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Analysis of Leader Election Algorithms

Christian Lavault∗

Zakopane (September 2009)

Abstract

We start with a set of n players. With some probability P (n, k), we kill n−k players;
the other ones stay alive, and we repeat with them. What is the distribution of the number
Xn of phases (or rounds) before getting only one player? We present a probabilistic
analysis of this algorithm under some conditions on the probability distributions P (n, k),
including stochastic monotonicity and the assumption that roughly a fixed proportion α
of the players survive in each round.

We prove a kind of convergence in distribution for Xn − log
1/α n; as in many other

similar problems there are oscillations and no true limit distribution, but suitable sub-
sequences converge, and there is an absolutely continuous random variable Z such that
d(Xn, ⌈Z+log

1/α n⌉) → 0, where d is either the total variation distance or the Wasserstein
distance.

Applications of the general result include the leader election algorithm where players
are eliminated by independent coin tosses and a variation of the leader election algorithm
proposed by W.R. Franklin. We study the latter algorithm further, including numerical
results.

1 A general convergence theorem

We consider a general leader election algorithm of the following type: We are given some
random procedure that, given any set of n ≥ 2 individuals, eliminates some (but not all)
individuals. If there is more that one survivor, we repeat the procedure with the set of
survivors until only one (the winner) remains. We are interested in the (random) number Xn

of rounds required if we start with n individuals. (We setX1 = 0, and haveXn ≥ 1 for n ≥ 2.)
We let Nk be the number of individuals remaining after round k; thusXn := min{k : Nk = 1},
where we start with N0 = n. For convenience we may suppose that we continue with infinitely
many rounds where nothing happens; thus Nk is defined for all k ≥ 0 and Nk = 1 for all
k ≥ Xn.

We assume that the number Yn of survivors of a set of n individuals has a distribution
depending only on n. We have 1 ≤ Yn ≤ n; we allow the possibility that Yn = n, but we
assume P(Yn = n) < 1 for every n ≥ 2, so that we will not get stuck before selecting a
winner. We further assume that, given the number of remaining individuals at the start
of a new round, the number of survivors is independent of the previous history. In other
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words, the sequence (Nk)
∞
0 is a Markov chain on {1, 2, . . .}, and Xn is the number of steps

to absorption in 1. The transition probabilities of this Markov chain are, with Y1 = 1,

P (i, j) := P(Yi = j) = P(j survives of a set of i). (1.1)

Note that P (i, j) = 0 if j > i and P (i, i) < 1, for i > 1. Conversely, any Markov chain on
{1, 2, . . .} with such P (i, j) can be regarded as a leader election algorithm in the generality
just described.

We will in this paper treat leader election algorithms where, asymptotically, a fixed pro-
portion is eliminated in each round. (Thus, we expect Xn to be of the order logn.) More
precisely, we assume the following for Yn, where we also repeat the key assumptions above.
(Here and below, logn should be interpreted as some fixed positive number when n = 1.)

Condition 1.1. For every n ≥ 1, Yn is a random variable such that 1 ≤ Yn ≤ n, and

P(Yn = n) < 1 for n ≥ 2. Further:

(i) Yn is stochastically increasing in n, i.e., P(Yn ≤ k) ≥ P(Yn+1 ≤ k) for all n ≥ 1 and

k ≥ 1. Equivalently, we may couple Yn and Yn+1 such that Yn ≤ Yn+1.

(ii) For some constants α ∈ (0, 1) and ε > 0 and a sequence δn = O
(
(log n)−1−ε

)
,

EYn+1 − EYn = α+ O(δn). (1.2)

(iii) For some ε and δn as in 1.1,

P(|Yn − αn| > δnn) = O(n−2−ε). (1.3)

Note that
E|Yn − αn|p = O(np/2) (1.4)

for some p > 4 suffices for 1.1, for a suitable choice of ε > 0 and δn (e.g., δn = n−η, η > 0
and ε small).

Remark 1.2. If (1.2) or (1.3) holds for some sequence (δn), it holds for every larger sequence
(δn) too; similarly, if δn = O

(
(log n)−1−ε

)
or (1.3) holds for some ε, it holds for every smaller

ε too. Hence we may assume that 1.1 and 1.1 hold with the same ε > 0 and the same δn,
and we may assume δn ≥ (log n)−1−ε. In particular, this implies that δk = O(δn) when
C−1n ≤ k ≤ Cn, for each constant C.

The behaviour of the election algorithm is given by the recursion X1 = 0 and

Xn
d
= XYn + 1, n ≥ 2, (1.5)

where we assume that (Xi)
n
i=1 and Yn are independent.We state a general convergence theo-

rem for leader election algorithms of this type.
We recall the definitions of the total variation distance dTV and the Wasserstein distance

dW (also known as the Dudley, Fortet-Mourier or Kantorovich distance, or minimal L1 dis-
tance); these are both metrics on spaces of probability distributions, but it is convenient to
write also dTV(X,Y ) := dTV(µ, ν) and dW(X,Y ) := dW(µ, ν) for random variables X,Y with
X ∼ µ and Y ∼ ν.
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The total variation distance dTV between (the distributions of) two arbitrary random
variables X and Y is defined by

dTV(X,Y ) := sup
A

|P(X ∈ A) − P(Y ∈ A)|. (1.6)

For integer-valued random variables, as is the case in our theorem, this is easily seen to be
equivalent to

dTV(X,Y ) = 1
2

∑

k

|P(X = k) − P(Y = k)|. (1.7)

Further, for any distributions µ and ν,

dTV(µ, ν) := inf {P(X 6= Y ) : X ∼ µ, Y ∼ ν} ; (1.8)

the infimum is taken over all random vectors (X,Y ) on a joint probability space with the
given marginal distributions µ and ν. (In other words, over all couplings (X,Y ) of µ and
ν.) For integer-valued random variables, convergence in dTV is equivalent to convergence in
distribution, or equivalently, weak convergence of the corresponding distributions.

The Wasserstein distance dW is defined only for probability distributions with finite ex-
pectation, and can be defined by, in analogy with (1.8),

dW(µ, ν) := inf {E|X − Y | : X ∼ µ, Y ∼ ν} . (1.9)

There are several equivalent formulas. For example, for integer-valued random variables,

dTV(X,Y ) =
∑

k

|P(X ≤ k) − P(Y ≤ k)|. (1.10)

It is immediate from (1.8) and (1.9) that for integer-valued random variables X and Y (but
not in general),

dTV(X,Y ) ≤ dW(X,Y ). (1.11)

It is well-known that dW is a complete metric on the space of probability measures on R

with finite expectation, and that convergence in dW is equivalent to weak convergence plus
convergence of the first absolute moment.

All unspecified limits in this paper are as n→ ∞.

Theorem 1.3. Consider the leader election algorithm described above, with Yn satisfying Con-

dition 1.1. Then, there exists a distribution function F with bounded density function f = F ′

such that

sup
k∈Z

|P(Xn ≤ k) − F (k − log1/α n)| → 0 (1.12)

or, equivalently, if Z ∼ F ,

dTV(Xn, ⌈Z + log1/α n⌉) → 0. (1.13)

More precisely, dW(Xn, ⌈Z + log1/α n⌉) → 0, which is equivalent to

∑

k∈Z

|P(Xn ≤ k) − F (k − log1/α n)| → 0. (1.14)
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As a consequence, defining ∆F (x) := F (x) − F (x− 1),

sup
k∈Z

|P(Xn = k) − ∆F (k − log1/α n)| → 0. (1.15)

Furthermore,

EXn = log1/α n+ φ(n) + o(1), (1.16)

for a continuous function φ(t) on (0,∞) which is periodic in log1/α t, i.e. φ(t) = φ(αt), and

locally Lipschitz.

We thus do not have convergence in distribution as n→ ∞, but the usual type of os-
cillations with an asymptotic periodicity in log1/α n and convergence in distribution along
subsequences such that the fractional part {log1/α n} converges. (This phenomenon is well-
known for many other problems with integer-valued random variables; it happens frequently
when the variance stays bounded.) This is illustrated in Figure 1.

Figure 1: Illustration of Theorem 1.3

Proof. We assume that δn are as in Remark 1.2.
Let q := supn≥2 P(Yn = n). Since each P(Yn = n) < 1, and P(Yn = n) → 0 by 1.1,

q < 1. Hence Xn is stochastically dominated by a sum of n− 1 geometric Ge(1 − q) random
variables, and thus EXn = O(n). In particular, EXn <∞ for every n.

Since the sequence (Yn) is stochastically increasing, we may couple all Yn such that
Y1 ≤ Y2 ≤ . . . . If we consider starting our algorithm with different initial values, and
use this coupling of (Yn) in each round, we obtain a coupling of all Xn, n ≥ 1, such that
Xn+1 ≥ Xn a.s. for every n ≥ 1. We use these couplings of (Yn) and (Xn) throughout the
proof.
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Let

xn := EXn,

dn := EXn+1 − EXn = xn+1 − xn,

bn := max
1≤k≤n

kdk.

We extend bn to real arguments by the same formula; thus, bt = b⌊t⌋ for real t ≥ 1.
By (1.5),

xn = EXn = 1 + ExYn , n ≥ 2.

Thus, for n ≥ 2,

dn = E(xYn+1
− xYn) = E

Yn+1−1∑

Yn

dj = E

n∑

j=1

dj [[Yn ≤ j < Yn+1]]

=

n∑

j=1

djP(Yn ≤ j < Yn+1).

(1.17)

By 1.1, EYn+1 − EYn → α, and thus there exists n0 such that if n ≥ n0 then

n∑

j=1

P(Yn ≤ j < Yn+1) = EYn+1 − EYn < 1.

Hence (1.17) implies, with d∗n = maxk≤n dk, for n ≥ n0,

dn(1 − P(Yn ≤ n < Yn+1)) ≤
n−1∑

j=1

P(Yn ≤ j < Yn+1)d
∗
n−1 ≤ d∗n−1(1 − P(Yn ≤ n < Yn+1)),

and thus dn ≤ d∗n−1 so d∗n = dn ∨ d∗n−1 = d∗n−1. Consequently, d∗n = d∗n0
< ∞, for all n ≥ n0.

In other words, d∗ := supn dn <∞.
Let β := (1 +α)/2; thus α < β < 1. If n is large enough, so that (α+ δn+1)(n+ 1) < βn,

then (1.17) yields, using (1.3) and (1.2),

dn ≤ d∗
∑

j<(α−δn)n

P(Yn ≤ j) +
1

n(α− δn)
bβn

∑

j

P(Yn ≤ j < Yn+1) + d∗
∑

j>βn

P(Yn+1 > j)

≤ d∗O(nn−2−ε) +
1

n(α− δn)
bβn(EYn+1 − EYn)

= O(n−1−ε) +
1

n

α+ O(δn)

α− δn
bβn.

Thus
ndn ≤ (1 + O(δn))bβn + O(n−ε). (1.18)

Replace n by k and take the supremum over all k such that βn < k ≤ n. Since bk is increasing,
and by our simplifying assumptions in Remark 1.2, this yields

bn ≤ (1 + O(δn))bβn + O(n−ε) =
(
1 + O(δn)

)
bβn.
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It follows by induction over m that if (1/β)m ≤ n < (1/β)m+1, then

bn ≤ C1

m∏

j=1

(
1 +

C2

j1+ε

)

and thus bn = O(1). In other words, we have shown

dn = O(1/n). (1.19)

We now use the Wasserstein distance dW. Since Xn+1 ≥ Xn a.s., it is easily seen by (1.9)
that dW(Xn, Xn+1) = E(Xn+1 −Xn) = dn. Thus, if m ≤ n, by (1.19),

dW(Xn, Xm) ≤
n−1∑

k=m

dW(Xk, Xk+1) =
n−1∑

k=m

dk = O
(
n−m

m

)
,

and thus, for all n and m,

dW(Xn, Xm) = O
( |n−m|
n ∧m

)
. (1.20)

Note also that 1.1 implies

E|Yn − αn| ≤ δnn+ O(n−1−ε) = O(nδn). (1.21)

Define
X̃t := X⌊t⌋ − log1/α t, t ≥ 1. (1.22)

Then, for t ≥ 2/α, using (1.5), (1.20), (1.21), (1.3), and 1 ≤ Y⌊t⌋ ≤ t,

dW(X̃t, X̃αt) = dW

(
X⌊t⌋ − log1/α(t), X⌊αt⌋ − log1/α(αt)

)

= dW

(
X⌊t⌋ − 1, X⌊αt⌋

)
≤ EdW

(
XY⌊t⌋

, X⌊αt⌋

)

≤ C3E

( |Y⌊t⌋ − ⌊αt⌋|
Y⌊t⌋ ∧ ⌊αt⌋

)

≤ C3E

( |Y⌊t⌋ − ⌊αt⌋|
αt/2

+ t[[Y⌊t⌋ < αt/2]]

)

= O
(
t−1

E|Y⌊t⌋ − ⌊αt⌋|
)

+ O
(
tP

(
Y⌊t⌋ < αt/2

))

= O(δ⌊t⌋) + O(t · t−2−ε) = O
(
log−1−ε t

)
.

Hence, for any t ≥ 2/α,

∞∑

j=0

dW(X̃α−jt, X̃α−j−1t) = O
(
log−ε t

)
<∞. (1.23)

Since dW is a complete metric, thus there exists for every t > 0 a limiting distribution µ(t),
such that if Z(t) ∼ µ(t), then

dW

(
X̃α−jt, Z(t)

)
→ 0 as j → ∞. (1.24)
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In particular,

X̃α−jt
d→ Z(t) as j → ∞. (1.25)

(We find it more convenient to use the random variable Z(t) than its distribution µ(t).)

Clearly, Z(αt)
d
= Z(t), so the distribution µ(t) is a periodic function of log1/α t. Hence, (1.24)

can also be written, adding the explicit estimate obtained from (1.23),

dW

(
X̃t, Z(t)

)
= O

(
log−ε t

)
→ 0 as t→ ∞. (1.26)

Note further that, for γ ≥ 1, by (1.22) and (1.20),

dW(X̃t, X̃γt) ≤ dW(X⌊t⌋, X⌊γt⌋) + | log1/α t− log1/α(γt)| = O
(⌊γt⌋ − ⌊t⌋

t

)
+ log1/α γ

= O(γ − 1 + 1/t).

Replacing t by α−jt and letting j → ∞, it follows from (1.24) that, for all t > 0 and γ ≥ 1,

dW(Z(t), Z(γt)) = O(γ − 1). (1.27)

Consequently, t→ µ(t) = L(Z(t)) is continuous and Lipschitz in the Wasserstein metric.
Define, for every real x,

F (x) = P(Z(t) ≤ x) (1.28)

for any t > 0 such that x+ log1/α t is an integer; since Z(t) is periodic in log1/α t, this does
not depend on the choice of t.

Since X̃α−jt + log1/α t = Xα−jt − j ∈ Z, the random variable Z(t) + log1/α t is integer-
valued for every t. It is easily seen that for integer-valued random variables Z1 and Z2,
the total variation distance dTV(Z1, Z2) ≤ dW(Z1, Z2). Hence, for any x ∈ R and u ≥ 0,
choosing t such that x + log1/α t is an integer and letting γ = α−u, which implies that
x− u+ log1/α(γt) = x+ log1/α(t) ∈ Z, we obtain from the definition (1.28) and (1.27),

F (x) − F (x− u) = P
(
Z(t) ≤ x

)
− P

(
Z(γt) ≤ x− u

)

= P
(
Z(t) + log1/α t ≤ x+ log1/α t

)
− P

(
Z(γt) + log1/α(γt) ≤ x+ log1/α t

)

≤ dTV

(
Z(t) + log1/α t, Z(γt) + log1/α(γt)

)

≤ dW

(
Z(t) + log1/α t, Z(γt) + log1/α(γt)

)

≤ dW

(
Z(t), Z(γt)

)
+ | log1/α t− log1/α(γt)|

= O(γ − 1) + log1/α γ = O(u). (1.29)

Hence, F (x) is a continuous function of x.
We have shown that t → L(Z(t)) is continuous in the Wasserstein metric, and thus in

the usual topology of weak convergence in the space P(R) of probability measures on R.
Since further L(Z(t)) is periodic in t, the set {L(Z(t)) : t > 0} = {L(Z(t)) : 1 ≤ t ≤ α−1}
is compact in P(R), which by Prohorov’s theorem means that the family {Z(t)} of random
variables is tight, see e.g. Billingsley. Hence, P(Z(t) ≤ x) → 0 as x → −∞ and P(Z(t) ≤
x) → 1 as x → +∞, uniformly in t, and it follows from (1.28) that limx→−∞ F (x) = 0 and
limx→∞ F (x) = 1.

7



Furthermore, (1.26) and (1.28) show that, for any sequence kn of integers, as n→ ∞,

P(Xn ≤ kn) = P
(
X̃n ≤ kn − log1/α n

)
= P

(
Z(n) ≤ kn − log1/α n

)
+ o(1)

= F (kn − log1/α n) + o(1).
(1.30)

Since further the sequence Xn is increasing, it now follows from Janson that F is monotone,
and thus a distribution function. By (1.29), the distribution is absolutely continuous and has
a bounded density function F ′(x).

It is easy to see that (1.30), (1.12) and (1.13) are equivalent. The corresponding result in
the Wasserstein distance follows from (1.26) because dW(Xn, ⌈Z+log1/α n⌉) = dW(X̃n, Z(n)),
e.g. by Remark 1.4 below; (1.14) then follows by (1.10). Finally, (1.26) implies that

EX̃t = EX⌊t⌋ − log1/α t = EZ(t) + O
(
log−ε t

)
,

which proves (1.16) with φ(t) := EZ(t), which is periodic in log1/α t. Since |φ(t) − φ(u)| =
|E(Z(t) − Z(u))| ≤ dW(Z(t), Z(u)), (1.27) implies that φ is continuous, and Lipschitz on
compact intervals.

Remark 1.4. As remarked above, Z(t) + log1/α t is integer-valued. Moreover, for every
integer k,

P
(
Z(t) + log1/α t ≤ k

)
= P

(
Z(t) ≤ k − log1/α t

)
= F (k − log1/α t)

= P
(
Z ≤ k − log1/α t

)
= P

(
Z + log1/α t ≤ k

)

= P
(
⌈Z + log1/α t⌉ ≤ k

)
.

Hence, for every t > 0, Z(t)
d
= ⌈Z + log1/α t⌉ − log1/α t. In particular, φ(t) := EZ(t) in

Theorem 1.3 can be obtained from the characteristic function of the distribution F of Z.

Remark 1.5. The very slow convergence rate O
(
log−ε t

)
in (1.26) is because we allow δn

to tend to 0 slowly. In typical applications, δn = n−a for some a > 0, and then better
convergence rates can be obtained. We have, however, not pursued this.

Remark 1.6. Note that F and φ are influenced by the distribution of Yn for small n > 2, for
example Y3 and Y4; hence there is no hope for a nice explicit formula for F or φ depending
only on asymptotic properties of Yn.

Remark 1.7. The general problem of studying the number of steps until absorption at 1 of
a decreasing Markov chain on {1, 2, . . . } appears in many other situations too, usually with
quite different behaviour of Yn and Xn. As examples we mention the recent papers studying
random trees and coalescents by Drmota, Iksanov, Moehle and Roesler, Iksanov and Möhle,
Gnedin and Yakubovich, and Delmas, Dhersin and Siri-Jegousse; in these papers the number
killed in each round is much smaller than here and thus Xn is larger, of the order n or n/ log n;
moreover, after normalization Xn has a stable limit law.

2 Extensions

In Section 1, we have assumed that we repeat the elimination step until only one player
remains. As a generalization we may suppose, in the present Section 2, that we stop when
there are at most a players left, for some given number a.
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Theorem 2.1. Consider the leader election algorithm described in Section 1, but stopping

as soon as the number of remaining players is at most a, for some fixed a ≥ 1. Suppose that

Condition 1.1 is satisfied. Then, the conclusions of Theorem 1.3 hold, for some F and φ that

depend on the threshold a.

Proof. This generalization can be obtained from the version in Section 1 by replacing Yn by

Y ′
n :=

{
Yn, Yn > a;

1, Yn ≤ a.

Suppose that Condition 1.1 holds for (Yn). It is easily seen that then Condition 1.1 holds
for (Y ′

n) too, with the same α; for 1.1, note that Condition 1.11.1 implies that

E|Yn − Y ′
n| ≤ aP(Yn ≤ a) = O(n−2−ε)

and thus EY ′
n+1 −EY ′

n = EYn+1 −EYn + o(n−2). Consequently, Theorem 1.3 applies to (Y ′
n),

and the result follows.

In this situation, it is also interesting to study the probability πi(n) that the procedure
ends with exactly i players, starting with n players; here i = 1, . . . , a and

∑a
i=1 πi(n) = 1.

We have a corresponding limit theorem for πi(n).

Theorem 2.2. Suppose that Condition 1.1 holds and that a ≥ 1 is given as in Theorem 2.1.

Then,

πi(n) = ψi(n) + o(1), i = 1, . . . , a, (2.1)

for some continuous functions ψi(t) on (0,∞) which are periodic in log1/α t, i.e. ψi(t) =
ψi(αt), and locally Lipschitz.

Proof. A modification of the proof of Theorem 1.3, now taking xn := πi(n) and dn :=
|xn+1 −xn| and replacing the random X̃t by x⌊t⌋ = πi(⌊t⌋), yields πi(n+1)−πi(n) = O(1/n)

and πi(α
−jt) − πi(α

−(j+1)t) = O(j−1−ε); hence, for any t > 0, πi(α
−jt) → ψi(t) for some

ψi(t), which easily is seen to satisfy the stated conditions. We omit the details.

More generally, there is a similar result on the probability that the process passes through
a certain state; this is interesting also for the process in Section 1 with a = 1.

Theorem 2.3. Suppose that Condition 1.1 holds and that a ≥ 1 is given as above. Let πi(n),
i ≥ 1, be the probability that, starting with n players, there exists some round with exactly i
survivors. Then

πi(n) = ψi(n) + o(1), i = 1, 2, . . . , (2.2)

for some continuous functions ψi(t) on (0,∞) which are periodic in log1/α t, i.e. ψi(t) =
ψi(αt), and locally Lipschitz.

Proof. For i ≤ a, this πi(n) is the same as in Theorem 2.2, and for each i > a, this πi(n) is
the same as in Theorem 2.2 if we replace a by i.
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Remark 2.4. Another variation, which is natural in some problems, is to study a non-
increasing Markov chain on {0, 1, . . . } and ask for the number of steps to reach 0; in other
words, the time until all players are killed. In this case, we thus assume that 0 ≤ Yn ≤ n.
This can obviously be transformed to our set-up on {1, 2, . . . } by increasing each integer by
1; in other words, we replace Yn by Y ′

n := Yn−1 + 1, n ≥ 2; we can interpret this as adding
a dummy player that never is eliminated, and continuing until only the dummy remains.
If Condition 1.1 holds for Yn, except that Yn = 0 is allowed and P(Y1 = 0) > 0, then
Condition 1.1 holds for Y ′

n too, and thus our results hold also in this case, with Xn now
defined as the number of steps until absorption in 0. (To be precise, Xn = X ′

n+1, with
(X ′

n) corresponding to (Yn), since we add a dummy, but there is no difference between the
asymptotics of X ′

n+1 and X ′
n.)

3 Examples

Example 3.1 (a toy example). For a simple example to illustrate the theorems above, let,
for n ≥ 2, Yn = ⌊(n + I)/2⌋, where I ∼ Be(1/2) is 0 or 1 with P(I = 1) = 1/2. In other
words, we toss a coin and let Yn be either ⌊n/2⌋ or ⌈n/2⌉ depending on the outcome. (If n
is even, thus always Yn = n/2.) Note that EYn = n/2, n ≥ 2, and that Condition 1.1 holds
trivially, with α = 1/2. If we start with N0 = n players and m2j ≤ n ≤ (m + 1)2j , m ≥ 1,
then the number Nj of survivors after j rounds satisfies m ≤ Nj ≤ m + 1 and ENj = 2−jn
(by induction on j). Consequently, if m2j ≤ n ≤ (m+ 1)2j ,

P(Nj = m) = m+ 1 − 2−jn, P(Nj = m+ 1) = 2−jn−m. (3.1)

Taking m = 1, this shows that if 2j ≤ n ≤ 2j+1, then

P(Xn = j) = P(Nj = 1) = 2 − 2−jn, P(Xn = j + 1) = 1 − P(Xn = j) = 2−jn− 1. (3.2)

Hence, (1.12) holds exactly, P(Xn ≤ k) = F (k − log2 n), for all k ∈ Z and n ≥ 1, with

F (x) =





0, x ≤ −1,

2 − 2−x, −1 ≤ x ≤ 0,

1, x ≥ 0,

and (1.16) holds exactly, EXn = log2 n+ φ(n), with

φ(2x) = 2x−⌊x⌋ −
(
x− ⌊x⌋

)
− 1.

Suppose now, as in Section 2, that we stop when there are at most a = 3 players left.
(Similar results are easily obtained for other values of a.) If 2i ≤ n ≤ 2i+1 with i ≥ 1, we
take j = i − 1 and note that Nj ∈ {2, 3, 4}. If Nj = 4, the procedure ends after one further
round with 2 players left; otherwise it ends immediately with Nj = 2 or 3 survivors. Taking
m = 2 or m = 3 in (3.1), we thus find

π2(n) = P(Ni−1 = 2) + P(Ni−1 = 4) = |21−in− 3|, 2i ≤ n ≤ 2i+1.

Consequently, π2(n) = ψ2(n) exactly, for all n ≥ 2, with

ψ2(2
x) = |21+x−⌊x⌋ − 3|.

Further, ψ3(t) = 1 − ψ2(t) and ψ1(t) = 0.
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Example 3.2 (a counter example). The procedure in Example 3.1 is almost deterministic.
In contrast, the very similar but completely deterministic Yn = ⌊n/2⌋, n ≥ 2, does not satisfy
Condition 1.11.1. In this case, Xn = ⌊log2 n⌋ and P(Xn ≤ k) = F (k − log2 n), for all k ∈ Z

and n ≥ 1, where F (x) = [[x ≥ 0]], the distribution of Z := 0; this limit F is not continuous
so the conclusions of Theorem 1.3 do not all hold.

Example 3.3. A leader election algorithm studied by Prodinger, Fill, Mahmoud and Sz-
pankowski, Knessl, and Louchard and Prodinger, see also Szpankowski, is the following:
Each player tosses a fair coin. If at least one player throws heads, then all players throwing

tails are eliminated; if all players throw tails, then all survive until the next round.

Except for the special rule when all throw tails, which guarantees that at least one player
survives each round, the number Yn of survivors in a round thus has a binomial distribution
Bi(n, 1

2). More precisely, if Wn is the number of heads thrown,

Yn = Wn + n[[Wn = 0]] with Wn ∼ Bi(n, 1
2). (3.3)

Note that
E|Yn − n/2|6 = E|Wn − n/2|6 = O(n3),

so (1.4) holds for p = 6 (and, indeed, for any p > 0), and thus (1.3) holds. Similarly,

EYn = EWn + 2−nn = 1
2n+ n2−n.

Thus, conditions 1.1 and 1.1 in Theorem 1.3 are satisfied. Also the monotonicity condition
1.1 is satisfied, because if 1 ≤ k ≤ n− 1 (other cases are trivial), then

P(Yn+1 ≤ k) = P(1 ≤Wn+1 ≤ k) = 1
2P(1 ≤Wn ≤ k) + 1

2P(0 ≤Wn ≤ k − 1)

= P(Yn ≤ k) + 1
2

(
P(Wn = 0) − P(Wn = k)

)

< P(Yn ≤ k).

(3.4)

Hence Condition 1.1 is satisfied with α = 1/2 and Theorem 1.3 applies.
In this case, Prodinger, see also Fill, Mahmoud and Szpankowski, found an exact formula

for the expectation EXn and asymptotics of the form (1.16) with the explicit function

φ(t) = 1
2 − (log 2)−1

∑

k 6=0

ζ(1 − χk)Γ(1 − χk)e
2kπi log2 t, χk :=

2kπ

log 2
i. (3.5)

Fill, Mahmoud and Szpankowski further found asymptotics of the distribution that can be
written as (1.12) with

F (x) =
2−x

exp(2−x) − 1
, (3.6)

which thus is the distribution function of Z in this case. Second and higher moments are
considered by Louchard and Prodinger.

Prodinger considered also the possibility of stopping at a = 2 players, and showed (1.16)
above in this case too, with an explicit formula for the function φ(t) (of the same type as (3.5)
for a = 1).
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Remark 3.4. Grabner studied a variation of the above Example 3.3, where a given number
b of players is to be selected. (The process runs as in Section 1 as long as there are more
than b survivors; if exactly b remain, they are selected and the algorithm terminates; if j < b
survivors remain, they are selected and we proceed to select b− j further players among the
ones eliminated in the last step.) It seems likely that this algorithm (and similar ones) can
be treated by an extension of the arguments in this paper, using induction on b, but we have
not studied the details.

Example 3.5. A variation of Example 3.3 studied by Janson and Szpankowski, Knessl and
Louchard and Prodinger is to let the coin be biased, with probability p ∈ (0, 1) for heads
(=survival). Then (3.3) still holds, but with Wn ∼ Bi(n, p). Conditions 1.11.11.1 hold as
above, with α = p, but arguing as in (3.4) we see that Condition 1.11.1 holds if p ≥ 1/2, but
not for smaller p. Hence, Theorem 1.3 applies when p ≥ 1/2. In fact, the results show that
the conclusions (1.12) and (1.16) hold for all p ∈ (0, 1), for some functions F and φ explicitly
given in.

This suggests that Theorem 1.3 should hold more generally. Note that although Condi-
tion 1.11.1 does not hold for p < 1/2, the difference P(Yn+1 ≤ k) − P(Yn ≤ k) is at most
P(Yn = 0) = (1−p)n, and thus negative or exponentially small for large n. It seems likely that
Theorem 1.3 can be extended to such cases, by allowing a small error in Condition 1.11.1;
this then would include this leader election algorithm with a biased coin for any p ∈ (0, 1).
However, we have not pursued this.

It was left as an open question whether for each p ∈ (0, 1) the limit function F is monotone,
and thus a distribution function, which means that there exists a random variable Z such
that (1.13) holds. By the discussion above, Theorem 1.3 shows that this holds for p ≥ 1/2,
but the case p < 1/2 is as far as we know still open. Cf. Remark 4.3 and Figure 6 below,
which show that monotonicity fails in a related situation. Numerical experiments, indicate
that F is monotone, at least for some choices of p < 1/2.

A further variation of Example 3.3 is to let the probability p depend on n. The case
p = 1/n is studied by Lavault and Louchard; in this case EYn is bounded and Condition 1.1
does not hold, so Theorem 1.3 does not apply.

Example 3.6. The special rule in Examples 3.3 and 3.5 for the exceptional case when all
throw tails is of course necessary to prevent us from killing all players, but as we have seen,
it complicates the analysis, especially for p < 1/2 when it destroys stochastic monotonicity
of Yn. Note that this rule typically is invoked only towards the end of the algorithm, when
only a few players are left. We regard the rule as an emergency exit, and it could be replaced
by other special rules for this case. For example, an alternative would be to switch to some
other algorithm that is fail-safe although in principle (for large n) slower; for our purpose
this means that the present algorithm terminates, so we may describe this by letting Yn = 1
in this case, i.e., (3.3) is replaced by Yn = Wn + [[Wn = 0]] = max(Wn, 1). Note that for this
version, Condition 1.1 holds for every p ∈ (0, 1), with α = p, so our theorems apply.

An equivalent way to treat this version is to add (as in Remark 2.4) a dummy, which
is exempt from elimination, and to eliminate everyone else that throws a tail; we then stop
when there are at most 2 players left (the dummy and, possibly, one real player). This is
thus the version in Section 2, with a = 2 and Yn = 1 +Wn−1, Wm ∼ Bi(m, p) (and starting
with n + 1 players). Again, Condition 1.1 holds, with α = p, and the results in Section 2
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apply. In particular, since invoking the special rule corresponds to eliminating everyone
except the dummy, the probability that we have to invoke the special rule is the same as the
probability that the dummy version ends with only the dummy, i.e. π1(n+1) in the notation
of Theorem 2.2; the asymptotics of this probability is thus given by (2.1).

Example 3.7. Prodinger (for p = 1/2) and Louchard and Prodinger studied a version of
Examples 3.3 and 3.5 where, as in Remark 2.4, we allow all players to be killed and let Xn

be the time until that happens. Thus, in each round, each player tosses a coin and is killed
with probability 1− p (and we do not have any special rule). Additionally, there is a demon,
who in each round kills one of the survivors (if any) with probability ν ∈ [0, 1]. We thus have
the modification discussed in Remark 2.4, with

Yn = max(Wn − I, 0), Wn ∼ Bi(n, p), Iν ∼ Be(ν),

where Wn and Iν are independent; thus also Y ′
n = Yn−1 + 1 = max(Wn−1 + 1 − Iν , 1).

Condition 1.1 holds, in the modification for absorption in 0, and thus our results apply. In
fact, Louchard and Prodinger show (1.12) and (1.16) for this problem with explicitly given
F and φ; they further give an extension of (1.16) to higher moments.

The special case ν = 1 is equivalent to approximate counting and ν = 0 is equivalent to
the cost of an unsuccessful search in a trie; in the latter case, Xn is simply the maximum of
n i.i.d geometric random variables which can be treated by elementary methods.

4 An application: Variations of Franklin’s leader election al-

gorithm

4.1 The algorithms

Franklin’s original algorithm. W.R. Franklin proposed a leader election algorithm where
the n players are arranged in a ring. Each player gets a random number; these are i.i.d. and,
say, uniform on [0, 1]. (Since only the order of these numbers will matter, any continuous
distribution will do; moreover, it is equivalent to let ξ1, . . . , ξn be a random permutation of
1, . . . , n.) A player survives the first round if her random number is a peak; in other words,
if ξ1, . . . , ξn are i.i.d. random numbers, then player i survives if ξi ≥ ξi−1 and ξ ≥ ξi+1 (with
indices taken modulo n). We may ignore the possibility that two numbers ξi and ξj are equal;
hence we may as well require ξi > ξi−1 and ξ > ξi+1.

In Franklin’s algorithm, the survivors continue by comparing their original numbers in the
same way with the nearest surviving players; this is repeated until a single winner remains.
We have so far not been able to analyse this algorithm. It is easy to verify that even if
we condition on the number m of survivors after the first round, the m! possible different
orderings of the survivors do not appear with equal probabilities, which means that the
algorithm is not of the recursive type studied in this paper. (For example, starting with
a ring of 8 players and conditioning on having 4 survivors (peaks) in the first round; the
probability of getting 2 survivors in the second round is 10/34, and not 1/3 as in the uniform
case.)

A variation. However, we can study a variation of Franklin’s algorithm, where the survivors
draw new random numbers in each round. This is an algorithm of the type studied in
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Section 1, with Yn given by the number of peaks in a random permutation, regarded as a
circular list. Note that there is always at least one peak (the maximum will always do),
so Yn ≥ 1 as required. It is easily seen that inserting a new player will never decrease the
number of peaks; hence Yn is stochastically increasing in n. Further, we have Yn =

∑n
1 Ii,

where Ii := [[ξi > max(ξi−1, ξi+1)]] is the indicator that player i survives (again, indices are
taken modulo n). If n ≥ 3, then EIi = 1/3 by symmetry, and thus EYn = n/3. In particular,
1.1 holds with α = 1/3. Furthermore, Ii and Ij are independent unless |i− j| ≤ 2 (mod n),
and similarly for sets of the indicators Ii, and it follows easily that E(Yn−EYn)6 = O(n3), and
thus (1.4) holds for p = 6. (Indeed, (1.4) holds for all even p by this argument.) Consequently,
Condition 1.1 holds and Theorem 1.3 applies, with 1/α = 3.

Remark 4.1. It might be shown that for the true Franklin algorithm, the expected number
of survivors after 2 rounds is c2n+ o(n), where

c2 =
3e4 − 48e2 + 233

384
≈ 0.1096868681. (4.1)

(Details might appear elsewhere.) In comparison, for the variation with new random numbers
each round, it is easily seen that the expected number after k rounds is (1/3)kn + o(1), for
any fixed k; in particular, after two rounds it is n/9 + o(n). Note that c2 in (4.1) is slightly
smaller than 1/9, and thus better in terms of performance. It might have been hoped that
the original Franklin algorithm is asymptotically equivalent to the variation studied here, but
the fact that c2 6= 1/9 suggests that this is not the case. Nevertheless, we conjecture that
Theorem 1.3 still holds for the true Franklin algorithm, for some unknown α < 1/3.

The linear case. In both versions above of Franklin’s algorithm, the players are arranged
in a circle. Alternatively, the players may be arranged in a line. We use the same rules as
above, but we have to specify when a player at the end (with only one neighbour) is a peak.
There are two obvious possibilities:

(i) Never regard the first and last players as peaks. (Define ξ0 = ξn+1 = +∞.)

(ii) Regard them as peaks if ξ1 > ξ2 and ξn > ξn−1, respectively. (Define ξ0 = ξn+1 = −∞.)

In the first case, it is possible that there are no peaks, and thus we have to add an emergency
exit as in Example 3.6.

As in the circular case, there are two versions (for each of (i) and (ii)): we may use the
same random numbers in all rounds, or we may draw new ones each round.

In the latter case, we are again in the situation of Section 1. In both cases (i) and (ii), the
distribution of Yn is related to the distribution in the circular case discussed above. Indeed,
if we start with a circular list of n + 1 numbers and eliminate the player with the largest
number, then the remaining n numbers form a linear list, and the peaks in this list using
version (i) equal the peaks except the maximum one in the original circular list. Similarly, if
we instead eliminate the player with the smallest number, then the peaks in the remaining
list using version (ii) equal the peaks in the original list. Hence, if Zn is the number of peaks

in a random circular list of length n, then (i) yields Yn
d
= Zn+1 − 1 and (ii) yields Yn

d
= Zn+1.

In both cases, this implies that Condition 1.1 holds (provided we add a suitable emergency
exit in case (i)) because it holds for Zn. Consequently, Theorem 1.3 applies to both these
linear versions of (the variation of) Franklin’s algorithm, again with 1/α = 3.
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In the following subsections we analyze further two of these variations of Franklin’s algo-
rithm (both with new random numbers drawn in each round), using numerical calculations.

4.2 First variation of Franklin’s algorithm: the linear case

We assume that the survivors draw new random numbers in each round and that they are
arranged in line. We use possibility (i) in Section 4.1. We start with a set of n players. We
assign a classical permutation of {1, . . . , n} to the set, all players corresponding to a peak
stay alive, the other ones are killed. If there are no peaks, we choose the following emergency
exit: a player is chosen at random (this is assumed to have 0 cost), indeed in the original
game, one deals with circular permutations, so there always exists at least one peak, here we
approach the problem with a classical inline permutation.

What is the distribution of the number Xn of phases (or rounds) before getting only one
player?

4.2.1 The analysis

Let

Yn := number of peaks, starting with n players,

P (n, k) := P[Yn = k] = P[k peaks, starting with n players],

Π(n, j) := P(Xn = j) = P[j phases are necessary to end the game, starting with n players],

Λ(n, j) :=

j∑

k=0

Π(n, k) = P[at most j phases are necessary, starting with n players].

We will sometimes use the subscript ℓ to distinguish these from the circular case discussed
in Section 4.3.

First of all, we know (Carlitz), that the pentavariate generating function (GF) of valleys
(u0), double rise (u1), double fall (u′1) and peaks (u2) is given by

I(z,u) =
δ

u2

v1 + δ tan(zδ)

δ − v1 tan(zδ)
− v1
u2
,

with

v1 = (u1 + u′1)/2, δ =
√
u0u2 − v2

1.

This gives the GF of the number of peaks:

tan[z(u− 1)1/2]

(u− 1)1/2 − tan[z(u− 1)1/2]
, (4.2)

hence the mean M and variance V of the number of peaks, for n ≥ 2 and n ≥ 4, respectively:

M(n) = (n− 2)/3, V(n) = 2(n+ 1)/45. (4.3)

This GF is also given in Carlitz. Moreover, we know that the distribution P is asymptotically
Gaussian. This is also proved in Esseen by probabilistic methods.
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kn
❩

❩
❩ 0 1 2 3 4

1 1 0 0 0 0
2 1 0 0 0 0
3 2/3 1/3 0 0 0
4 1/3 2/3 0 0 0
5 2/15 11/15 2/15 0 0
6 2/45 26/45 17/45 0 0
7 4/315 38/105 4/7 17/315 0

Table 1: Pℓ(n, k)

Let x(n) be the mean number of phases, E(Xn), starting with n players. As we shall see,
the initial values are

x(0) = x(1) = 0, x(2) = x(3) = x(4) = 1.

Since (4.3) yields M(n) + 1 = (n+ 1)/3 for n ≥ 2, we have (approximating by using this for
n ≤ 1 too) that the mean number of players c(j) still alive after j phases is

c(j) ≈ 3−j(n+ 1) − 1.

(An induction easily yields the exact formula |c(j)−3−jn| < 1 for all j.) If we want c(j) = 1,
this leads to the approximation

x(n) ≈ j ≈ log3 n− log3 2.

We see from Theorem 1.3 (which applies by Section 4.1) that this is roughly correct, but the
constant − log3 2 has to be replaced by a periodic function φ(n).

Let us now construct Π. We have, for n ≥ 2 and j ≥ 1,

Π(n, j) =

⌊(n−1)/2⌋∑

k=0

P (n, k)Π(k, j − 1). (4.4)

We have the initial values

Π(0, 0) = 1, Π(0, j) = 0, j > 0, Π(1, 0) = 1, Π(1, j) = 0, j > 0, Π(n, 0) = 0, n ≥ 2.

Also
Π(2, 1) = Π(3, 1) = Π(4, 1) = 1.

Some values of P and Π are given in Tables 1 and 2. (We use in the tables and figures the
subscript ℓ to emphasise that we deal with the linear case.)

Denoting the jth column of Π by π(j), we have

π(j) = P j−1π(1).

For j ≥ 2, it suffices to consider k ≥ 2 in (4.4), so we need only the matrix (P (n, k))n,k≥2.
Since P (n, k) = 0 if k > (n− 1)/2, this matrix is triangular, and so is P j−1.
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jn
❩

❩
❩ 0 1 2 3

0 1 0 0 0
1 1 0 0 0
2 0 1 0 0
3 0 1 0 0
4 0 1 0 0
5 0 13/15 2/15 0
6 0 28/45 17/45 0
7 0 118/315 197/315 0
...

20 0 < 10−7 • •

Table 2: Πℓ(n, j)

But π(1)(n) < 10−7, n > 20, so numerically, the significant columns of P j−1 are the first
20 columns. Also, we see the importance of the initial first column of Π. Moreover, for
n > 75, P (n, k) is indistinguishable from the Gaussian limit. So we have used the expansion
of the GF (4.2) for n ≤ 75 and the Gaussian limit afterwards in our numerical calculations.
Of course we have

x(n) =
∞∑

j=0

Π(n, j)j,

and

x(n) = 1 +
∞∑

k=2

P (n, k)x(k), n ≥ 2.

Remark 4.2. Another approach could be the following: Let

I(k) := [[one of the phases has k players]],

I(j, k) := [[phase j has k players]],

Q(k) := P[I(k) = 1],

R(j, k) := P[I(j, k) = 1],

Q(k) = P

[∨

j

I(j, k) = 1
]

=
n−k∑

j=1

R(j, k), as P[I(j, k) ∧ I(i, k)] = 0, if i 6= j,

R(j, k) =
∑

l

R(j − 1, l)P (l, k), j ≥ 1, and R(0, k) = δkn,

x(n) = E

[ n∑

1

I(k)
]

=
n∑

1

Q(k).

A plot of x(n) − log3 n versus log3 n is given in Figure 2 for n = 50, . . . , 500. The
oscillations expected from (1.16) are clear.

Recall that according to Theorem 1.3, there exists a limiting distribution function F (x) =
Fℓ(x) (in a certain sense) for Xn. In Figure 3, we approximate this distribution function F (x)
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Figure 2: xℓ(n) − log3 n versus log3 n, n = 50, . . . , 500

by plotting Λ(n, j) = P(Xn ≤ j) against j − log3 n for n = 20, . . . , 500, cf. (1.12). We have
also plotted a scaled Gumbel distribution; the fit is bad.

Similarly, in Figure 4 we show the probability Π(n, j), n = 150, . . . , 500, plotted against
j − log3 n. The fit with a Gaussian distribution is equally bad.

The few scattered points of both figures are actually due to small n and the propagation
of the more erratic behaviour for n = 1, . . . , 40 shown in Figure 5.

So we observe the following facts:

(i) A first regime (n = 1, . . . , 40) creates some scattered points which almost look like two
distributions.

(ii) Between n = 40 and n ∼ 75, a limiting distribution is attained; Π(n, j) is concentrated
on j = log3 n+ O(1).

(iii) For n > 75, the limiting Gaussian for P with its narrow (
√
n) dispersion, intuitively

induces, with (4.4), a propagation, with some smoothing, of the previous distribution.
We attain the limiting distribution F (x) given by Theorem 1.3.

(iv) At most two values carry the main part of the probability mass Π(n, j). This is clear
from the observed range of F (x) in Figures 3 and 4.

18



◦ : observed
— : Gumbel distribution

Figure 3: Λℓ(n, j) = P(Xn ≤ j) versus j − log3 n, approximating Fℓ(x), n = 20, . . . , 500

(v) P is triangular, and so is P j . Also, P j(n, k) = Θ(1), with k = O(1), only if j =
log3 n+ O(1).

(vi) As F (x) is absolutely continuous, we can derive modulo some uniform integrability
conditions, all (periodic) moments of Xn, in particular x(n).

(vii) The effect of initial values is now clear. To illustrate this, we have changed to Π(0, 1) =
Π(1, 0) = 1, which means that we add a cost 1 for the extra selection required when
the algorithm terminates with no element left. This leads to Table 3. The equivalent of
Figures 3, 4 and 5 is given in Figures 6, 7 and 8. Note that Xn no longer is stochastically
monotone in n; we have by definition X0 = 1 > 0 = X1, and Table 3 shows other
examples of non-monotonicity for small n. Moreover, Figure 6 shows that the non-
monotonicity persists for large n; we clearly have convergence to a limit function, G(x)
say, but the limit is not monotone and thus not a distribution function as in Figure 4
and, more generally, in Theorem 1.3.

Remark 4.3. Note that the example in 4.2.1 and Figure 6 does not contradict Theorem 1.3
because Xn now is defined with other initial values than in Theorem 1.3. Nevertheless, it is
a warning that monotonicity of the limit should not be taken for granted in cases such as
Example 3.5 with p < 1/2 where the monotonicity assumption of Theorem 1.3 is not satisfied.

4.2.2 Periodicities

Let ψ(α) :=
∫
eαxf(x) dx be the Laplace transform of the limiting distribution F . (We do not

know whether ψ(α) exists in general, although we conjecture so, but we really only need it for
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◦ : observed
— : Gaussian distribution

Figure 4: Πℓ(n, j) = P(Xn = j) versus j − log3 n, approximating ∆Fℓ(x), n = 150, . . . , 500

imaginary α, i.e., the characteristic function of F .) Similarly, let ψ̃(α) :=
∫
eαx∆F (x) dx be

the Laplace transform of ∆F . Since ∆F (x) := F (x)−F (x−1) =
∫ 1
0 f(x−t) dt, ∆F = f∗1[0,1],

and thus, since the indicator function 1[0,1] has Laplace transform (eα − 1)/α,

ψ̃(α) =
eα − 1

α
ψ(α).

With the usual machinery, we obtain from Theorem 1.3 and Remark 1.4, assuming some
technical conditions that are very likely to hold but not rigorously verified,

x(n) := EXn = log3 n+ m̃1 + w1(log3 n) + o(1), (4.5)

jn
❩

❩
❩ 0 1 2 3

0 0 1 0 0
1 1 0 0 0
2 0 0 1 0
3 0 1/3 2/3 0
4 0 2/3 1/3 0
5 0 11/15 2/15 2/15
...

Table 3: Π(n, j), other initialization
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Figure 5: Πℓ(n, j) versus j − log3 n, n = 1, . . . , 40

where

m̃1 := ψ̃′(0) = ψ′(0) + 1
2 , (4.6)

w1(x) :=
∑

l 6=0

ψ̃′(2πli)e2πlix =
∑

l 6=0

ψ(2πli)

2πli
e2πlix (4.7)

With the observed values of Π(n, j) (see Figure 4), we have computed the Laplace trans-
form numerically (with a modified Euler–MacLaurin, see below) as follows. Assume that
we have N computed values {Π(ni, ji) : i = 1, . . . , N}. Setting x = j − log n, this gives
{Π(ni, xi) : i = 1, . . . , N}. Sorting wrt xi, we write this as {Π(nk, yk) : yk ≤ yk+1, k =
1, . . . , N}. Construct a numerical Laplace transform

ψ̃(α) =
∑

eαykΠ(nk, yk)(yk+1 − yk−1)/2.

Using this numerically computed ψ in (4.5)–(4.7), we compute m̃1 + w1(x), which fits quite
well with the observed periodicities of x(n) − log3 n in Figure 2; the comparison is given in
Figure 9.

4.3 Second variation of the Franklin’s algorithm: the circular case

If we denote by Pc(n, k) the distribution of the number of peaks in the circular case and
by Pℓ(n, k) the distribution in the linear case, we know, by Section 4.1, that Pc(n, k) =
Pℓ(n− 1, k − 1). It is easy to check that this leads to, for n ≥ 3 and n ≥ 5, respectively,

M(n) = n/3, V(n) = 2n/45,

which also is easy to see probabilistically, by writing Yn as the sum of the n indicators
[[player i is a peak]], and noting that indicators with distance at least 3 are independent.)
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Figure 6: Λ(n, j) versus j − log3 n, other initialization, n = 5, . . . , 500
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Figure 7: Π(n, j) versus j − log3 n, other initialization, n = 5, . . . , 500

The initial values are now given by

P (1, 1) = 1, P (2, 1) = 1, P (3, 1) = 1, Π(0, 0) = 1, Π(1, 0) = 1, Π(2, 1) = 1, Π(3, 1) = 1.

The corresponding pictures are given in Tables 4 and 5. (We use a subscript c for the circular
case.)

Let us mention that the fits with Gumbel or Gaussian are equally bad when comparing
Λc(n, j) to Λℓ(n, j); no numerical relation exists between the two distributions.

In conclusion, apart from numerical differences, the behaviour of our two variations are
quite similar. Note that the mean number of needed messages is asymptotically 2n log3(n),
as we use 2n messages per round. Franklin gives an upper bound 2n log2(n).
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kn
❩

❩
❩ 0 1 2 3 4

1 0 1 0 0 0
2 0 1 0 0 0
3 0 1 0 0 0
4 0 2/3 1/3 0 0
5 0 1/3 2/3 0 0
6 0 2/15 11/15 2/15 0
7 0 2/45 26/45 17/45 0

Table 4: Pc(n, k)

jn
❩

❩
❩ 0 1 2 3

0 1 0 0 0
1 1 0 0 0
2 0 1 0 0
3 0 1 0 0
4 0 2/3 1/3 0
5 0 1/3 2/3 0
6 0 2/15 13/15 0
7 0 2/45 43/45 0
...

20 0 < 10−7 • •

Table 5: Πc(n, j)
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Figure 8: Π(n, j) versus j − log3 n, n = 1, . . . , 100, other initialization
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Figure 9: observed xℓ(n)−log3 n (◦) and computed with (4.5) (line) periodicities versus log3 n
(linear case), n = 50, . . . , 500
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