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Abstract. A Bernoulli free boundary problem with geometrical consitais studied. The domaif?
is constrained to lie in the half space determinedchy> 0 and its boundary to contain a segment of the
hyperplane{z; = 0} where non-homogeneous Dirichlet conditions are imposee.ak¥ then looking for
the solution of a partial differential equation satisfyiadDirichlet and a Neumann boundary condition si-
multaneously on the free boundary. The existence and umégseof a solution have already been addressed
and this paper is devoted first to the study of geometric apchpiotic properties of the solution and then
to the numerical treatment of the problem using a shape @attian formulation. The major difficulty and
originality of this paper lies in the treatment of the geomngeatonstraints.
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1 Introduction

Let (0,1, ...,zx) be a system of Cartesian coordinate®it with N > 2. We setRY = {R" : z; > 0}.
Let K be a smooth, bounded and convex set suchihatincluded in the hyperplangr; = 0}. We define
a set ofadmissible shape® as

O = {Q open and convexs’ C 992}.



Figure 1: The domaif in dimension two.

We are looking for a domaif2 € O, and for a functior. : 2 — R such that the following over-determined
system

(1) ~Au=0 inQ,

(2) u=1 onk,

3 u=0 ondN\ K,

(4) [Vul| =1 onT :=(0Q\ K)NRY

has a solution; see Figufp 1 for a sketch of the geometry.I&offl)-(4) is afree boundary problern the
sense that it admits a solution only for particular georestdf the domaif2. The sefl” is the so-calledree
boundarywe are looking for. Therefore, the problem is formulated as

(5) (F) : FindQ € O such that problen{1) @) has a solution.

This problem arises from various areas, for instance shppmiaation, fluid dynamics, electrochemistry
and electromagnetics, as explainedJ{J1, ,[Ip, 11]. Folicgtipns in NV diffusion, we refer to[[26] and for
the deformation plasticity sef][2].

For our purposes it is convenient to introduce thelset (02 \ K) N {z; = 0}. Problems of the type
(F) may or may not, in general, have solutions, but it was alrgadyed in [2}] that there exists a unique
solution to(F) in the clasg). Further we will denoté* this solution. In addition, it is shown ifi [R4] that
00* is C?*+e for any0 < a < 1, that the free bounda§Q* \ K meets the fixed boundary tangentially
and thatL* = (0Q* \ K) N {z; = 0} is not empty.

In the literature, much attention has been devoted to thedd#r problem in the geometric configura-
tion where the boundar§f? is composed of two connected components and suctisatonnected but not
simply connected, (for instance for a ring-shagBdor for a finite union of such domains; we refer (b [[3, 9]
for areview of theoretical results and {¢ [4} {3, [[4,[19, 22 description of several numerical methods for



these problems. In this configuration, one distinguishedrterior Bernoulli problem where the additional
boundary condition similar td](4) is on the inner boundargnf the exterior Bernoulli problem where the
additional boundary condition is on the outer boundary. piteblem studied in this paper can be seen as a
“limit” problem of the exterior boundary problem describiedfl§], sinced2 has one connected component
and(? is simply connected.

In comparison to the standard Bernoulli problerfig) presents several additional distinctive features,
both from the theoretical and numerical point of view. Thiclilties here stem from the particular geomet-
ric setting. Indeed, the constraifit C ]RiV is such that the hyperplader; = 0} behaves like an obstacle
for the domain(2 and the free bounda®2 \ K. Itis clear from the results i [R4] that this constraintlwil
be active as the optimal sét = (0Q* \ K) N {z; = 0} is not empty. This type of constraint is difficult to
deal with in shape optimization and there has been very fmgts, if any, at solving these problems.

From the theoretical point of view, the difficulties are aggwa in [24], but a proof technique used for
the standard Bernoulli problem may be adapted to our péatiaetup. Indeed, a Beurling’s technique and
a Perron argument were used, in the same way aslif [IL6,]17, 18].

Nevertheless, the proof of the existence and uniqueneswedfde boundary is mainly theoretical and
no numerical algorithm may be deduced to consttuderom the numerical point of view, several problems
arise that will be discussed in the next sections. The maimeiss thafl” is a free boundary but the set
L =00\ K)n{z; =0}is a’free” set as well, in the sense that its length is unknawd should be ob-
tained through the optimization process. In other wordsjrterface betweeh andI” has to be determined
and this creates a major difficulty for the numerical resotut

The aim of this paper is twofold: on one hand we perform a ttanalysis of the geometrical prop-
erties of the free boundaiy and in particular we are interested in the dependendeaf K. On the other
hand, we introduce an efficient algorithm in order to com@uteimerical approximation @?. In this way
we perform a complete analysis of the problem.

First of all, using standard techniques for free boundaoblams, we prove symmetry and monotonic-
ity properties of the free boundary. These results are ustiaelr to prove the main theoretical result of the
section in Subsectiop 3.3, where the asymptotic behavitheofree boundary, as the length of the subset
K of the boundary diverges, is exhibited. The proof is based pmlicious cut-out of the optimal domain
and on estimates of the solution of the associated parffarelintial equation to derive the variational for-
mulation driving the solution of the “limit problem”. Seodly, we give a numerical algorithm for a
numerical approximation df2. To determine the free boundary we use a shape optimizatiproach as
in [L3,[I4,[IP], where a penalization of one of the boundarydéion in (1)-(4) using a shape functional is
introduced. However, the original contribution of this papegarding the numerical algorithm comes from
the way how the "free” parf of the boundary is handled. Indeed, it has been proved it ¢tical study
presented in[[24] that the sét= (9Q\K) N {z; = 0} has nonzero length. The only equation satisfied on
L is the Dirichlet condition, and a singularity naturally &gps in the solution at the interface betwden
and L during the optimization process, due to the jump in boundanditions. This singularity is a major
issue for numerical algorithms: the usual numerical apgres for standard Bernoulli free boundary prob-
lems [I3B,[I#[ 9, 20] cannot be used and a specific methoddlagyo be developed. A solution proposed
in this paper consists in introducing a partial differehégquation with special Robin boundary conditions
depending on an asymptotically small parametemd approximating the solution of the free boundary
problem. We then prove in Theorelh 3 the convergence of theogippate solution to the solution of the



free boundary problem, asgoes to zero. In doing so we show the efficiency of a numerigakithm that
may be easily adapted to solve other problems where the &@edary meets a fixed boundary as well as
free boundary problems with geometrical constraints ogsiin boundary conditions. Our implementation
is based on a standard parameterization of the boundany siglimes. Numerical results show the efficiency
of the approach.

The paper is organized as follows. Sectipn 2 is devoted tllieg basic concepts of shape sensitivity
analysis. In Sectiop] 3, we provide qualitative propertiethe free boundary, precisely we exhibit sym-
metry and a monotonicity property with respect to the lergftthe setk as well as asymptotic properties
of T. In Section[}4, the shape optimization approach for the utisol of the free boundary problem and a
penalization of the p.d.e. to handle the jump in boundanditmms are introduced. In sectigh 5, the shape
derivative of the functionals are computed and used in tmeemical simulations of F) in Section[b andl]7.

2 Shape sensitivity analysis

To solve the free boundary problef#’), we formulate it as a shape optimization problem, i.e. asrtim-
mization of a functional which depends on the geometry oftdibmains? C O. In this way we may study
the sensitivity with respect to perturbations of the shape @se it in a numerical algorithm. The shape
sensitivity analysis is also useful to study the dependafice* on the length ofi, and in particular to
derive the monotonicity of the domafer with respect to the length df’.

The major difficulty in dealing with sets of shapes is thatytde not have a vector space structure. In
order to be able to define shape derivatives and study théigiyn®f shape functionals, we need to con-
struct such a structure for the shape spaces. In the literahis is done by considering perturbations of an

initial domain; see[J6] 19, 27].

Therefore, essentially two types of domain perturbatiaescansidered in general. The first one is a
method of perturbation of the identity operatdhe second one, theelocity or speed method based on
the deformation obtained by the flow of a velocity field. Theeghmethod is more general than the method
of perturbation of the identity operator, and the equivedebhetween deformations obtained by a family of
transformations and deformations obtained by the flow dadaig} field may be showr(]J€, P7]. The method
of perturbation of the identity operator is a particularckiof domain transformation, and in this paper the
main results will be given using a simplified speed method weipoint out that using one or the other is
rather a matter of preference as several classical texsbao@t authors rely on the method of perturbation
of the identity operator as well.

For the presentation of the speed method, we mainly rely erptesentations ][, P7]. We also
restrict ourselves to shape perturbationsabgonomousrector fields, i.e. time-independent vector fields.
LetV : RV — R be an autonomous vector field. Assume that

(6) V e DMRYN,RY) = {V e C*(RY,RY), V has compact suppdrt

with & > 0.
Forr > 0, we introduce a family of transformatiofi3(V")(X) = z(¢, X) as the solution to the ordinary



differential equation

(7) dt

{ix(t,X) = V(z(t,X)), 0<t<r,
z(0,X) = X RN,

For 7 sufficiently small, the systenf](7) has a unique solutjoh.[THe mappindl}; allows to define a family
of domainsQ2, = T;(V')(€2) which may be used for the differentiation of the shape fumati. We refer to
[B, Chapter 7] and[[27, Theorem 2.16] for Theorems estailisthe regularity of transformatiorig.

It is assumed that the shape functiondk2) is well-defined for any measurable fetc RY. We
introduce the following notions of differentiability wittespect to the shape

Definition 1 (Eulerian semiderivative)LetV € D¥(RN, RY) with k£ > 0, the Eulerian semiderivative of
the shape functional (2) at €2 in the directionV is defined as the limit

(8) dJ(V) = P{% M

)

when the limit exists and is finite.

Definition 2 (Shape Differentiability) The functional.J(Q2) is shape differentiable (or differentiable for
simplicity) atQ2 if it has a Eulerian semiderivative &t in all directionsV and the map

9) Vi dJ(Q, V)

is linear and continuous fro®* (R, RY) into R. The map@) is then sometimes denot&d/(2) and
referred to as the shape gradient.ffand we have

(10) dJ(Q,V) = (VJ(Q),V)p-kmN RN) DFRN RN)

When the data is smooth enough, i.e. when the boundary ofdiveid (2 and the velocity fieldV
are smooth enough (this will be specified later on), the slgsivative has a particular structure: it is
concentrated on the bounda®y2 and depends only on the normal component of the velocity fietoh the
boundaryof2. This result, often callegtructure theorenor Hadamard Formulais fundamental in shape
optimization and will be observed in Theor¢in 4.

3 Geometric properties and asymptotic behaviour

In shape optimization, once the existence and maybe uréggesf an optimal domain have been obtained,
an explicit representation of the domain, using a paranzetén for instance usually cannot be achieved,
except in some particular cases, for instance if the optidoaiain has a simple shape such as a ball, ellipse
or a regular polygon. On the other hand, it is usually poedibldetermine important geometric properties
of the optimum, such as symmetry, connectivity, convexatyifistance. In this section we show first of all
that the optimal domain is symmetric with respect to the @edicular bissector of the segméiit using a
symmetrization argument. Then, we are interested in thenpstic behaviour of the solution as the length
of K goes to infinity. We are able to show that the optimal don§iris monotonically increasing for the
inclusion when the length ok increases, and th&t* converges, in a sense that will be given in Theorem
B, to the infinite strip0,1) x R.

The proofs presented in Subsecti¢ng 3.1 [and 3.2 are quitdasthand similar ideas of proofs may be

found e.g. in[1p[ 16, 17, 18].



3.1 Symmetry

In this subsection, we derive a symmetry property of the freendary. The interest of such a remark is
intrinsic and appears useful from a numerical point of view, tfor instance to test the efficiency of the
chosen algorithm.

In the two-dimensional case, we have the following resuftyohmetry:

Proposition 1. Let* be the solution of the free boundary probléii}#). Assume, without loss of gener-
ality that (Oz1) is the perpendicular bissector & . Then,Q* is symmetric with respect {@x).

Proof. Like often, this proof is based on a symmetrization arguménnay be noticed that, according to
the result stated irf [24, Theorem 1},is the unique solution of the overdetermined optimizatiovbfem

(By) - minimize J(Q, u)
07"\ subjectto Q€ O,u e H(Q),

where
H(Q)={uec H(Q),u=10onK,u =00ndQ\K and|Vu| = 10onT},

and
J(Q,u):/Q|Vu(ac)|2d:U.

From now on,2* will denote the unique solution df3;), K being fixed. We denote b§ the Steiner
symmetrization of2 with respect to the hyperplang = 0, i.e.

-~

1 1
Q= {m = (2/,z2) such that— 5’9(.%'/)’ < a9 < 5‘9(1")’,1" € Q’} ,
where
Q' = {2/ € R such that there exists, with (2/, z5) € Q*}

and
Q(x,) = {ZCQ € R such that(x’,@) c Q}’ 2 eq.

By construction{) is symmetric with respect to th®x;) axis. Let us also introduce, defined by

@z € Q— sup{csuch thatr w/*(\c)},

~

wherew*(c) = {z € Q* : u(z) > ¢}. Then, one may verify thai € H(Q2) and Polyd’s inequality (see

[[]) yields R
J(Q,7) < J(QF,u¥).

Since(2*, w*) is a minimizer ofJ and using the uniqueness of the solutior{8f), we getQ* = Q. O

Remark 1. This proof yields in addition that the direction of the noidmector at the intersection df and
(Owl) is (Owl)



3.2 Monotonicity

In this subsection, we show th&" is monotonically increasing for the inclusion when the kngf K
increases. For a given> 0, definek, = {0} x [—a,al. Let (F,) denote problent.F) with K, instead of
K and denoté), andu, the corresponding solutions. We have the following resuith® monotonicity of
Q. with respect ta.

Theorem 1. Let0 < a < b, thenQ), C .

Proof. According to [2}],(F,) has a solution for every > 0 anddf), is C?*,0 < a < 1. We argue by
contradiction, assuming th&, ¢ €2;. Introduce, fort > 1, the set

Oy ={z€Qy:txr €y}

We also denote by; := {0} x [—ta,ta] andl; := 9\ (02 N (Ox2)). The domairf2, is obviously a
convex set included ify, for ¢ > 1. Now denote

tmin 1= inf{t > 1,0 C Qb}

On one hand), C € is equivalent td,,,;,, = 1. On the other hand, if2, ¢ Q,, thent,,;, > 1 and
for t large enough, we clearly ha¥e, c €, thereforet,,;, is finite. In addition, ifQ, ¢ Q, we have
Iy, . NIy # (. Now, choosey € T';, . NTY%. Let us introduce

min min

ug, 2T € Q> Ug (bnin®).

min

Then,u; . verifies

—Auy,,, =0 InQy .
utmin = 1 on Ktmin ?
utmin - 0 on Ptmin ?

so that, in view ofQ2, . C Q, and K, ., C K;, the maximum principle yields, > wy,,, in Yy, . .
Consequently, the functioh = u, — w,,,, is harmonic in€; . , and sinceh(y) = 0, h reaches its lower
bound aty. Applying Hopf's lemma (se€[][7]) thus yield$,h(y) < 0 so that|Vu,(y)| > |Vuy,,.. (y)|.
Hence,

L= [Vuy(y)| = |V, )] = tmin > 1,

which is absurd. Therefore we necessarily hayg, = 1 and), C Q. O

3.3 Asymptotic behaviour

We may now use the symmetry property of the free boundarytaiothe asymptotic properties 9f, when
the length ofK” goes to infinity, i.e. we are interested in the behaviour efftke boundary’, asa — ~o.

Let us say one word on our motivations for studying such alpmbFirst, this problem can be seen as
a limit problem of the “unbounded case” studied[in][18, S®c)] relative to the one phase free boundary
problem for thep-Laplacian with non-constant Bernoulli boundary conditi®&econd, let us notice that the
change of variable’ = x/a andy’ = y/a transforms the free boundarl} (1)-(4) problem into

(11) —~Az = 0 inQ,

(12) z = 1 onkj,

(13) z = 0 ondQ\ K,

(14) Vzl = a onl =02\ K;)NRY,

7



which proves that the solution df {11)-[14)/is,,(£2.), whereh, ,, denotes the homothety centered at the
origin, with ratiol/a. Hence such a study permits also to study the role of the bagrenultiplier associated
with the volume constraint of the problem

min C(Q2) whereC () = min {1 [, [Vug|?>,u =10onK;, u=00n9Q\K }
() quasi-open || = m,

since, as enlightened if 15, Chapter 6], the optimal dorisathe solution of [(1]1){(34) for a certain con-
stanta > 0. The study presented in this section permits to link the aage multiplier to the constant
appearing in the volume constraint and to get some infoomain the limit case — +oo.

We actually show thal’, converges, in an appropriate sense, to the line parallé& t@nd passing
through the poin{1,0). Let us introduce the infinite open strip

S =]0,1[xR,

and the open, bounded rectangle
R(b) =]0,1[x] — b, b[C S.

Let
ug:r €S —1—x.

Observe that, sincg, is solution of the free boundary problefy ({)-(4), the curyen {—a < x5 < a} is
the graph of a concav@“ functionzs +— 1, (z2) on[—a, a]. We have the following result

Theorem 2. The domairt2, converges to the strif§ in the sense that for all > 0, we have
(15) e — 1, uniformly in[—b, b], asa — +oco.
We also have the convergence
ug — us in HY(R(b)) asa — oo,
for the solutionu,, of ({I)-@).

Proof. Let us introduce the function
Ve (1) = ug(z1,0).

According to [1b, Proposition 5.4.12], we have for a dom@iof classC? andu : © — R of classC?
(16) Au = Aru + HOu + 02u,
whereAru denotes the Laplace-Beltrami operator. Applying form{i) in the domains
wq(c) ==z € Qq,uq(z) > ¢},
we getAru, = 0 0ndw,(c), Au, = 0 due to [1) and thus
(17) OPug = —HaOpuq  ONAwy(c),

wheren is the outer unit normal vector to,(c) and#,(z) denotes here the curvature@b,(c) at a point
x € dwg(c). Thanks to the symmetry 61, with respect to the:;; -axis, we haved,, u,(x1,0) = v} (x1) and

8



02uq(z1,0) = v”(x1) for z; > 0. According to [24], the sets, (c) are convex. Thereforg(, is positive
0N dw,(c) andw, (1) is non-increasing. Thus

(18) U”( )_ H (1‘1, ) (1‘1) 207

which means that,, is convex. Letn, be such thaf’, N (R x {0}) = (m,,0), i.e. the first coordinate of
the intersection of the-axis and the free boundafy,. The functionv, satisfies

(19) vl(x1) <0 forxy €]0,my],
(20) va(0) =

(21) Vo (Mg) =

(22) vh(mg) = —1.

In view of [19),v, is convex on0, m,]. Sincev,(0) = 1 andv,(m,) = 0, then

1
v(z1) <1— o
Furthermoreyn, < 1, otherwise, due to the convexity of, the Neumann conditiorﬂ|22) would not be
satisfied. Sinc&, is convex, this proves th&l, C S and that, is bounded.
Moreover, from Theorer] 1, the map— €, is nondecreasing with respect to the inclusion. It follohestt
the sequencém,,) is nondecreasing and bounded sifi;eC S. Hence,(m,) converges tan., < 1.
Let us define

The previous remarks ensure that for every 0, v, < .
Let D(a) be the line containing the poin{®), a) and (¢, (b),b) and 7T (a) the line tangent td’, at
(14(b),b). Letsp(a) ands7(a) denote the slopes @(a) and7 (a), respectively. For a fixet € (0,a),

we have
b—a

Ya(b)

since0 < v, < 1. Due to the convexity of),, we also haves(a) < sp(a). Therefore

sp(a) = — —00  asa — oo,

st(a) = —o0  asa — oo.

Thus, the slopes of the tangentslipgo to infinity in 2, N R(b). Furthermore, due to the concavity of the
function,, we get, by construction dP(a),

%(a —x2) < Ya(x2) < Moo, Ya > 0, Vg € [—b,b].

Hence, we obtain the pointwise convergence result:
(23) aEI-‘,I-l Ya(T2) = Moo, Vg € [—b, 1],

which proves the uniform convergencewf to m., asa — +oo.

From now on, with a slight misuse of notatiom, will also denote its extension by zero to all §f
Finally, let us prove the convergence

Ug — Uso N HY(Roo(b)), @Sa — oo,

9



where R (b) denotes the rectangle whose edges are:= {0} x [—b,b], X2 = [0, m] X {b}, X3 =
{muso} x [=b,b] andXy = [0, ms] x {—b}.

According to the zero Dirichlet conditions & and using Poincaré’s inequality, proving tHé-convergence
is equivalent to show that

(24) / |V (g — ts)|* = 0 asa — oo.
oo (b)

For our purposes, we introduce the cuﬁ)@(a) described by the pointX, ; solutions of the following
ordinary differential equation

X,
(25) { L (1) = Vuo(Xupl0), 1> 0

Xa,lli(o) = (07 b)

The curveXs(a) is naturally extended along its tangent outsidegf ¥,(a) can be seen as the curve
originating at the point0, b) and perpendicular to the level set curvesnf We also introduce the curve
334(a), symmetric toX;(a) with respect to ther;-axis. X4(a) is obviously the set of point¥, , solutions
of the following ordinary differential equation

(26) { Db (1) = Guu(Vuult). ¢ 0.

Y,5(0) = (0, —b).
Then the sef),, (b) is defined as the region delimited by theaxis on the left, the line parallel to the-axis

and passing through the poifit.«, 0) on the right and the CUI’V%Q(G) andil(a) at the top and bottom.
We also introduce the s&l;(a) := Q. (b) N ({mo} x R). See Figurg]2 for a description of the sétg (b)

andQ@,(b).

SinceR.(b) C Q. (b) (see Figurg]2), we have

[ VP < [ V- u)
Roo(b) Qa(b)

Using Green’s formula, we get

[ o—wl = [ St [ V- )l
Qa(b) Qa ()2 Qa(0)\Qa

= —/ (Ug — Uoo) A(Ug — Uso) — / (Ug — Uoo) A(Ug — Uso)
Qa(b)NQq Qa(b)\Qa

—|—/ (Ug — Uoo )0y (Ug — Uso) + Z/ (Ug — Uoo ) Opx (Ug — Uso),
8Qa(b) 4 FamQa(b)

wherev denotes the outer normal vector @,(b) on the boundary@,(b), n is the outer normal vector
to 2, on the boundary’, andd,,+ is the normal derivative of, in the exterior or interior direction, the

positive sign denoting the exterior direction{. The functionsu, andu., are harmonic, and using the
various boundary conditions fai, andu., we get

/ |V (ug — uoo)]2 :/~ (g — Ueo) Oy (Ug — Uso) +/ Uoso-
Qa(b) Yo (a)Udy(a) T'aNQa(b)

10



T2 i

31— .\E

24

S4(a)

Figure 2: The set&..(b) andQ,(b).

According to [2B) and using., = 0 on X3, we get

b
[ = [ ualen) VI G fmaPdes 0 asa o,
FamQa(b) —b

where we have also used the fact thigfx2) — 0 for all z; € [—b,b]. The limit functionu., depends only
onz1, thus we havé),u,, = 0 0on s U ¥y Denote nowy, : [0,m] — R the graph ofig(a) (which
implies that—, is the graph of:4(a)). The slope of the tangents to the level setsptonverge to—oco
asa — oo in a similar way as fol,, therefored,, u,(z1, v, (1)) converges uniformly t0 in [0, m]| as
a — oo, and in view of [2b) we have that, — b uniformly in [0, m,] and since(u, — ux.) is uniformly
bounded irf2, we have

(27) /~  (ug — Uso) Oyl — 0 @Sa — 0.
$2(a)US4(a)

In view of the definition ofQ,(b), the outer normal vectar to Q,(b) at a given point orty(a) U $4(a)
is colinear with the tangent vector to the level set curvélgfpassing though the same point. Therefore
Oyug = 0 0n3a(a) U3y (a) and we obtain finally

(28) 0< / IV (g — oo )|* < / |V (ug — uso)|* = 0 asa — oc.
Roo(b) Qa(b)

The end of the proof consists in proving that, = 1. Let us introduce the test functiap as the

11



solution of the partial differential equation

—Ap =0 inQu(b)
(29) { ©=0 ony; U Ss(a) U Sy(a)

=1 on Y (a).

It can be noticed thap € H'(R.(b)).
Using Green'’s formula and the same notations as previowslyet

/ V(ug —uso) - Vo = / V(ua—uoo)-Vgo—F/ V(ug — uso) - Vo
Qa(b) Qa(D)NQ0a Qa()\Qa
= - @A(ua - uoo) - / @A(ua - uoo)
Qa (b)) NONH
L BRI ETSES By A= .
aQa(b) + FamQa(b)

- /~ 90y (ug — uso) + /~ 0O (Ug — Uso) — / ©
$a(a)US4(a) S3(a) 'aNQa (b)

_ / P / o
i3(0') mOO FamQa(b)

According to [2B), and since we deduce frdm| (28) that

/ V(ug —uso) - Ve — 0 asa — oo,
Qa(b)

/ P / o =0
S3(a) Moo $3(a) ’

(i 1) sl =0,

In other wordsyn, = 1, which ends the proof. O

we get

which leads to

4 A penalization approach

4.1 Shape optimization problems

From now on we will assume tha{ = 2, i.e. we solve the problem in the plane. The problemNor> 2
may be treated with the same technique, but the numericdkimgntation becomes tedious. A classical
approach to solve the free boundary problem is to penalimafrthe boundary conditions in the over-
determined systen](1)}(4) within a shape optimization aagin to find the free boundary. For instance one
may consider the well-posed problem

(30) —Au; =0 inQ,
(31) up =1 onk,
(32) up =0 ondN\ K.

12



and enforce the second boundary conditidn (4) by solvingtbblem

_ | minimize J(Q2)
(33) (Bu): { subjectto Q € O,

with the functional.J defined by
(34) J(Q) = / (Opuq + 1) dI.
r

Indeed, using the maximum principle, one sees immediatalyu; > 0 in 2 and sincer; = 00ndN \ K,
we obtaind,u; < 00ondN\ K. Thus|Vu;| = —0,u; ondN \ K and the additional boundary condition
(@) is equivalent ta),,u; = —1 onT. Hence, [(34) corresponds to a penalization of conditibn @) one
hand, if we denote:} the unique solution of[1)F{4) associated to the optimalEetve have

J(¥) =0,

so that the minimization probleri (33) has a solution. On thewhand, if/(Q2*) = 0, then|Vuj| = 1 on
I" and thereforeu} is solution of [1){#). ThugF) and(B;) are equivalent.

Another possibility is to penalize boundary conditigh (@3tead of [(4) as i3;), in which case we
consider the problem

(35) —Aus =0 inQ,
(36) up=1 onk,
(37) up =0 onlkL,
(38) Opus = —1 onT,

and the shape optimization problem is

minimize J(Q)

(39) (B2) { subjectto Q € O,

with the functionalJ defined by

(40) J(Q) = /F (ug)?dr.

Although the two approachdg$3;) and (B,) are completely satisfying from a theoretical point of vietw,
is numerically easier to minimize a domain integral rathemta boundary integral as if [34) arjd](40).
Therefore, a third classical approach is to solve

minimize J(Q)

(41) (Bs) : { subjectto Q € O,

with the functional defined by
(42) J(Q) = / (u1 — ug)?
Q

13



Figure 3: Polar coordinates with origify;, and such tha#; = 0 corresponds to the semi-axis tangenf'to

For the standard Bernoulli problemi§ [3, 9], solvifig;) is an excellent approach as demonstrated ih [13,
fi4.[19]. However, we are still not quite satisfied with it irr@ase. Indeed, it is well-known that due to the
jump in boundary conditions at the interface betwdeandI in (87)-(38), the solution:; has a singular
behaviour in the neighbourhood of this interface. To be npoeeise, let us define the points

{Al, AQ} = sz,

and the polar coordinates;, 6;) with origin the pointsA4;, ¢ = 1,2, and such thaf; = 0 corresponds to
the semi-axis tangent tb; see Figure|]3 for an illustration. Then, in the neighbouthob A4;, us has a
singularity of the type

Si(’l“i, 91) = C(Ai)\/TTZ'COS(Hi/2),

wherec(4;) is the so-calledtress intensity factofsee e.qg.[[17, 21]).

These singularities are problematic for two reasons. Thedifficulty is numerical: these singularities
may produce inacurracies when computing the solution meapoints{ 4, A2}, unless the proper numer-
ical setting is used. It also possibly produces non-smoetbrthations of the shape, which might create in
turn undesired angles in the shape during the optimizationgalure. The second difficulty is theoretical:
sincel is a free boundary with the constraintc ]RiV , the points{ A, A, } are also "free points”, i.e. their
optimal position is unknown in the same waylags unknown. This means that the sensitivity with respect
to those points has to be studied, which is doable but tedaiti®ugh interesting. The main ingredient in
the computation of the shape sensitivity with respect tsghmints is the evaluation of the stress intensity
factorsc(A;).

4.2 Penalization of the partial differential equation

In order to deal with the aforementionned issue, we intredauéourth approach, based on the penalization
of the jump in the boundary conditiong [37)438) fos. Lete > 0 be a small real parameter, and let
1. € C(RT,R") be a decreasing penalization function such that- 0, 1. has compact suppoit, -],
and with the properties

(43) B — 0ase — 0,
(44) e (0) — oo ase — 0,
(45) Ye(x1) > 0ase -0, Vx> 0.

A simple example of such function is given by

(46) Ve(x1) = e Y (max(1 — e %2,0))*1g+,

14



with ¢ > 0. Note thaty. is decreasing, has compact support and verifies assumi@n{45), with
B. = €. We will see in Propositiof] 2 that the choicewfis conditioned by the shape of the domain. Then
we consider the problem with Robin boundary conditions

(47) —AUQ,S =0 in Q,
(48) us. =1 Oonk,
(49) 8nu275 + wg(xl)UQ’g =—1 onof \ K.

The functionus . is a penalization ofi; in the sense thaty . — us ase — 0in HY(Q) if 1. is properly
chosen. The following Proposition ensures fi&-convergence ofi, . to the desired function. It may be
noticed that an explicit choice of functiaf. providing the convergence is given in the statement of this
Proposition.

Proposition 2. Let(2 be an open bounded domain. Thendorgiven by[@8), there exists a unique solution

to (B7)-(B9) which satisfies
(50) Uz — ug in HY(Q) ase — 0.

Proof. In the sequel¢ will denote a generic positive constant which may changeatse throughout the
proof and does not depend on the parameter
We shall prove that the difference
Ve = U2 — U2

converges to zero il ! (2). The remainder. satisfies, according t¢ (35)-{38) arjd](41)}(49)

(51) —Av. =0 inQ,
(52) v.=0 onk,
(53) Onve + 1 (0)v. =14 dpus oNL,
(54) Onve + Ve (71)ve = Ye(w1)uz  ONT.

Multiplying by v. on both sides of{($1), integrating éhand using Green’s formula, we end up with

(55) /Q Vel + /8 (e = /F Grusvs + /L (1 + Buz)ve.

Sincev. = 0 on K we may apply Poincaré’s Theorem afd| (55) implies

(56) Vel gy < ¢ (lveusllz2my el + 11+ Onuall 2y el 2y »
According to the trace Theorem and Sobolev’s imbedding érapwe have
[vell2ry < ellvell garery < ellvellm o),
[vellzery < ellvellgrrz(ry < cllvellmra)-
Hence, according td (b6), we get
(57) [vellgro) < clleuz||p2@y + clll + Onusllr2(r)-
Now we prove that|v.ua|| 2y — 0 ase — 0. We may assume that the system of cartesian coordinates

(O, x1,x2) is such that the origi® is one of the points!; or As and thaf" is locally above the:; -axis; see
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>
A; z1

Figure 4:T is locally the graph of a convex function, with a tangent t:th-axis.

Figure[4. Sincé is convex, there exist > 0 and two constanta > 0 and 3 such that for alkr; € (0, 6),
' is the graph of a convex functiofi of z;. For our choice of)., since supp). = [0, 5.], we have the
estimate

feualagr = [ (eu)®
<¢€ / u2 \/1—|—f/ 561 dwl

According to [IR,[21] and our previous remarks in secfiory & haveu, = /7 cos(0/2) + oo, With
use € H?(Q), and(r,0) are the polar coordinates defined previously with originThus there exists a
constantc such that

lua| < ey/rcos(6/2)

in a neighborhood 06 with # € (0,7/2). Indeed,u,, is H? thereforeC! in a neighborhood of 0 and
then has an expansion of the forms, = csr + o(r), asr — 0. Note thatr = /z? + z3 and thus

r= /22 + f(z;)2onT. Then
Be 1/2
[zl L2y < e (0) </ (v/rcos(8/2))2\/1 + f'(x1) dx1>
0

e F @ R ) ) "

The functionf is convex andf(0) = 0, thus f’ > 0 for ¢ small enough. Since the bounddrys tangent to
the (Ox9) axis, we have

f'(x1) = oo asz; — 01,
r1 = o(f(z1)) asx; — 07.
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Thus, fore > 0 small enough

Be 1/2
betusll ey < et6e(0) ( 0 f(:vl)f’(wl)dm)
< erho(0) (£(B)2) % = e (0) F(B2).

Sincef(z1) — 0 asz; — 0, we may chooseé.(0) andj. in order to obtain).(0) f(8:) — 0 ass — 0 and
(58) H¢EUQ||L2(F) — 0 ase —0.

Then, in view of [5]7), we may deduce that || ;1 () is bounded for the appropriate choiceyaf. Conse-
quently,|[ve| 2y and||v || 12z are also bounded. Usinp {55), we may also write

BOloclany = [ 0% < [ @,

o0
(59) < [[Yeuallzz@lvell L2y + 11 + Onuallrz(zyllvellz2(z)-

Sincey.(0) — oo ase — 0 and all terms in[(§9) are bounded, we necessarily have
H’U&-HLQ(L) —0ase = 0.
Finally going back to[(§6) and using the previous resultspiain
[vell g1 (o) — 0ase — 0,
and this provesi . — ug ase — 0, in H1(1). O

The following theorem gives a mathematical justificatiortbef numerical scheme implemented in sec-
tion | to find the solution of the free Bernoulli proble#), based on the use of a penalized functional
defined by

(60) J.(Q) = /Q (use — )2,

whereu; is the solution of[(30){(32) and, - is the solution of[(47){(49).

Theorem 3. One has

lim inf (J.(2) - J(€2)) = 0.

Proof. The main ingredient of this proof is the result stated in Bsiion[2. Indeed, this proposition yields
in particular the convergence @f . to uy in L2((2), whenQ is a fixed element of. It follows immediately
that

J:(Q) — J(2), ase — 0.

Let us denote by2* the solution of the free Bernoulli proble(@). Then, we obviously have
. < -
Inf Jo(2) < Je(&)

Then, going to the limit as — 0 yields

< Tim i <1 X _ X _
0< ;%éngJg(Q) < ;g%l]g(Q )=J(Q*) =0.
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Remark 2. Theoren{]3 does not imply the existence of solutions for thielgminf{J.(Q), € O} and
the following questions remain open: (i) existence of a minér 2} for this problem, (ii) compactness of
() for an appropriate topology of domains. These problems apg#ficult since to solve it, we probably
need to establish a Sverak-like theorem for the Laplaciah Robin boundary conditions and some counter
examples (see e.d][5]) suggest that this is in general et tr

Nevertheless, if (i) and (ii) are true, Theordin 3 implies toavergence as — 0, of Q} to Q*, the
solution of (l))-(&).

5 Shape derivative for the penalized Bernoulli problem

In order to stay in the class of domaifis the speed” should satisfy

(61) V(z)=0 Vzek,
(62) V(z)-n(x) <0 VYxel.

Condition {61) will be taken into account in the algorithmgda{62) will be guaranteed by our optimization
algorithm. We have the following result for the shape deiead J. (2; V') of J.(£2)

Theorem 4. The shape derivativéJ. (2; V') of J. at ) in the directionV is given by
dJ.(Q;V) = / (Vp1 -Vug + Vpg - Vug e + poH + (ug — u275)2) V -ndl,
r
+/ (Vpl -Vuy — Vps - VUQ,a) V -ndL,
L

whereH is the mean curvature df andp,, p2 are given by([72)([73) and (74)-(78), respectively.
Proof. According to [§,[1b[ 27], the shape derivative.bfis given by

(63) dJ.(Q; V) = / 2(uy — ug)(u) — u'27€) —|—/ (ug — u2,€)2V -n,
Q a0
whereu/ andu’l6 are the so-calledhape derivativesf u; andus, respectively, and solve
(64) —Au} =0 inQ,
(65) uy =0 onk,
(66) u) = —Opu1V-n ondQ\ K,
(67) —Auy, =0 inQ,
(68) up. =0 onk,
(69) Uy, = —0OpupcV - onL,
8nu'27€ + 1/151/275 =divr(V - nVrua,)
(70) —HV -0 —0pusV -0 onT,

where#H denotes the mean curvaturelgfandVr is the tangential gradient dndefined by

Vru = Vu — (Opu)n.
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Note thatuj andus, . both vanish ork, indeed K is fixed due to[(§1) which follows from the definition of
our problem and of the clag3. Further we will also need

(71) Opuy . = divp(V - nVrug.) —HV -n onT,
which is obtained in the same way &s](70). We introduce thairzdjtates; andp,
(72) —Ap1 =2(u1 —uge) INQ,

(73) p1 =0 0nos,

(74) —Aps =2(u1 —uge) INQ,

(75) po=0 onLUK,

(76) Onpa =0 onT.

Note thatp; andp, actually depend on although this is not apparent in the notation for the sakeafl+
ability. Using the adjoint states, we are able to compute

/2(u1—u275)u'1 = /—Aplull
Q Q
= /—Aulﬂ?l —/ Onpruy — p1Onus
Q (e]9)
- —/ 311101“,1
A\ K

= / 8np16nu1V - Nn.
OO\K

Observing thaWp; = 9, p1n andVu; = d,un ondf \ K due to [3R) and (73) we obtain
(77) / 2(uy — ug e )ujde = / Vp1 - VuV - n.

Q HONK
For the other domain integral i (63) we get

/2(u1—u2,5)u'2,5 = /_Ap2u/2,€
Q Q
= / —Auly py — / (Onpatty . — P2Onuis ).
Q [e]9)

At this point we make use of (67)-(71) and we get
/ 2(uy — ugﬁ)u'z6 = /pg(diVF(V -nVruge) — HV -n)dl' + / Onp20nua V- n dL.
Q r L

Applying classical tangential calculus to the above eguatsee [27, Proposition 2.57] for instance) we
have

/2(u1 —ugc)uy, = —/(Vrpz'Vruz,sV'n—P27{V'n)dF+/3np25nu2,ev'ndL
Q r L

= - /(Vpg -VugV -n —paHV - n)dl' + / Vpa - Vuy V- ndL,
r L

and the proof is complete. O
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6 Numerical scheme

6.1 Parameterization versus level set method

For the numerical realization of shape optimization protdethe main issue is the representation of the
moving shape). Several different techniques are available: for our psepthe most appropriate methods
would beparameterizatiorand thelevel set methadin the parameterization method for two-dimensional
problems, curves are typically represented as splines diyeontrol points;, = (£1x,$2.%), K = 0,..,m
with m € IN*. The coordinates of these control points then become theesthesign variables. In the level
set method, the boundary of the domainHf is implicitely given by the zero level set of a function in
RN*L. Parameterization methods are the easiest to implememe ifopology of the domaif? does not
change in the course of iterations, whereas the level sétadé$ more technical to implement but thanks to
the implicit representation, it allows to handle easilydimgical changes of the domain, such as the creation
of holes or the merging of two connected components.

For instance, in[4, 22], the level set method is used to sBlmoulli free boundary problem where the
number of connected components is not known beforehandurlcase, we are solving the free boundary
problem(F) in the classO of convex domains, thus the domains only have one conneotaganent and
the topology is known. In this case it is better to opt for tlaegmeterization method which is easier to
implement and lighter in terms of computations.

The free boundary C 012 is represented with the help of a Bezier curve of degnee IN*. Let
.%'(S) = (.%'1(8),.%'2(8)), s € [07 1]
be a parametric representation of the open cliread let

Ek = (El,kvglk)? k= 07 - M

be a set ofn + 1 control points such that the parameterizatiori &atisfies

(78) w(s) = (z1(s),w2(5)) = > Brm(5)é,
k=0

where

(79) Bim(s) = <TIZ> sk(l — s)m_k,

and (') are the binomial coefficients. The geometric features sacthe unit tangent (s), unit normal
n(s) and curvaturé(s) are easily obtained from the representation (78). Indeetiave

(80) 7(s) = 2/ (s) /]2’ (5)],

with

(81) /() = Bl ()
k=0
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The coefficients3; , (s) are derived from[(79)

m — m— m—k—
(82) By (s) = <l<:> [ksk 1= )" Lgon + (k=m)s* (1= )" g1y | -
Sincen(s) - 7(s) = 0, we deduce the expression for the unit norm@i)

S Bl
Z;cnzo Bllc,rn(s)gkl

with & := (&, —&1.k). The curvaturéi(s) is obtained with the help of formula

(83) n(s)

(84) 7'(s) = H(s)n(s).
Thus we take
(85) H(s) = 7'(s) - n(s).
Remark 3. According to(B®), (81) and (B2), we obtain
_&1=8 gy Sm =Gt
(86) "= Ta T T e e

Thus, in order to create a curve which is tangent to the &xis= 0}, we need to také, & and&,,—1,&m
on{z; = 0}.

6.2 Algorithm

For the numerical algorithm we use a gradient projectiorhoain order to deal with the geometric con-
straint(2 C RY; see the textbookg [2P,]25] for details on the method. A &mifor dealing with the shape
optimization problems with a convexity constraint is tograeterize the boundary using a support function
w. If one uses a polar coordinates representatiofl) for the domains, namely

Q= {(r,&) €[0,00) x R;r < ﬁ},

wherew is a positive an@r-periodic function, ther2,, is convex if and only ifw” + w > 0; see [2B] for
details. However, in our case, the convexity constrainf @ not implemented (i.e. we relax this constraint)
for the sake of simplicity, but the convexity property is ebgd at every iteration and in particular for the
optimal domain if the initial domain is convex. Moreover,etitem 6.6.2 of[[15] may be easily generalized
in our case and guarantees the convexity of the solution effrie boundary probleriF) even if the
convexity hypothesis were not contained in the@et

We will denote by a superscrit) an object at iteratioh. The algorithm is as follows: we are looking
for an update of the design varialgg of the type

(®7) 6§ = P& +adg)),

whereP stands for the projection on the set of constraintsaigkthe steplength which has to be determined
by an appropriate linesearch. In our case, the constrafaitdsRZ , which implies the constraint

(88) z1(s) >0, Vsel0,1].
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In view of (78), it is difficult to directly interpret the cotraint (88) for individual control points;. We
choose therefore to impose the stronger constraint

(89) Gp>0, Vke{l,.,m}.

for the control points. Constrairft (89) is stronger thiarj) (8&leed, on one hand there might exig.auch
that&; . < 0 while [B8) is still satisfied, but on the other hand, condit{@9) implies [88). However, in
our case, the tipg(0) andz(1) of I are moving and the constraint should not be active for thatpaif
I" on the optimal domain. WitH (B9) we only guarantee that th@ala stays feasible, i.€) ¢ ]Rﬂf for all
iterates. In view of Remarl{ 3, we also impose

§0=81=8m-1=8&m=0

in order to preserve the tangent to the akis = 0} at the tips ofl". Therefore, fork = 0,..,m, 5,(!)
updated using,

(90) ﬁzl) = max < + « d£1 o )
(92) S =) + adgl),

(92) des)y = des)) =0,

(93) des) = ded) =o.

The link between the perturbation fieldand the step¢;, is directly established using {78), and we obtain
(94) V(a(s)) = Y Brm(s)dés.
=0

Thus, with a shape derivative given by

(95) dJ:(Q; V) = - VI (x)V(z) - n(x) dl'(z)

as in Theorenj]4, we obtain usifg](94) apd (95)

L V) = / V. (2(s)V (@(s)) - ns)|a’ (s)] ds

/VJ

_ngk / V Je(2(8)) Brm(s)n(s)|2(s)| ds.

ZBM dgk] n(s)|e!(s)] ds

Thus, a descent direction for the algorithm is given by

(96) i = — /w ) B (s)n(s)|2/ ()] ds,
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and the update is then performed accordind td (P0)-(93). stéyex is determined by a line search in the
spirit of the gradient projection algorithrh [20]: a step @igated if we observe a sufficient decrease of the
shape functional. measured by

J(QUD) — W) < —S 5T el

where| - | denotes the Euclidian distance. The line search considtadimg the smallest integer (the
smallest possible being= 0) such that

o= pun,
wherey andn < 1 are user-defined parameters. To stop the algorithm, we estollbwing stopping
criterion: we stop when

€D gD < el _ g0

wherer, is a user-defined parameter.

7 Numerical results

For the numerical resolution we take = 40 control pointsé;. We discretize the intervdD, 1] for the
parameterization:(s) using400 points. The domairk’ is chosen as

K = {0} x [0.5 — k1,0.5 4+ k1],
with k1 = 0.129. The initial domainL is chosen as
L= {0} X [05 — Kk2,0.5 — 1‘61] @] [05 + k1,0.5 + KQ],

with k2 ~ 0.233. We use the Matlab PDE toolbox to produce a gridlimand solveu;, us ., p1,p2 using
finite elements. The geometric quantities such as tangentai and curvature are computed usipd (80)-
(B1), (83) and[(85), respectively. We initialize the poigitdy placing them evenly on a half-circle of center
{0} x {0.5} and radiud).3, except for the two firsfy, £&; and two last points,,,_1, &, which have to lay on
the axis{x; = 0} as mentionned earlier. We chogse= 10, n = 0.5 for the line search angd. = 5 x 10~*

for the stopping criterion. For the penalization we @i6) choose = 10~ ! andq = 4.

The algorithm terminated aft@20 iterations. The results are given in Figufés $]to 7. In Fidijrthe
two states:; andus . as well as the two adjoint statps andp, are plotted. The difference betweenpand
us,- in the final domairt2 s, is plotted in Figurd]6, along with the residual($2) given by (60). In Figure
[1, the initial and final boundaries are plotted in blue and respectively, while the set of control points of
the curvel is plotted in green. We observe that the optimal domain isnsgtric as expected from section
B.1. The optimal sek f;, is given by

Lfinal = {0} X [0.5 - Kfi,0.5 - 161] @] [0.5 + k1,0.5 + I{fi].
with x¢; = 0.2342. The value ofJ, on the initial domain is

Je(Qinitiar) = 2.6 x 1072,
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Figure 5: Solutions; (top left), us . (top right), p; (bottom left),p, (bottom right) in the optimal domain.

and the value of/. on the final domain is
Je(Qpinar) ~ 3.3 x 1078,

as may be seen in Figuile 6. Therefore, the shape functibrias been significantely decreased and is close
to its global optimum.
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