Γ-lower bound, we have

∫

Ω

W (t)(x,∇u(t)) dx ≤ lim inf
k→+∞

∫

Ω

Wk(t)(x,∇uk(t)) dx. (5.30)

We now prove that this inequality is actually an equality. Consider a recovery sequence (u∗k) ⊂W 1,p(Ω)
such that u∗k ⇀ u(t) in W 1,p(Ω) and

∫

Ω

W (t)(x,∇u(t)) dx = lim
k→+∞

∫

Ω

Wk(t)(x,∇u∗k) dx.

Since gk(t) → g(t) strongly in W 1,p(Ω) and u(t) = g(t) on ∂DΩ, by a standard truncation argument
which uses a suitable cut-off function, there is no loss of generality to assume that u∗k = gk(t) on ∂DΩ
so that u∗k(t) ∈ Ak(t). Hence by minimality of uk(t) we obtain that for each k ∈ N,

∫

Ω

Wk(t)(x,∇uk(t)) dx ≤
∫

Ω

Wk(t)(x,∇u∗k) dx,

and thus, taking the limsup as k → +∞, we deduce that

lim sup
k→+∞

∫

Ω

Wk(t)(x,∇uk(t)) dx ≤
∫

Ω

W (t)(x,∇u(t)) dx. (5.31)

Hence gathering (5.30) and (5.31), we get that

lim
k→+∞

∫

Ω

Wk(t)(x,∇uk(t)) dx =

∫

Ω

W (t)(x,∇u(t)) dx,

and consequently Ek(t) → E(t). We are now in position to apply Lemma 3.2 from which we obtain
that for every t ∈ [0, T ],

lim
k→+∞

∫

Ω

DWk(t)(x,∇uk(t)) · ∇ġ(t) dx =

∫

Ω

DW (t)(x,∇u(t)) · ∇ġ(t) dx,

and using (5.29) together with the Dominated Convergence Theorem, we get the desired energy
inequality (5.28). �
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We next prove that the energy inequality (5.28) is actually an equality. Following [17] the argument
rests on the approximation of the Bochner integral by suitable Riemann sums (see [17, Lemma 4.12])
that we recall here.

Lemma 5.7. Let X be a Banach space and f : [0, T ] → X be a Bochner integrable function. Then
there exists a sequence of subdivisions (sk

i )0≤i≤ik
of the interval [0, T ], with

0 = sk
0 < sk

1 < . . . < sk
ik−1 < sk

ik
= T and lim

k→+∞
max

1≤i≤ik

(sk
i − sk

i−1) = 0,

such that

lim
k→+∞

ik∑

i=1

∫ sk
i

sk
i−1

‖f(sk
i ) − f(t)‖X dt = 0.

Now thanks to Lemma 5.7 we are in position to show the following lower bound inequality on the
total energy.

Proposition 5.3. For any t ∈ [0, T ], then

E(t) ≥ E0 +

∫ t

0

∫

Ω

DW (τ)(x,∇u(τ)) · ∇ġ(τ) dx dτ.

Proof. Let s < t. Since u(t)+ g(s)− g(t) ∈ A(s), by Γ-convergence, one can find a sequence (vk) such
that vk ∈ Ak(s) for each k ∈ N, vk ⇀ u(t) + g(s) − g(t) in W 1,p(Ω), and

lim
k→+∞

∫

Ω

Wk(t)(x,∇vk) dx =

∫

Ω

W (t)(x,∇u(t) + ∇g(s) −∇g(t)) dx. (5.32)

Let i ≤ j be such that s ∈ [tki , t
k
i+1) and t ∈ [tkj , t

k
j+1). Since by Lemma 5.5

W k
j (x, ·) ∈ G

1−
Θk

j
(x)

Θk
i−1

(x)

(W1,W
k
i−1(x, ·))

for a.e. x ∈ Ω, then from (5.6), (5.7) and (5.10) we have that
∫

Ω

W k
i (x,∇uk

i ) dx+ κ

∫

Ω

(Θk
i−1 − Θk

i ) dx ≤
∫

Ω

W k
j (x,∇vk) dx+ κ

∫

Ω

Θk
i−1

(
1 −

Θk
j (x)

Θk
i−1(x)

)
dx,

and thus∫

Ω

Wk(s)(x,∇uk(s)) dx+ κ

∫

Ω

(1 − Θk(s))dx ≤
∫

Ω

Wk(t)(x,∇vk) dx+ κ

∫

Ω

(1 − Θk(t))dx.

Hence taking the limit as k → +∞, (5.32) leads to
∫

Ω

W (s)(x,∇u(s)) dx+ κ

∫

Ω

(1 − Θ(s))dx

≤
∫

Ω

W (t)(x,∇u(t) + ∇g(s) −∇g(t)) dx+ κ

∫

Ω

(1 − Θ(t))dx,

and consequently,

E(s) ≤ E(t) +

∫

Ω

W (t)(x,∇u(t) + ∇g(s) −∇g(t)) dx−
∫

Ω

W (t)(x,∇u(t)) dx.

By the Mean Value Theorem, there exists ρ(s, t) ∈ [0, 1] such that

E(t) − E(s) ≥
∫

Ω

[
DW (t)

(
x,∇u(t) − ρ(s, t)

∫ t

s

∇ġ(τ) dτ
)
·
∫ t

s

∇ġ(τ) dτ
]
dx. (5.33)

By Lemma 5.7, consider a sequence of subdivisions (sk
i )0≤i≤ik

of the interval [0, t], with

0 = sk
0 < sk

1 < . . . < sk
ik−1 < sk

ik
= t and lim

k→+∞
max

1≤i≤ik

(sk
i − sk

i−1) = 0,

such that

lim
k→+∞

ik∑

i=1

∥∥∥∥∥(s
k
i − sk

i−1)∇ġ(sk
i ) −

∫ sk
i

sk
i−1

∇ġ(t) dt
∥∥∥∥∥

Lp(Ω;RN )

= 0 (5.34)
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and

lim
k→+∞

ik∑

i=1

∣∣∣∣∣(s
k
i − sk

i−1)ϑ(sk
i ) −

∫ sk
i

sk
i−1

ϑ(t) dt

∣∣∣∣∣ = 0, (5.35)

where

ϑ(t) =

∫

Ω

DW (t)(x,∇u(t)) · ∇ġ(t) dx. (5.36)

For all s ∈ [sk
i , s

k
i+1), we define

W k(s) := W (sk
i+1), ūk(s) := u(sk

i+1) and Ψk(s) := −ρ(sk
i , s

k
i+1)

∫ sk
i+1

sk
i

∇ġ(τ) dτ.

As ∇ġ ∈ L1(0, T ;Lp(Ω; RN )), we have that

‖Ψk(s)‖Lp(Ω;RN ) → 0

uniformly with respect to s ∈ [0, t]. In (5.33) we replace s by sk
i and t by sk

i+1, then summing up for
i = 0 to ik − 1 yields

E(t) − E(0) ≥
∫ t

0

∫

Ω

DW k(τ)(x,∇ūk(τ) + Ψk(τ)) · ∇ġ(τ) dx dτ.

Note that DW k(t) obviously satisfies the (p − 1)-growth condition (2.3). Moreover, since for t ∈
[sk

i , s
k
i+1), one has W k(t)(x, ·) = W (sk

i+1)(x, ·) ∈ G1−Θ(sk
i+1)(x)(W1,W2) for a.e. x ∈ Ω, we deduce

from similar arguments than those used in the proof of Lemma 5.6 that for all M > 0 and all
sequences (ξk) and (ξ′k) in R

N satisfying |ξk| ≤M , |ξ′k| ≤M and |ξk − ξ′k| → 0, then

|DW k(t)(x, ξk) −DW k(t)(x, ξ′k)| → 0

for a.e. x ∈ Ω. As a consequence, applying Lemma 3.1 and remembering that Ψk → 0 in Lp(Ω ×
(0, T ); RN ), we get that

E(t) − E(0) ≥ lim sup
k→+∞

∫ t

0

∫

Ω

DW k(τ)(x,∇ūk(τ)) · ∇ġ(τ) dx dτ. (5.37)

By the (p − 1)-growth condition (2.3) satisfied by DW (sk
i+1) together with Hölder’s inequality and

(5.34), we have

ik−1∑

i=0

∣∣∣∣∣

∫

Ω

DW (sk
i+1)(x,∇u(sk

i+1)) ·
[
(sk

i+1 − sk
i )∇ġ(sk

i+1) −
∫ sk

i+1

sk
i

∇ġ(τ) dτ)
]
dx

∣∣∣∣∣

≤ C
(
1 + ‖∇u‖p−1

L∞(0,T ;Lp(Ω;RN ))

) ik−1∑

i=0

∥∥∥∥∥(s
k
i+1 − sk

i )∇ġ(sk
i+1) −

∫ sk
i+1

sk
i

∇ġ(t) dt
∥∥∥∥∥

Lp(Ω;RN )

→ 0,

and thus from (5.35), (5.36) and (5.37) we deduce that

E(t) − E(0) ≥ lim sup
k→+∞

ik−1∑

i=0

(sk
i+1 − sk

i )

∫

Ω

DW (sk
i+1)(x,∇u(sk

i+1)) · ∇ġ(sk
i+1) dx

=

∫ t

0

∫

Ω

DW (τ)(x,∇u(τ)) · ∇ġ(τ) dx dτ,

which completes the proof of the proposition. �

Next, we prove a unilateral minimality property satisfied by the triple (u(t),Θ(t),W (t)) which is
stronger than (5.18).

Proposition 5.4. Let t ∈ [0, T ]. For any v ∈ A(t), any θ ∈ L∞(Ω; [0, 1]) and any W ∈ F(Ω, α, β, p)
such that W (x, ·) ∈ Gθ(x)(W1,W (t)(x, ·)) for a.e. x ∈ Ω, then

∫

Ω

W (t)(x,∇u(t)) dx ≤
∫

Ω

W (x,∇v) dx+ κ

∫

Ω

Θ(t)θ dx.



30 JEAN-FRANÇOIS BABADJIAN

Proof. Let t ∈ [0, T ], v ∈ A(t), θ ∈ L∞(Ω; [0, 1]) and W ∈ F(Ω, α, β, p) such that W (x, ·) ∈
Gθ(x)(W1,W (t)(x, ·)) for a.e. x ∈ Ω. By Proposition 4.1, there exists a sequence of characteristic

functions (χn) ⊂ L∞(Ω; {0, 1}) such that χn
∗−⇀ θ in L∞(Ω; [0, 1]), and

∫

Ω

W (x,∇v) dx = Γ- lim
n→+∞

∫

Ω

[
χnW1(∇v) + (1 − χn)W (t)(x,∇v)

]
dx.

Moreover, since ∫

Ω

W (t)(x,∇v) dx = Γ- lim
k→+∞

∫

Ω

Wk(t)(x,∇v) dx,

we deduce from Lemma 4.1 that for each n ∈ N,
∫

Ω

[
χnW1(∇v) + (1 − χn)W (t)(x,∇v)

]
dx = Γ- lim

k→+∞

∫

Ω

[
χnW1(∇v) + (1 − χn)Wk(t)(x,∇v)

]
dx.

Let (vn) ⊂W 1,p(Ω) be a recovery sequence weakly converging to v in W 1,p(Ω) such that
∫

Ω

W (x,∇v) dx = lim
n→+∞

∫

Ω

[
χnW1(∇vn) + (1 − χn)W (t)(x,∇vn)

]
dx. (5.38)

Without loss of generality, one can assume that for each n ∈ N, vn = v on a neighborhood of ∂Ω,
and in particular vn ∈ A(t) for each n ∈ N. Consider now (vn,k)k ⊂ W 1,p(Ω) such that vn,k ⇀ vn in
W 1,p(Ω) as k → +∞, and satisfying
∫

Ω

[
χnW1(∇vn) + (1 − χn)W (t)(x,∇vn)

]
dx

= lim
k→+∞

∫

Ω

[
χnW1(∇vn,k) + (1 − χn)Wk(t)(x,∇vn,k)

]
dx. (5.39)

Once again, since for every t ∈ [0, T ], gk(t) converges strongly to g(t) in W 1,p(Ω) as k → +∞, it is
not restrictive to assume that vn,k = gk(t) on ∂DΩ so that vn,k ∈ Ak(t).

Fix k ∈ N and let i be such that t ∈ [tki , t
k
i+1), by (5.7) and (5.10), we have that

∫

Ω

W k
i (x,∇uk

i ) dx+ κ

∫

Ω

(Θk
i−1 − Θk

i ) dx ≤
∫

Ω

Qψk
i (x,∇vn,k) dx.

On the other hand, since χn(x)W1 + (1 − χn(x))W k
i (x, ·) ∈ Gχn(x)+(1−χn(x))θk

i
(x)(W1,W

k
i−1(x, ·)),

where

θk
i =

Θk
i−1 − Θk

i

Θk
i−1

,

we deduce from the expression (5.6) of Qψk
i that

∫

Ω

W k
i (x,∇uk

i ) dx+ κ

∫

Ω

(Θk
i−1 − Θk

i ) dx ≤
∫

Ω

[
χnW1(∇vn,k) + (1 − χn)W k

i (x,∇vn,k)
]
dx

+κ

∫

Ω

Θk
i−1

[
χn + (1 − χn)θk

i

]

=

∫

Ω

[
χnW1(∇vn,k) + (1 − χn)W k

i (x,∇vn,k)
]
dx

+κ

∫

Ω

[
Θk

i−1χn + (1 − χn)(Θk
i−1 − Θk

i )
]
.

Define Ξk(t) = Θk
i−1 if t ∈ [tki , t

k
i+1) and Ξ(t) its weak* limit in L∞(Ω; [0, 1]). Thanks to (5.39) we get

by passing to the limit as k → +∞ that
∫

Ω

W (t)(x,∇u(t)) dx+ κ

∫

Ω

(Ξ(t) − Θ(t)) dx

≤
∫

Ω

[
χnW1(∇vn) + (1 − χn)W (t)(x,∇vn)

]
dx

+κ

∫

Ω

[
Ξ(t)χn + (1 − χn)(Ξ(t) − Θ(t))

]
dx.
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Sending then n→ +∞ yields, according to (5.38),
∫

Ω

W (t)(x,∇u(t)) dx+ κ

∫

Ω

(Ξ(t) − Θ(t)) dx

≤
∫

Ω

W (x,∇v) dx+ κ

∫

Ω

[
Ξ(t)θ + (1 − θ)(Ξ(t) − Θ(t))

]
dx,

and thus ∫

Ω

W (t)(x,∇u(t)) dx ≤
∫

Ω

W (x,∇v) dx+ κ

∫

Ω

Θ(t)θ dx,

which is exactly the desired unilateral minimality property. �

Finally, as a consequence of the fact that W (t)(x, ·) ∈ G1−Θ(t)(x)(W1,W2) for a.e. x ∈ Ω and all
t ∈ [0, T ], together with the local character of G-closure (4.3), we deduce that the quasistatic evolution
obtained in Theorem 1.1 is not too low in the sense that the total energy is as close as we want from
the one associated to the original model.

Proposition 5.5. Let (u(t),Θ(t),W (t)) be any quasistatic evolution given by Theorem 1.1. Then
there exists a time dependent sequence of characteristic functions (χn(t)) ⊂ L∞(Ω; {0, 1}) which is
increasing with respect to t, such that for any t ∈ [0, T ],





χn(t)
∗−⇀ 1 − Θ(t) in L∞(Ω; [0, 1]),∫

Ω

Wχn(t)(x,∇v) dx Γ−→
∫

Ω

W (t)(x,∇v) dx,

and if vn(t) ∈ A(t) is the (unique) solution of

min
v∈A(t)

∫

Ω

Wχn(t)(x,∇v) dx,

then vn(t) ⇀ u(t) in W 1,p(Ω), and
∫

Ω

Wχn(t)(x,∇vn(t)) dx→
∫

Ω

W (t)(x,∇u(t)) dx.

6. Fracture versus damage

This section is devoted to the proof of Theorem 1.2 which is an existence result of a model of quasistatic
evolution for a continuum that undergoes both damage and fracture. This study was initiated in [22].
Since the arguments will be very close to those employed in the previous section, we will not prove all
the statements postponing to section 5 for more details.

In addition to the damage process, we assume that the material under consideration can experience
fractures. The modeling of the fracture process is conceptually similar to that of damage (we refer
to [30, 9] for detailed description of the model). At a discrete time level, and for a given time ti, the
created crack Γi will be assimilate to the union of the crack at the previous time step Γi−1 and the
jump set Jui

of the current deformation field ui which is solution of a minimization problem involving
a surface energy which penalizes the presence of cracks. According to Griffith’s theory we assume that
the energy spent to produce a crack is proportional to its area so that the dissipative energy from the
initial time up to time ti is

Gc HN−1(Γi \ ∂NΩ),

where Gc > 0 is the toughness of the material that we assume to be equal to 1 for simplicity. Note
that there is no energy associated to the part of the crack that lies on ∂NΩ. On the other hand, it
possible for the crack to reach the Dirichlet boundary ∂DΩ, and Γi ∩ ∂DΩ will be interpreted as those
points of ∂DΩ where the deformation ui do not match the boundary datum g(ti).

For technical reasons, we assume now that the boundary datum g ∈ W 1,1([0, T ];W 1,p(RN )) ∩
L∞(RN × [0, T ]). The reason why we further impose an L∞ bound is that it will enable us to apply
the maximum principle in the following minimization problems, ensuring their wellposedness.

Since ∂DΩ is open in the relative topology of ∂Ω, there exists an open set Ω′ ⊂ R
N such that

Ω ⊂ Ω′ and Ω′∩∂Ω = ∂DΩ. Then the space of all kinematically admissible deformation fields is given
by

A(t) := {v ∈ SBV p(Ω′) : v = g(t) a.e. on Ω′ \ Ω}.



32 JEAN-FRANÇOIS BABADJIAN

Note that if v ∈ A(t), then v = g(t) HN−1-a.e. on ∂DΩ \ Jv, where we still denote by v the inner
trace of v on ∂DΩ.

6.1. Time discretization.

6.1.1. First time step. At the initial time, gk
0 = g(0), and one wants to minimize

(v, χ) 7→
∫

Ω

[
χW1(∇v) + (1 − χ)W2(∇v) + κχ

]
dx+ HN−1(Jv \ ∂NΩ),

among all (v, χ) ∈ A(0) × L∞(Ω; {0, 1}). Minimizing first with respect to χ leads to the following
nonconvex integrand

ψ0(ξ) := min{W1(ξ) + κ,W2(ξ)},
and the previous minimization problem is equivalent to

I0 := inf
v∈A(0)

{∫

Ω

ψ0(∇v) dx+ HN−1(Jv \ ∂NΩ)

}
. (6.1)

The lack of convexity of the integrand ψ0 may prevent (6.1) to have solutions, so that it is necessary
to compute the relaxed problem. Since the boundary datum g(0) ∈ L∞(Ω′), then by the maximum
principle there is no loss of generality to assume that the minimizing sequences are uniformly bounded
in L∞(Ω′). Hence by Ambrosio’s compactness Theorem (Theorem 2.1), the limit functional space
remains SBV p(Ω′) and to get the relaxed functional, it suffices to replace ψ0 by its convexification
(see Theorem 3.4), which coincides in the scalar case of its quasiconvexification Qψ0 defined by

Qψ0(ξ) := inf
ϕ∈W 1,p

per (Q)

∫

Q

ψ0(ξ + ∇ϕ) dx,

or by Lemma 5.1

Qψ0(ξ) = min
θ∈[0,1]

[
min

W∗∈Gθ(W1,W2)
W ∗(ξ) + κθ

]
.

Then by Theorem 3.4

I0 = min
v∈A(0)

{∫

Ω

Qψ0(∇v) dx+ HN−1(Jv \ ∂NΩ)

}
. (6.2)

Let u0 ∈ A(0) be a minimizer of (6.2). By Lemmas 5.1 and 5.2, there exist θ0 ∈ L∞(Ω; [0, 1]) and
a Carathéodory function W0 ∈ F(Ω, α, β, p) such that for a.e. x ∈ Ω, W0(x, ·) ∈ Gθ0(x)(W1,W2) is

uniformly convex and of class C1, and

Qψ0(∇u0(x)) = W0(x,∇u0(x)) + κθ0(x).

We now define the total energy at the initial time by

E0 :=

∫

Ω

Qψ0(∇u0) dx+ HN−1(Ju0 \ ∂NΩ)

=

∫

Ω

W0(x,∇u0) dx+ κ

∫

Ω

(1 − Θ0) dx+ HN−1(Γ0 \ ∂NΩ) = I0,

where Θ0 := 1− θ0 is the local volume fraction of the undamaged material, and Γ0 := Ju0
is the crack

created at the initial time.

6.1.2. Subsequent time steps. Let i ≥ 1, and assume that there exist a Carathéodory function W k
i−1 ∈

F(Ω, α, β, p), Θk
i−1 ∈ L∞(Ω; [0, 1]) such that W k

i−1(x, ·) ∈ G1−Θk
i−1(x)(W1,W2) for a.e. x ∈ Ω, and

Γk
i−1 ∈ R(Ω). At time tki one wants to minimize

(v, χ) 7→
∫

Ω

[
χW1(∇v) + (1 − χ)W k

i−1(x,∇v) + κχ
]
dx+ κ

∫

Ω

Θk
i−1χdx+ HN−1(Jv \ (Γk

i−1 ∪ ∂NΩ)),

among all (v, χ) ∈ A(tki ) × L∞(Ω; {0, 1}). We first minimize with respect to χ which leads to the
following nonconvex Carathéodory integrand

ψk
i (x, ξ) := min{W1(ξ) + κΘk

i−1(x),W
k
i−1(x, ξ)},
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and the previous minimization problem is equivalent to

Ik
i := inf

v∈A(tk
i
)

{∫

Ω

ψk
i (x,∇v) dx+ HN−1(Jv \ (Γk

i−1 ∪ ∂NΩ))

}
. (6.3)

Once again, the lack of convexity of the integrand ψk
i may prevent (6.3) to have solutions, and it is nec-

essary to compute the relaxed problem. As before it suffices to replace ψk
i by its (quasi)convexification

defined by

Qψk
i (x, ξ) := inf

ϕ∈W 1,p
per (Q)

∫

Q

ψk
i (x, ξ + ∇ϕ(y)) dy,

or still, by Lemma 5.1,

Qψk
i (x, ξ) = min

θ∈[0,1]

[
min

W∗∈Gθ(W1,W k
i−1(x,·))

W ∗(ξ) + κΘk
i−1(x)θ

]
. (6.4)

Then, by Theorem 3.4

Ik
i = min

v∈A(tk
i
)

{∫

Ω

Qψk
i (x,∇v) dx+ HN−1(Jv \ (Γk

i−1 ∪ ∂NΩ))

}
. (6.5)

Let uk
i ∈ A(tki ) be a solution of (6.5), i.e.,

Ik
i =

∫

Ω

Qψk
i (x,∇uk

i ) dx+ HN−1(Juk
i
\ (Γk

i−1 ∪ ∂NΩ)).

By Lemma 5.3, there exist θk
i ∈ L∞(Ω; [0, 1]) and a Carathéodory function W k

i ∈ F(Ω, α, β, p) such
that for a.e. x ∈ Ω, W k

i (x, ·) ∈ Gθk
i
(x)(W1,W

k
i−1(x, ·)) is uniformly convex and of class C1, and

Qψk
i (x,∇uk

i (x)) = W k
i (x,∇uk

i (x)) + κΘk
i−1(x)θ

k
i (x).

We define the volume fraction of the undamaged material and the crack at time tki by

Θk
i := Θk

i−1(1 − θk
i ) and Γk

i := Γk
i−1 ∪ Juk

i
.

Then, as in the proof of Lemma 5.3 one has W k
i (x, ·) ∈ G1−Θk

i
(x)(W1,W2) for a.e. x ∈ Ω, and

Ik
i =

∫

Ω

W k
i (x,∇uk

i ) dx+ κ

∫

Ω

(Θk
i−1 − Θk

i ) dx+ HN−1(Juk
i
\ (Γk

i−1 ∪ ∂NΩ)). (6.6)

We also define the total energy at time tki by

Ek
i := Ik

i + κ

∫

Ω

(1 − Θk
i−1) dx+ HN−1(Γk

i−1 \ ∂NΩ)

=

∫

Ω

W k
i (x,∇uk

i ) dx+ κ

∫

Ω

(1 − Θk
i ) dx+ HN−1(Γk

i \ ∂NΩ).

6.2. A few properties of the discrete evolution. Since uk
i is a solution of (6.5) and W k

i (x, ·) ∈
Gθk

i
(x)(W1,W

k
i−1(x, ·)) for a.e. x ∈ Ω, it follows that uk

i is also a solution of

inf
v∈A(tk

i
)

{∫

Ω

W k
i (x,∇v) dx+ HN−1(Jv \ (Γk

i−1 ∪ ∂NΩ))

}
, (6.7)

and the pair (uk
i ,Γ

k
i ) satisfies the following unilateral minimality property:

∫

Ω

W k
i (x,∇uk

i ) dx+ HN−1(Γk
i \ ∂NΩ) ≤

∫

Ω

W k
i (x,∇v) dx+ HN−1(K \ ∂NΩ), (6.8)

for any K ∈ R(Ω) satisfying Γk
i ⊂̃ K, and any v ∈ A(tki ) with Jv ⊂̃ K.

Moreover, W k
i satisfies the same monotonicity properties than in Lemmas 5.4 and 5.5, and arguing

exactly as in section 5.3.3, we derive the following upper bound on the total energy:

Ek
j ≤ E0 +

j−1∑

i=0

∫

Ω

DW k
i (x,∇uk

i + sk
i (∇gk

i+1 −∇gk
i )) · (∇gk

i+1 −∇gk
i ) dx. (6.9)
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6.3. Piecewise constant interpolation. For each t ∈ [tki , t
k
i+1), we set

gk(t) := gk
i , uk(t) := uk

i , Θk(t) := Θk
i , Γk(t) := Γk

i , Wk(t) := W k
i ,

and we define Ak(t) := A(tki ) and Ek(t) := Ek
i . In particular uk(t) ∈ Ak(t), and by (6.8) the pair

(uk(t),Γk(t)) satisfies the following unilateral minimality property: for every t ∈ [0, T ],
∫

Ω

Wk(t)(x,∇uk(t)) dx+ HN−1(Γk(t) \ ∂NΩ) ≤
∫

Ω

Wk(t)(x,∇v) dx+ HN−1(K \ ∂NΩ), (6.10)

for any K ∈ R(Ω) satisfying Γk(t) ⊂̃ K, and any v ∈ Ak(t) with Jv ⊂̃ K. Moreover, the mappings
t 7→ Wk(t) ∈ F(Ω, α, β, p) and t 7→ Θk(t) ∈ L∞(Ω; [0, 1]) are decreasing, and t 7→ Γk(t) is increasing
for every k ∈ N.

As in the previous section, there exists a Bochner integrable function Φk : [0, T ] → Lp(Ω; RN )
satisfying ‖Φk(t)‖Lp(Ω;RN ) → 0 uniformly with respect to t ∈ [0, T ], such that the energy estimate
(6.9) can be rewritten as

Ek(t) ≤ E0 +

∫ t

0

∫

Ω

DWk(τ)(x,∇uk(τ) + Φk(τ)) · ∇ġ(τ) dx dτ. (6.11)

6.4. The time continuous limit. We now pass to the limit as the time step tends to zero. We first
state a compactness result on (uk(t),Θk(t),Γk(t),Wk(t)).

Proposition 6.1. There exist a subsequence (not relabeled), a set Γ(t) ∈ R(Ω), and functions u(t) ∈
A(t), Θ(t) ∈ L∞(Ω; [0, 1]) and W (t) ∈ F(Ω, α, β, p) such that





Γk(t) σ-converges to Γ(t),

uk(t) ⇀ u(t) in SBV p(Ω),

Θk(t)
∗−⇀ Θ(t) in L∞(Ω; [0, 1]),

∫

Ω

W (t)(x,∇v) dx = Γ- lim
k→+∞

∫

Ω

Wk(t)(x,∇v) dx.

Moreover the map (u,∇u) : [0, T ] → Lp(Ω) × Lp(Ω; RN ) is strongly measurable, the maps t 7→ Θ(t)
and t 7→ W (t) are decreasing and t 7→ Γ(t) is increasing, and W (t)(x, ·) ∈ G1−Θ(t)(x)(W1,W2) is

uniformly convex and of class C1 for a.e. x ∈ Ω and every t ∈ [0, T ]. Finally, we have convergence of
the bulk energy at every time t ∈ [0, T ],

∫

Ω

W (t)(x,∇u(t)) dx = lim
k→+∞

∫

Ω

Wk(t)(x,∇uk(t)) dx. (6.12)

Proof. The compactness of the pair (Θk(t),Wk(t)) and the properties of the limit (Θ(t),W (t)) can be
obtained exactly as in the proof of Proposition 5.1.

We now deal with the compactness of (Γk(t)) and (uk(t)) by first deriving a priori estimates. From
the maximum principle, we have that ‖uk

i ‖L∞(Ω′) ≤ ‖gk
i ‖L∞(Ω′) and thus

sup
t∈[0,T ]

sup
k∈N

‖uk(t)‖L∞(Ω′) < +∞. (6.13)

Then taking v = gk
i as test function in (6.7), we get from the p-growth and p-coercivity conditions

(2.1) satisfied by Wk(t) that α‖∇uk
i ‖p

Lp(Ω;RN )
≤ β

(
1 + ‖∇gk

i ‖p
Lp(Ω;RN )

)
, and thus

sup
t∈[0,T ]

sup
k∈N

‖∇uk(t)‖Lp(Ω′;RN ) < +∞. (6.14)

Finally from the energy estimate (6.11), the (p − 1)-growth condition (2.3) satisfied by DWk(t),
Hölder’s inequality and (6.14), we get that

sup
t∈[0,T ]

sup
k∈N

HN−1(Γk(t)) < +∞. (6.15)

According to (6.15), Proposition 3.1 and a variant of Helly’s Theorem for increasing set functions
(see e.g. [18, Theorem 6.3] for the case of Hausdorff converging compact sets), one can assume that
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for the same subsequence, Γk(t) σ-converges to some Γ(t) ∈ R(Ω) which is still increasing with respect
to t.

Moreover, according to (6.13), (6.14), (6.15) and the fact that (by construction) Juk(t) ⊂ Γk(t), we
deduce that

sup
t∈[0,T ]

sup
k∈N

(
‖uk(t)‖L∞(Ω′) + ‖∇uk(t)‖Lp(Ω′;RN ) + HN−1(Juk(t))

)
< +∞. (6.16)

Hence by (6.16) and Ambrosio’s compactness Theorem (Theorem 2.1), for each t ∈ [0, T ], there
exist a t-dependent subsequence (kj) and u(t) ∈ SBV p(Ω′) such that ukj

(t) ⇀ u(t) in SBV p(Ω′).

Moreover, the fact that gk(t) → g(t) strongly in W 1,p(Ω′) for every t ∈ [0, T ] ensures that u(t) = g(t)
a.e. on Ω′ \ Ω, so that u(t) ∈ A(t). By (6.10), Lemma 5.6 and Theorem 3.5, we deduce that the pair
(u(t),Γ(t)) is a unilateral minimizer with respect to the integrand W (t), i.e.,

∫

Ω

W (t)(x,∇u(t)) dx+ HN−1(Γ(t) \ ∂NΩ) ≤
∫

Ω

W (t)(x,∇v) dx+ HN−1(K \ ∂NΩ),

for any K ∈ R(Ω) satisfying Γ(t) ⊂̃ K, and any v ∈ A(t) satisfying Jv ⊂̃ K. In particular, if we fix
K = Γ(t), since W (t)(x, ·) is in particular strictly convex (see the proof of Proposition 5.1), then the
minimization problem

min

{∫

Ω

W (t)(x,∇v) dx : v ∈ A(t), Jv ⊂̃ Γ(t)

}

admits a unique solution which must be u(t). Hence by uniqueness the whole sequence uk(t) weakly
converges to u(t) in SBV p(Ω) and using again Theorem 3.5, we infer that the convergence of the bulk
energy (6.12) holds. Finally, one can show exactly as in the proof of Proposition 5.1 that the map
(u,∇u) : [0, T ] → Lp(Ω) × Lp(Ω; RN ) is strongly measurable. �

We define the total energy at time t ∈ [0, T ] by

E(t) :=

∫

Ω

W (t)(x,∇u(t)) dx+ κ

∫

Ω

(1 − Θ(t)) dx+ HN−1(Γ(t) \ ∂NΩ).

Our next goal is to prove the energy balance. We start by proving the upper bound inequality on the
total energy.

Proposition 6.2. For any t ∈ [0, T ], one has

E(t) ≤ E0 +

∫ t

0

∫

Ω

DW (τ)(x,∇u(τ)) · ∇ġ(τ) dx dτ. (6.17)

Proof. By the Γ-convergence result (5.16) and Theorem 3.4, we have that

E(t) ≤ lim inf
k→+∞

{∫

Ω

Wk(t)(x,∇uk(t)) dx+ κ

∫

Ω

(1 − Θk(t)) dx+ HN−1(Γk(t) \ ∂NΩ)

}
, (6.18)

and from the upper bound estimate (6.11), we get that

E(t) ≤ E0 + lim sup
k→+∞

∫ t

0

∫

Ω

DWk(τ)(x,∇uk(τ) + Φk(τ)) · ∇ġ(τ) dx dτ. (6.19)

Thanks to (6.12) and arguing exactly as in the proof of Proposition 5.2 we conclude that

lim
k→+∞

∫ t

0

∫

Ω

DWk(τ)(x,∇uk(τ) + Φk(τ)) · ∇ġ(τ) dx dτ

= lim
k→+∞

∫ t

0

∫

Ω

DWk(τ)(x,∇uk(τ)) · ∇ġ(τ) dx dτ

=

∫ t

0

∫

Ω

DW (τ)(x,∇u(τ)) · ∇ġ(τ) dx dτ, (6.20)

which, together with (6.19) completes the proof of (6.17). �

We next prove that the energy inequality (6.17) is actually an equality. Following [17] the argument
rests on the approximation of the Bochner integral by suitable Riemann sums (see Lemma 5.7).
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Proposition 6.3. For any t ∈ [0, T ], then

E(t) ≥ E0 +

∫ t

0

∫

Ω

DW (τ)(x,∇u(τ)) · ∇ġ(τ) dx dτ.

Moreover, for every t ∈ [0, T ], there is convergence of the surface energy

HN−1(Γk(t) \ ∂NΩ) → HN−1(Γ(t) \ ∂NΩ)

as well as the total energy Ek(t) → E(t).

Proof. Let s < t. By the Jump Transfer Theorem (Theorem 3.6), since u(t) + g(s)− g(t) ∈ A(s), one
can find a sequence (vk) such that vk ∈ Ak(s) for each k ∈ N, vk ⇀ u(t) + g(s) − g(t) in SBV p(Ω′),

lim
k→+∞

∫

Ω

Wk(t)(x,∇vk) dx =

∫

Ω

W (t)(x,∇u(t) + ∇g(s) −∇g(t)) dx, (6.21)

and
lim sup
k→+∞

HN−1(Jvk
\ (Γk(s) ∪ ∂NΩ)) ≤ HN−1(Ju(t) \ (Γ(s) ∪ ∂NΩ)). (6.22)

Let i ≤ j be such that s ∈ [tki , t
k
i+1) and t ∈ [tkj , t

k
j+1). Since by Lemma 5.5

W k
j (x, ·) ∈ G

1−
Θk

j
(x)

Θk
i−1

(x)

(W1,W
k
i−1(x, ·))

for a.e. x ∈ Ω, then from (6.4), (6.5) and (6.6) we have that
∫

Ω

W k
i (x,∇uk

i ) dx+ κ

∫

Ω

(Θk
i−1 − Θk

i ) dx+ HN−1(Juk
i
\ (Γk

i−1 ∪ ∂NΩ))

≤
∫

Ω

W k
j (x,∇vk) dx+ κ

∫

Ω

Θk
i−1

(
1 −

Θk
j (x)

Θk
i−1(x)

)
dx+ HN−1(Jvk

\ (Γk
i−1 ∪ ∂NΩ)),

and thus
∫

Ω

Wk(s)(x,∇uk(s)) dx+ κ

∫

Ω

(1 − Θk(s)) dx

≤
∫

Ω

Wk(t)(x,∇vk) dx+ κ

∫

Ω

(1 − Θk(t)) dx+ HN−1(Jvk
\ (Γk(s) ∪ ∂NΩ)).

Hence taking the limit as k → +∞, (6.21) and (6.22) lead to
∫

Ω

W (s)(x,∇u(s)) dx+ κ

∫

Ω

(1 − Θ(s))dx

≤
∫

Ω

W (t)(x,∇u(t) + ∇g(s) −∇g(t)) dx+ κ

∫

Ω

(1 − Θ(t))dx+ HN−1(Ju(t) \ (Γ(s) ∪ ∂NΩ)),

and consequently, since Ju(t) ⊂̃ Γ(t),

E(s) ≤ E(t) +

∫

Ω

W (t)(x,∇u(t) + ∇g(s) −∇g(t)) dx−
∫

Ω

W (t)(x,∇u(t)) dx.

The rest of the proof of the energy inequality is exactly the same than that of Proposition 5.3 by
choosing a suitable subdivision (sk

i )0≤i≤ik
of the interval [0, t] thanks to Lemma 5.7.

To prove the convergence of the total energy, for t ∈ [0, T ], we have thanks to (6.18) and (6.20)

E(t) ≤ lim inf
k→+∞

Ek(t) ≤ lim sup
k→+∞

Ek(t)

≤ E0 + lim sup
k→+∞

∫ t

0

∫

Ω

DWk(τ)(x,∇uk(τ)) · ∇ġ(τ) dx dτ

= E0 +

∫ t

0

∫

Ω

DW (τ)(x,∇u(τ)) · ∇ġ(τ) dx dτ ≤ E(t).

Then the convergence of the surface energy follows as a consequence of (6.12). �

We next prove that (u(t),Θ(t),Γ(t),W (t)) satisfies a unilateral minimality property.
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Proposition 6.4. Let t ∈ [0, T ]. For any K ∈ R(Ω) such that Γ(t) ⊂̃ K, any v ∈ A(t) such that
Jv ⊂̃ K, any θ ∈ L∞(Ω; [0, 1]) and any W ∈ F(Ω, α, β, p) such that W (x, ·) ∈ Gθ(x)(W1,W (t)(x, ·))
for a.e. x ∈ Ω, then
∫

Ω

W (t)(x,∇u(t)) dx+ HN−1(Γ(t) \ ∂NΩ) ≤
∫

Ω

W (x,∇v) dx+ HN−1(K \ ∂NΩ) + κ

∫

Ω

Θ(t)θ dx.

Proof. Let t ∈ [0, T ] and take v, K, W and θ as above. By Proposition 4.1 there exists a sequence of

characteristic functions (χn) ⊂ L∞(Ω; {0, 1}) such that χn
∗−⇀ θ in L∞(Ω; [0, 1]), and

∫

Ω

W (x,∇v) dx = Γ- lim
n→+∞

∫

Ω

[
χnW1(∇v) + (1 − χn)W (t)(x,∇v)

]
dx.

Moreover, since ∫

Ω

W (t)(x,∇v) dx = Γ- lim
k→+∞

∫

Ω

Wk(t)(x,∇v) dx,

we deduce from Lemma 4.1 that for each n ∈ N,
∫

Ω

[
χnW1(∇v) + (1 − χn)W (t)(x,∇v)

]
dx = Γ- lim

k→+∞

∫

Ω

[
χnW1(∇v) + (1 − χn)Wk(t)(x,∇v)

]
dx.

According to Theorem 3.4 and Lemma 3.3, there exists a recovery sequence (vn) ⊂ SBV p(Ω) weakly
converging to v in SBV p(Ω) such that vn ∈ A(t) for each n ∈ N and
∫

Ω

W (x,∇v) dx+ HN−1(Jv \ (Γ(t) ∪ ∂NΩ))

= lim
n→+∞

(∫

Ω

[
χnW1(∇vn) + (1 − χn)W (t)(x,∇vn)

]
dx+ HN−1(Jvn

\ (Γ(t) ∪ ∂NΩ))

)
. (6.23)

By the Jump Transfer Theorem (Theorem 3.6), we can consider a sequence (vn,k)k ⊂ SBV p(Ω′) such
that vn,k ⇀ vn in SBV p(Ω′) as k → +∞, vn,k ∈ Ak(t) for each k ∈ N,
∫

Ω

[
χnW1(∇vn) + (1 − χn)W (t)(x,∇vn)

]
dx

= lim
k→+∞

∫

Ω

[
χnW1(∇vn,k) + (1 − χn)Wk(t)(x,∇vn,k)

]
dx, (6.24)

and
lim sup
k→+∞

HN−1(Jvn,k
\ (Γk(t) ∪ ∂NΩ)) ≤ HN−1(Jvn

\ (Γ(t) ∪ ∂NΩ)). (6.25)

Fix k ∈ N and let i be such that t ∈ [tki , t
k
i+1), by (6.5) and (6.6), we have that

∫

Ω

W k
i (x,∇uk

i ) dx+ κ

∫

Ω

(Θk
i−1 − Θk

i ) dx+ HN−1(Juk
i
\ (Γk

i−1 ∪ ∂NΩ))

≤
∫

Ω

Qψk
i (x,∇vn,k) dx+ HN−1(Jvn,k

\ (Γk
i−1 ∪ ∂NΩ)).

On the other hand, since χn(x)W1 + (1 − χn(x))W k
i (x, ·) ∈ Gχn(x)+(1−χn(x))θk

i
(x)(W1,W

k
i−1(x, ·)),

where

θk
i =

Θk
i−1 − Θk

i

Θk
i−1

,

we deduce from the expression (6.4) of Qψk
i that

∫

Ω

W k
i (x,∇uk

i ) dx+ κ

∫

Ω

(Θk
i−1 − Θk

i ) dx ≤
∫

Ω

[
χnW1(∇vn,k) + (1 − χn)W k

i (x,∇vn,k)
]
dx

+ κ

∫

Ω

Θk
i−1

[
χn + (1 − χn)θk

i )
]
dx+ HN−1(Jvn,k

\ (Γk
i ∪ ∂NΩ))

=

∫

Ω

[
χnW1(∇vn,k) + (1 − χn)W k

i (x,∇vn,k)
]
dx+ κ

∫

Ω

[
Θk

i−1χn + (1 − χn)(Θk
i−1 − Θk

i )
]
dx

+ HN−1(Jvn,k
\ (Γk

i ∪ ∂NΩ)).
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Define Ξk(t) = Θk
i−1 if t ∈ [tki , t

k
i+1) and Ξ(t) its weak* limit in L∞(Ω; [0, 1]). Then

∫

Ω

Wk(t)(x,∇uk(t)) dx+κ

∫

Ω

(Ξk(t)−Θk(t)) dx ≤
∫

Ω

[
χnW1(∇vn,k)+(1−χn)Wk(t)(x,∇vn,k)

]
dx

+ κ

∫

Ω

[
Ξk(t)χn + (1 − χn)(Ξk(t) − Θk(t))

]
dx+ HN−1(Jvn,k

\ (Γk(t) ∪ ∂NΩ)),

and thanks to (6.24) and (6.25) we get by passing to the limit as k → +∞ that

∫

Ω

W (t)(x,∇u(t)) dx+ κ

∫

Ω

(Ξ(t) − Θ(t)) dx ≤
∫

Ω

[
χnW1(∇vn) + (1 − χn)W (t)(x,∇vn)

]
dx

+ κ

∫

Ω

[
Ξ(t)χn + (1 − χn)(Ξ(t) − Θ(t))

]
dx+ HN−1(Jvn

\ (Γ(t) ∪ ∂NΩ)).

Sending then n→ +∞ yields, according to (6.23),

∫

Ω

W (t)(x,∇u(t)) dx+ κ

∫

Ω

(Ξ(t) − Θ(t)) dx

≤
∫

Ω

W (x,∇v) dx+ κ

∫

Ω

[
Ξ(t)θ + (1 − θ)(Ξ(t) − Θ(t))

]
dx+ HN−1(Jv \ (Γ(t) ∪ ∂NΩ)),

and thus since Jv ⊂̃ K,
∫

Ω

W (t)(x,∇u(t)) dx+ HN−1(Γ(t) \ ∂NΩ) ≤
∫

Ω

W (x,∇v) dx+ κ

∫

Ω

Θ(t)θ dx+ HN−1(K \ ∂NΩ),

which is exactly the desired unilateral minimality property. �

Finally, using the fact that W (t)(x, ·) ∈ G1−Θ(t)(x)(W1,W2) for a.e. x ∈ Ω and all t ∈ [0, T ]
together with the local character of G-closure (4.3) and the Jump Transfer Theorem (Theorem 3.6),
we deduce that the obtained quasistatic evolution is not too low in the sense that the elastic energy
is as close as we want from the one associated to the original model.

Proposition 6.5. Let (u(t),Θ(t),Γ(t),W (t)) be any quasistatic evolution given by Theorem 1.2. Then
there exists a time dependent sequence of characteristic functions (χn(t)) ⊂ L∞(Ω; {0, 1}) which is
increasing with respect to t, such that for any t ∈ [0, T ],





χn(t)
∗−⇀ 1 − Θ(t) in L∞(Ω; [0, 1]),∫

Ω

Wχn(t)(x,∇v) dx Γ−→
∫

Ω

W (t)(x,∇v) dx,

and if vn(t) ∈ A(t) is the (unique) solution of

min

{∫

Ω

Wχn(t)(x,∇v) dx : v ∈ A(t) and Jv ⊂̃ Γ(t)

}
,

then vn(t) ⇀ u(t) in SBV p(Ω), and
∫

Ω

Wχn(t)(x,∇vn(t)) dx→
∫

Ω

W (t)(x,∇u(t)) dx.
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Marigo, Actes du 29ème congrès d’analyse numérique, ESAIM Proceedings 3 (1998) 1–9.

[4] G. Allaire, F. Jouve & N. Van Goethem: A level set method for the numerical simulation of damage evolution,
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