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Abstract. Ultrasonic backscattered signals from blood contain frequency-dependent
information that can be used to obtain quantitative parameters describing the aggregation
state of red blood cells (RBCs). However the relation between the parameters describing the
aggregation level and the backscatterer coefficient needs to be better clarified. For that purpose,
numerical wave simulations were performed to generate backscattered signals that mimic the
response of two-dimensional (2D) RBC distributions to an ultrasound excitation. The simulated
signals were computed with a time-domain method that has the advantages of requiring no
physical approximations (within the framework of linear acoustics) and of limiting the numerical
artefacts induced by the discretization of object interfaces. In the simple case of disaggregated
RBCs, the relationship between the backscatter amplitude and scatterer concentration was
studied. Backscatter coefficients (BSC) in the frequency range 10 to 20 MHz were calculated
for weak scattering infinite cylinders (radius 2.8 µm) at concentrations ranging from 6 to 36%.
At low concentration, the BSC increased with scatterer concentrations; at higher concentrations,
the BSC reached a maximum and then decreased with increasing concentration, as it was
noted by previous authors in in vitro blood experiments. In the case of aggregated RBCs,
the relationship between the backscatter frequency dependence and level of aggregation at a
concentration of 24% was studied for a larger frequency band (10 - 50 MHz). All these results
were compared with a weak scattering model based on the analytical computing of the structure
factor.

1. Introduction

The aggregation of red blood cells (RBCs) is a physiological reversible process. When RBCs
are under low shear rates (<10 s−1), they interact strongly with each other and form complex
3D rouleaux structures. When the shear rate increases, rouleaux structures desaggregate. This
phenomenon is not pathological. However, RBC hyper-aggregation, an abnormal increase of
RBCs aggregation, is a pathological state associated with several circulatory diseases such
as deep venous thrombosis, atherosclerosis and diabetes mellitus. These pathologies inflict
particular sites (inferior members for thrombosis, arterial bifurcations for atherosclerosis, the
foot and eye for diabetes). Ultrasonic imaging holds the perspective of further elucidating the
role of RBC aggregation on the etiology of these diseases in vivo and in situ.

Classical blood characterization techniques consist of measuring the magnitude and frequency
dependence of the radio frequency backscatter spectrum. A large number of in vitro experiments
on blood have been performed to study how these two indices vary with shear rate, flow
turbulence, hematocrit (i.e. concentration of RBCs), and RBC aggregation level [1]-[4].



Theoretical efforts have been also made to develop ultrasound backscattering models for non-
aggregating [5] and aggregating RBCs [6]. Twersky [5] proposed a packing factor to describe
the backscattering coefficient of a distribution of hard particles. This model succeeds to explain
the relationship between the backscatter amplitude and hematocrit for non-aggregating RBCs
but fails to predict the frequency dependence observed in in vitro experiments when considering
aggregating RBCs. Yu and Cloutier [6] recently parametrized the backscattering coefficient
from blood: two indices describing RBC aggregation, the packing factor and mean aggregate
diameter, were extracted from the Structure Factor Size Estimator. However this estimator still
needs to be quantitavely evaluated.

The purpose of this paper is to perform numerical ultrasound wave simulations through 2D
RBC distributions in order to validate a weak scattering theoretical model based on a particle
approach [7]. This theoretical model is commonly employed for approximating the ultrasound
backscattering from RBCs [8]-[12]. In order to simulate ultrasonic propagation through RBCs,
we use a time-domain numerical method [13] [14] that has the advantages of requiring no physical
approximation (within the framework of linear acoustics) and of limiting the numerical artefacts
induced by the discretization of object interfaces. Our method therefore automatically accounts
for multiple scattering, refraction, and reflection, and the accuracy of the numerical solution
is independent of the cell number. In the simple case of disaggregated RBCs, the relationship
between the backscatter amplitude and scatterer concentration is studied. In the aggregating
case, the relationship between the backscatter frequency dependence and level of aggregation at
a concentration of 24% is studied in the frequency range 10 to 50 MHz. All the results obtained
from the direct numerical simulation are compared with those expected from theory.

2. Ultrasound backscattering theory

Ultrasonic scattering from blood is mainly caused by the RBCs. Indeed, blood can be
mechanically described as a colloidal suspension of RBCs in plasma. RBCs constitute the vast
majority (97%) of the cellular content of blood and occupy a large volume fraction (hematocrit)
of 35-45% under normal conditions. In this 2D study, RBCs are modeled as parallel infinite
cylinders of radius a, that have a small acoustical impedance contrast relatively to the host
homogeneous medium (i.e. the plasma): γz = (ZRBC −Zplasma)/Zplasma. RBCs and plasma are
assumed to be fluid and non-dissipative media. In the following, we recall the scattering model
commonly used for a single RBC and then for many RBCs.

2.1. Single-RBC scattering model

Consider a backscattering configuration that consists of the insonification of one fluid RBC by

a monochromatic plane wave pi(r) = p0e
ikr, where r is the spatial vector, p0 is the incident

pressure amplitude, and k represents the wave vector (|k| = k = 2π/λ, λ being the wavelength).
In the far field of the particle, the field backscattered by the particle has the asymptotic form:

ps(r) = p0

eikr
√

r
[σb(k)]1/2 , (1)

where σb is the backscattering cross section per unit area of one particle that can be calculated
using the theory of Faran [15]. For the simplest case where the particle size is small compared
to wavelength (ka << 1), we use Rayleigh scatterer form [16]
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where Ap = πa2 is the particle area and J1 is the first order Bessel function of the first kind.



2.2. Many-RBC scattering model

The theoretical model of ultrasound backscattering by blood is based on a particle approach[6]
[7], which consists of summing contributions from individual RBCs and modeling the RBC
interaction by a structure factor. By using the Born approximation (weak scattering) and
considering a collection of n identical and cylindrical RBCs in the backscattering configuration
described in the previous section, the differential backscattering cross section per unit area (also
called the backscattering coefficient BSC) can be written as [5]:

BSCtheo(k) = mσb(k)S(k), (3)

where m is the number density of RBCs in blood that is related with the hematocrit H as
m = H/Ap. The function S is the structure factor representing the spatial positioning of
particles and defined by:

S(k) = E
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where E represents the expected value of a random variable and ri the position vectors defining
the center of the ith scatterer in space. Since the medium is isotropic, S(k) depends only on k;
for the clarity of the notation, we confused S(k) and S(k) as done in Eq. (3). The aggregation
phenomenon is thus supposed to only affect the structure factor since RBCs properties and
hematocrit remain constant in the region of interest.

In the low frequency limit, the structure factor tends towards a constant value S(k) → S(0) =
W called the packing factor that has been extensively studied for non-aggregating particles. The
most often used packing factor expression is based on the Percus-Yevick pair-correlation function
for identical, hard and radially symmetric particles. The Perkus-Yevick packing factor WPY was
first applied to blood by Shung [17] and is related in the 2D space with the hematocrit as [5]
[17] [7]

WPY =
(1 − H)3

1 + H
. (5)

At very low H, WPY is equal to unity. As H increases, WPY decays to zero so that the BSC
also approaches zero at very high H because in a densely packed medium one can always find
an RBC that will destructively interfere with the contribution from another RBC.

3. Methods

3.1. Computation of a RBCs distribution

We describe here how random distributions for non-aggregating and aggregating RBCs were
computed. These distributions were employed in the direct numerical simulation and in the
computation of the theoretical BSC.

Computation of a random distribution for non-aggregating RBCs. First, we specify the RBC
radius a = 2.75µm and the surface size S to be investigated. For each studied hematocrit
H, the number of RBCs n is given by n = HS/Ap and then a simple method allows the
determination of the RBC spatial positions as described in the following. The center position of
each cylinder is determined by a pair of random variables (xi, yj). Each time a new cylinder is
placed, a procedure is applied to check the distance between the newly generated cylinder and
the cylinders generated before. If a newly generated scatterer overlaps with any other scatterers,
the scatterer will be discarded, otherwise the scatterer’s position is saved. This procedure is
repeated until the required hematocrit is reached. Note that, for each hematocrit, two types of
distribution were performed:
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Figure 1. Sketch of the computational domain.
The area of interest A is the zone containing
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Figure 2. Backscattering cross sec-
tions per unit area σb of a single RBC.
The solid and dashed lines display σb

given by, respectively, the Faran and
Rayleigh models. Simulations results
are shown by the symbols.

• one with an exclusion length le=0.9µm between scatterer (i.e. a non-zero minimal length
between scatterer interfaces) for computational purpose in the direct numerical simulation
(see section 3.2),

• one without an exclusion length, i.e. scatterers could be in contact.

Computation of a random distribution for aggregating RBCs. First, discs of radius 6.60 µm
(and respectively 9.08 µm) are randomly generated, these discs correspond to aggregates contain-
ing 3 RBCs (and respectively 6 RBCs). An exclusion length le is ensured between aggregates.
For a specific hematocrit, the locations of the scatterers inside each aggregate are generated
randomly with an exclusion length le between scatterers.

3.2. Direct numerical simulation

The numerical method used to compute the solution of the wave equation was previously
described [13] [14]. The time-domain numerical integration of acoustic equations is done by
a second-order Lax-Wendroff scheme. The discretization of interfaces is done by an immersed
interface method, ensuring accurate description of geometrical features and of the jump
conditions. The computations involve grids of 2 mm×3 mm with mesh sizes ∆ x = ∆ y = 0.195
µm (i.e. grids of 10240×15360 nodes) requiring the parallelization of algorithms on a cluster of
PCs. The RBCs are distributed on a 2 mm × 1.4 mm rectangular subdomain. As required by
the immersed interface method, an exclusion length le between each scatterer is taken equal to
4∆ x=0.9 µm.

The computational grid is excited by a plane wave whose support is originally outside the
region of interest. The x axis of the computational domain are periodized in order to simulate
the wave propagation in a semi-infinite medium (see Fig. 1). At each time step, the simulated
acoustic pressure is recorded on 256 receivers. These receivers are placed at every 8 µm and in
parallel to the incident wave front in order to simulate a transducer moved laterally. Signals



were selected with a rectangular window of length 0.9 mm centered at a distance d = 1.15 mm
from the receivers. The power spectra of the 256 backscattered signals were then averaged to
provide the mean backscattered power spectrum P . The BSC obtained from the simulated data
was computed as

BSCsim(k) =
d

A

P

Pinc
, (6)

where Pinc is the power spectrum of the incident signal and A is the area of interest determined by
acoustic ray theory. Indeed, since signals are selected with a rectangular window corresponding
to depths between 0.7 mm and 1.6 mm from the receivers, the RBCs contributing to the selected
signals are localized between two circles of radii 0.7 mm and 1.6 mm and of center the receiver
positions. The area of interest A is thus the zone containing the RBCs distribution and located
between these two circles as shown in Fig. 1.

3.3. Computation of the theoretical BSC

The computation of the theoretical BSC requires the knowledge of the structure factor as
described in Eq. (3). Since S is by definition a statistical quantity, an average of all structure
factors obtained from several random particle distributions can give an estimated value of S.
For each particle distribution, a matrix D was computed by dividing the square simulation
plane L2 in N2

p pixels and by counting the number of particles falling into each pixel, Np being
sufficiently high in order that there is a maximum of one particle by pixel. We chose to take
L=300 µm and Np=256 pixels as a tradeoff between the computational domain size and the
computational time. This matrix D represents the microscopic density function defined by
D(r) =

∑n
i=1

δ(r − ri), where δ is the Dirac distribution. According to Eq.(4), the structure
factor can thus be described by:

S(k) = E

[

1

n

∣

∣

∣

∣

∫

D(r)e−i2krdr

∣

∣

∣

∣

2
]

. (7)

The structure factor was thus computed by averaging 2-D fast Fourier transforms (2D FFT) of
200 density matrix D. This FFT gave the structure factor values S(k) on a centered grid of
wavevectors between ±πNp/2L with a step of ∆k = π/L. The theoretical BSC is then obtained
using Eq. (3).

4. Results and discussion

4.1. Non-aggregating case

Figure 2 shows the simulated σb as a function of frequency in a linear scale. Also represented
are two theoretical σb obtained from the Rayleigh and Faran models. One can notice that the
Faran model matches well the σb obtained with the direct numerical simulation at all frequen-
cies, whereas the Rayleigh model is only valid within 5% accuracy until a frequency of 22 MHz.
Note that this result was expected since the Rayleigh model is accurate within 5% for ka <0.25.
In the following, all the theoretical BSCs presented will be calculated using the Faran model.

For non-aggregating RBCs at low frequencies, the relationship between the BSC amplitude
and hematocrit was investigated. Figure 3a presents four averaged BSCs obtained by averaging
BSCs between frequencies in the validity domain of Rayleigh behavior (i.e. between 10 and
22 MHz). The diamond markers represent the simulation results. The solid line shows the
prediction by the hard sphere Percus-Yevick packing factor. The dashed lines indicate the
particle theory approach by considering RBC distributions with and without an exclusion length.

This figure demonstrates that both simulation results and particle theory approach with the
same exclusion length are in good agreement at low frequencies. For the results without an
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Figure 3. (a) Plots of backscatter coefficients versus the hematocrit for non-aggregated RBCs.
The solid curve represents the BSCtheo calculated with the Percus-Yevick packing factor, the
dashed lines the particle theory approach BSCtheo obtained by computing the structure factor
with and without the exclusion length. The diamond markers express simulation results BSCsim.
(b) Frequency-dependent backscattering coefficients for an hematocrit of 6, 18, 24 and 36% in
the case of non-aggregated RBCs. The solid line represents the curve for the particle theory
approach. Simulations results are shown by the symbols.
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Figure 4. Frequency-dependent backscattering coefficients for a constant hematocrit of 24 %
in the case of non-aggregated and aggregated RBCs. The solid line represents the curve for the
particle theory approach. Simulations results are shown by the symbols.

exclusion length, the peak of the BSC obtained by the particle theory approach is seen at about
19%, in close agreement with the Percus-Yevick packing theory at about 22% as observed by
Zhang and co-workers [8] with a Gaussian pulse incident wave (see Fig. 10 in Ref. 19). However,
from a quantitative point of view, the Percus-Yevick packing theory does not match the particle
theory approach for hematocrits superior to 14 %.

Typical results of the frequency-dependent BSCsim and BSCtheo for an hematocrit of 6, 18,
24 and 36% are given in Fig. 3b in a log compressed scale. For both BSCs, the distributions



were realized with the exclusion length le. Standard deviations are not shown for clarity. The
weak scattering model based on the structure factor matches quite well the simulation results.
For all hematocrits, the BSCs are Rayleigh at low frequencies (up to 22 MHz) i.e. the BSCs
have third-power frequency dependence.

To conclude the non-aggregation case study, for the RBC distributions having an exclusion
length, the direct numerical simulation validates the structure factor theory for frequencies
between 10 and 22 MHz. We can reasonably extrapolate this result to RBC distributions
without an exclusion length. As shown in Fig. 3a, it will be thus more accurate to calculate the
theoretical BSC via the particle theory approach rather than the Percus-Yevick packing theory
for dense medium.

4.2. Aggregating case

Figure 4 shows the simulated and theoretical BSCs as a function of frequency in a log compressed
scale in the case of aggregating RBCs. A constant hematocrit H=24% and two aggregate sizes
(i.e. 3 and 6 RBCs by aggregate) were used for these computations. The markers represent
the simulation results and the solid line shows the prediction by the particle theory approach.
As observed in the case of the non-aggregating case in Fig. 3b, the particle theory approach
matches quite well the simulation results. However, for the largest level of aggregation and for
high frequencies (>40 MHz), the structure factory model fails to simulate the backscattered
field.

Also represented in Fig. 4 are the results in the case of non-aggregated RBCs at an hematocrit
of H=24% in order to compare non-aggregating and aggregating cases. For non-aggregated
RBCs, the slope of the BSC as a function of frequency is linear in our log-log scale. When
considering aggregated RBCs, the BSC becomes non-Rayleigh: the slope becomes not linear
in our log-log scale and the BSC amplitude increases as the level of aggregation becomes
larger. Note that the behaviors (frequency-dependence and amplitude) of the BSC in both
non-aggregated and aggregated RBCs were the same in in vitro experiments performed by Yu
and Cloutier [6] in a controlled Couette flow.

5. Conclusion

This study shows that the particle theory approach approximates accurately the backscattering
field of ultrasonic waves when the wavelength of the incident field is much greater than the scat-
terer size, for hematocrits inferior to 36% and for frequencies between 10 and 40 MHz. Future
works will incorporate elastic waves in the direct numerical simulation.
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