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Interconnection Networks: Graph- and Group-Theoretic
Modelling

Christian Lavault∗
E-mail: lavault@lipn.univ-paris13.fr

Abstract
The present paper surveys the most recent and promising results about graph-theoretic

and group-theoretic modelling, from the viewpoint of relationships between Structural In-
formation (e.g. Sense of Direction) and communication complexity of distributed leader
election. The speci�c behaviour of various classes of networks (Cayley networks, de Bruijn
and Kautz networks, etc.) is studied in terms of usual e�ciency requirements, such as
computability, routing, symmetry and algebraic structure.

1 Introduction
One of the main topics under investigation in distributed computing concerns the study and
design of network topologies which have optimal e�ciency with regard to several speci�c pa-
rameters, such as communication complexity of leader election, spanning tree construction, or
broadcasting, ease of routing and message transmission, fault-tolerance, etc. To optimize the
communication complexity of distributed algorithms, one introduces labellings on the network
links in order to give the network Structural Information, and more precisely a �Sense of Direc-
tion� (or �Orientation�).

Above all, this paper is a survey on the present "state of the art" in graph-theoretic and
group-theoretic modelling of interconnection networks in terms of sense of direction. Since it
has developed to a "bench-mark", we consider the Leader Election Problem (LEP) to study the
e�ect of structural information on the communication complexity.

The paper is organized as follows. In the Introduction, the model of distributed network,
the notion of sense of direction and preliminaries are presented. In Section 2, we survey the
properties generated from the very rich algebraic structure of the Cayley networks. In Section 3,
we study the speci�c properties of another important family of networks, viz. de Bruijn and
Kautz networks, in terms of various e�ciency requirements. The impact of orientation on the
communication complexity of the leader election problem is addressed in Section 4 for several
network topologies. Finally, Section 5 o�ers some conclusions and raises open problems in this
domain of research.

1.1 The Model
The model is a standard point-to-point asynchronous network N of N processes connected by m
bidirectional communication links. As usual, the network topology is described by an undirected,
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connected graph (V, E) (devoid of multiple edges and loop-free): (V, E) is de�ned on a set V of
vertices representing the processes of N , and E is a set of edges representing the bidirectional
communication links of N operating between neighbouring vertices. In the sequel, |V | = N is
the order of the graph and |E| = m is its number of edges (or its size. In order to simplify
notation, we also denote N = (V, E), .

Given a message driven algorithm A on N , it is assumed that the messages are transferred on
links in FIFO order, without error, and in a �nite but unbounded delay (asynchronously). The
worst-case message complexity of A (for a given input size N) is the maximum over all networks
N of order N of the largest number of messages sent in any execution of A on N .

1.2 Sense of Direction
The notion of sense of direction refers to this capability of a processor (or a process) to distinguish
between its adjacent communication links (or its ports), according to a globally consistent scheme
[18, 19]. In order to give a network a sense of direction, one introduces labellings on (a subset)
of its links.

In an arbitrary distributed network N = (V,E), a natural globally consistent labelling on
the links of the network is de�ned as follows in [16]. Fix a cyclic ordering of all the processors.
N has a global sense of direction if at each processor each incident link is labelled according to
the distance in the above cycle to the other nodes reached by this link. In particular, if a link,
between two processors P and Q, is labelled by distance d at processor P , this link is labelled
by N − d at the other incident processor Q, where N = |V |.

Note that such a de�nition requires the knowledge of the order N of the network.

1.3 Preliminaries
For a given small degree, we are interested primarily in dense networks. A dense network N is
one of large order N for a given diameter D, de�ned as the maximum distance between all nodes
pairs in N . Here, the distance between two nodes refers to the smallest number of hops between
these two nodes. Obviously, a dense network N allows the interconnection of a large number of
processing elements with relatively small communication delay.

Besides density, vertex symmetry (or vertex-transitivity) is another desirable attribute of an
e�cient interconnection network topology. This notion of symmetry implies that for any two
nodes u, v ∈ V there exists a label preserving automorphism ϕ ∈ Aut(G) such that ϕ(u) = v:
informally, a vertex symmetric (or vertex-transitive) network looks the same from any node. This
property allows the use of identical routing algorithms at every node, and makes it possible to
de�ne a natural labelling which provides the network with a sense of direction. Many well-known
interconnection networks, such as complete networks, Rings, tori, hypercubes, cube-connected
cycles, n-stars, etc., are examples of such vertex symmetric networks. Most of them belong to
the class of Cayley graphs which are connected graphs constructed from a group and a set of
generators as de�ned in section 2. (See also [1, 7, 12, 13, 20, 21].)

In Section 3 we deal with another class of network, whose characteristic is to have the largest
number of vertices for given maximum degree ∆ and diameter D, viz. de Bruijn and Kautz
networks. Though they are not vertex symmetric, these networks enjoy very interesting proper-
ties, such as having an optimal number of nodes (for small value of D or ∆), easy routings, an
optimal fault-tolerance, the feasibility for designing e�cient �consensus protocols�, symmetry of
extensions, possibilities of quasi-optimal generalizations in all respects, etc.
Notation.
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N Group Gen. Order
Or. Ring Cn (1, 2, . . . , n) n
2-Ring Dn (1, 2, . . . , n), ρn 2n
Torus (Cn)d direct product nd

n-cube Γn ϕ{1}, . . . , ϕ{n} 2n

Star Sn (1, k) 1 < k ≤ n n!
Bubble Sn (k − 1, k) 1 < k ≤ n n!
Pancake Sn ρk, ρk (1 < k ≤ n) n!

Table 1: Examples of Cayley networks.

In the sequel, we use the usual terminology of group theory and graph theory. Since we only
consider �nite groups, the groups are mainly represented as permutation groups. The following
notation is used:

Zq for the ring of integers 0, 1, . . . , q − 1 (modulo q), and (Zp)n for the n-dimensional vector
space over Zp (p being a prime); Sn for the symmetric group on n symbols; 〈S〉 for the group
generated by the set S of generators; In for the trivial identity group consisting of the identity
permutation in Sn; e for the identity element of a group; and |u| for the order of u ∈ G, i.e.
the smallest positive integer k such that uk = e. Given a (�nite) group G and H ≤ G (H is a
subgroup of G), (G : H) denotes the (�nite) index of H in G, i.e. the (�nite) number of cosets
of H in G.

2 Cayley Networks
2.1 De�nition of Cayley Networks
De�nition 2.1 Let G be a group and let S ⊆ G be a set of generators of G. The Cayley network
NS of G with set of generators S is NS = (V,E), where V = G and E = {(u, v) / u−1v ∈ S}.
We assume that S = S−1, where S−1 is the set of g−1 such that g ∈ S, so that NS can be viewed
as undirected. To avoid loops in the network NS, we assume e 6∈ S; further, if g = g−1 then we
identify the edges g and g−1. The Cayley network NS has |G| = N nodes and the degree of each
node is |S|, denoted by δ(S).

For each g ∈ G, let [g]S denote the least number of generators from S needed to represent g
(with possible repetitions). The diameter of NS is D(S) = max{[g]S / g∈ G}.
The resulting Cayley network depends on the set S of generators. On the one hand we can
choose S = G, in which case NS is the complete network KN with |G| = N nodes. On the
other hand, we are usually interested in "small" sets of generators with "not too big" diameter.
In fact, as pointed out in [12], we would want sets S of generators minimizing the quantity
D2(S) ·∑g∈S |g|2. It is well known that such small S do exist, since every �nite group G has
a set of generators of order O(log |G|). (We refer to [1, 2, 20, 21] for more indications on the
importance of such groups.)

Example. To simplify notation the elements of S are listed without their inverses and multipli-
cation of permutations is considered to the left. Throughout, we assume that n is arbitrary but
�xed.

The �rst four Cayley networks of Table 1 are arising from cyclic, abelian and dihedral groups.
With cyclic groups, we obtain a variety of tori: the oriented Ring, the double Ring (with n 6= 2)
and the d-dimensional Torus.
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The group of automorphisms of the n-dimensional Hypercube is denoted by Γn; it is the
group of bit-complement automorphisms, and Γn

∼= (Z2)n. The generators ϕ{i} of Γn are such
that ϕ{i}(b1, . . . , bn) is the sequence of bits obtained from (b1, . . . , bn) by complementing the ith
bit, while leaving the others unchanged.

The last three Cayley networks are examples arising from the symmetric group Sn.
In Table 1, ρk and ρk are the re�ection permutations:

ρk = (k k − 1 · · · 1),

and
ρk =

(
n− k + 1 n− k + 2 · · · n

n n− 1 · · · n− k + 1

)
.

2.2 Properties of Cayley Networks
2.2.1 Basic Properties

De�nition 2.2 Let NS be a Cayley network. A natural labelling LS on NS is such that the label
of the edge (u, v) ∈ E is LS(u, v) = u−1v. The resulting labelled Cayley network is thus denoted
by NS [LS ]. Any automorphism ϕ of NS [LS ] is such that the edge-labels are preserved under ϕ:

(∀(u, v) ∈ E) LS(u, v) = LS(ϕ(u), ϕ(v)) (1)

The group of automorphisms of NS satisfying (1) is denoted by Aut(NS [LS ]).

Theorem 2.1 [7, 13] Every Cayley network is vertex symmetric (or vertex-transitive), in the
sense that

(∀u, v ∈ G)(∃ϕ ∈ Aut(NS)) ϕ(u) = v.

The automorphism ϕ is thus label preserving and such that

(∀x ∈ G) x 7→ vu−1x.

This automorphism is uniquely determined from u and v, which makes the action of Aut(NS [LS ])
on the vertices of NS regular. ¤

Theorem 2.2 [1] Consider a Cayley network NS de�ned by a set S of generators on n symbols
(the "permutation group representation" of NS). NS is edge symmetric i� for every pair of
generators (g1, g2) ∈ S there exists a permutation of the n symbols that maps S into S, and, in
particular, maps g1 into g2. ¤

A labelled Cayley network NS [LS ] is said strongly symmetric if it is both vertex and edge
symmetric. Examples of strongly symmetric Cayley networks are the Complete network KN ,
the n-Hypercube, the n-Star, the n-Bubble Sort and the n-Pancake Sort networks.

Theorem 2.3 [13] The group of automorphisms of Aut(NS [LS ]) is isomorphic to G. ¤

Note that Cayley network may thus also be characterized as those transitive networks whose
automorphism group has a regular transitive subgroup (cf. [7]).

2.2.2 Computability of Boolean Functions
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Most of the results of this section are in [12, 13, 14]. Let S(f) denote the group of permutations
in Sn that leave f invariant on all inputs. If a Boolean function f ∈ BN is computable on a
distributed network N , then S(f) ≥ Aut(NS [LS ]). The converse is not necessarily true, in
general. However, it is true for the class of distributed Cayley networks:

Theorem 2.4 [12] For any Boolean function f ∈ BN , f is computable in the distributed network
NS [LS ] i� S(f) ≥ Aut(NS [LS ]). ¤

In general, oriented distributed Cayley networks are more powerful than unoriented distrib-
uted Cayley networks, in the sense that the former can compute more Boolean functions than
the latter. A characterization is now given of those abelian groups G which have a canonical set
of generators S such that the network N computes more Boolean functions than the network
NS [LS ].

De�nition 2.3 The labelling LS is said to be strong i� there is a Boolean function on |G| = N
variables which is computable in the network NS [LS ] but not computable in N .

Theorem 2.5 [13] For any automorphism ϕ ∈ Aut(G), let

Sϕ = S ∪ ϕ(S) ∪ ϕ2(S) ∪ · · · .

If ϕ(S) 6∈ 〈g〉 for some g ∈ S, then LSϕ is strong.
If S is a canonical set of generators for the cyclic group G = Cn, then LS is strong exactly

when n 6= 2, 3, 4, 5. ¤

Note that the 11 abelian groups ⊕n∈ACn, where A ⊆ {2, 3, 4, 5} and |A| ≥ 2 have an in-
teresting behaviour. Although it is proven in [13] that the networks NS and NS [LS ] cannot
"distinguish" the Boolean functions they can compute from their automorphism groups alone,
it is also shown that the labelled network NS [LS ] can actually compute more Boolean functions
that NS . In particular, for the 11 abelian groups cited above, there exist Boolean functions
which are computable on NS but such that S(f) ≥ Aut(NS).

2.3 Extensions of Cayley Networks
While most symmetric networks considered in the literature can be viewed as Cayley networks,
there remain certain vertex symmetric graphs that cannot be represented as Cayley graphs. A
prime example is the Petersen graph.

Theorem 2.6 [1] Every vertex symmetric graph can be represented as the quotient of two Cayley
graphs. ¤

The following conjecture constitutes a very important open problem.

Conjecture 2.1 Every Cayley graph is Hamiltonian, i.e., has a Hamiltonian cycle. Further-
more, every vertex symmetric graph has a Hamiltonian path.

A weaker form is Alspach's conjecture: every connected 2k-regular Cayley graph on a �nite
abelian group can be partitioned into k Hamiltonian cycles. ¤

For example, the Petersen graph again, is a vertex symmetric graph but not a Cayley graph; it
has a Hamiltonian path but has no Hamiltonian cycle. Besides, it is the only graph of order ≤ 10
without a Hamiltonian cycle such that the deletion of one vertex yields a Hamiltonian graph.The
following two results may be regarded as a step towards the proof of Alspach's conjecture.
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Theorem 2.7 [5] Every connected 4-regular Cayley graph on a �nite abelian group can be de-
composed into two edge-disjoint Hamiltonian cycles. ¤

Most symmetric interconnection networks that are found in the literature can be represented
as Cayley networks. Along these lines, the new Star networks and Pancake networks (as de-
signed in [1] from the group-theoretic model of Cayley networks) feature relevant directions for
extensions and representations of Cayley networks.

3 De Bruijn and Kautz Networks
The problem of constructing large networks of a given degree and diameter�known as the (∆, D)
graph problem�is a well-studied extremal graph theory problem. The maximum number of
vertices N(∆, D) of a network of given maximum degree ∆ and diameter D is bounded by the
following relation known as the Moore bound (see also inequality ??):

if ∆ ≥ 3 N(∆, D) ≤ ∆(∆− 1)D − 2
∆− 2

,

if ∆ = 2 N(∆, D) ≤ 2D + 1. (2)

It is known that this bound is unachievable except in the following cases: N cliques (D = 1),
(2D + 1) cycles (∆ = 2), Petersen graph (D = 2, ∆ = 3), Ho�man-Singleton graph (D = 2,
∆ = 7), and, possibly, D = 2, ∆ = 57 (no known construction yet). (Refer to [15] for more
information on Moore graphs.) As far as the the Moore bound is concerned, The best of the
general known classes of networks are de Bruijn or Kautz networks, which are de�ned by using
words over alphabets. (See [6].)

3.1 De�nitions of de Bruijn and Kautz Networks
De�nition 3.1 (de Bruijn Networks B(q, D))

The vertices of a directed de Bruijn network are the words of length D constructed on an
alphabet of q letters. Let (x1, . . . , xD), with xi ∈ {0, . . . , q − 1} (1 ≤ i ≤ D), denote a vertex.
There is an arc between (x1, . . . , xD) and all vertices (x2, . . . , xD, α), where α is any letter from
the alphabet. This digraph is thus q-regular, it has N = qD vertices, and its diameter is D.

The associated undirected de Bruijn network B(q, D) is obtained from the above digraph by
forgetting the orientations of the arcs, removing the self-loops, and replacing each double edge
with a single edge. Now the vertex (x1, . . . , xD) is adjacent to all the vertices (x2, . . . , xD, α)
and (α, x1, . . . , xD−1), where α is any letter of the alphabet. Therefore, the undirected de Bruijn
network B(q, D) has maximum degree ∆ = 2q and it is not regular. Indeed, B(q, D) has N = qD

vertices, and it easily seen that B(q, D) has N − q vertices of degree 2q, q2 − q vertices of degree
2q − 1, and q vertices of degree 2q − 2. (See Figure 1.)

Kautz networks K(q, D) are de�ned in a similar way: the vertices are the word of length D
constructed over an alphabet of q +1 letters. K(q,D) has maximum degree ∆ = 2q and it is not
regular. K(q, D) is indeed of order N = qD + qD−1; the graph has N − q2 − q vertices of degree
2q and q2 + q vertices of degree 2q − 1.

It is interesting to compare (as in Table 2) the order of B(q, D), and n-Hypercube, for given
values of ∆ and D. Since the n-Hypercube is de�ned only for ∆ = D = n, Table 2 is given for
∆ = D = 4, 6, 8, 10, 12.

From Table 2, it is clear that, for the same values of ∆ and D, B(q, D) and K(q, D) have
many more vertices than the n-Hypercube. Furthermore, for a same given number of vertices,
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Figure 1: The Undirected de Bruijn Graph B(2, 3).

∆ = D n-Hypercube de Bruijn
4 16 16
6 64 72
8 256 65,536
10 1,024 9,765,625
12 4,093 2,176,782,336

Table 2: Order of B(q, D) and n-Hypercube.

di�erent values of ∆ and D are possible. For example, with 256 vertices, there is a unique
8-Hypercube of degree and diameter 8. By contrast, the de Bruijn networks with 256 vertices
provide four choices: B(4, 8), B(2, 8), B(4, 4), and B(16, 2).

3.2 Properties of de Bruijn and Kautz Networks
De Bruijn and Kautz Networks are those networks which have the largest number of vertices for
a given degree and diameter.

For any �xed D, the number of vertices of these digraphs is of the same asymptotic order as
the directed Moore bound: 1 + q + · · · + qD (which is di�erent from inequation 2). Whenever
D = 2, the order of K(q, 2) is q+q2, and K(q, 2) is an optimal graph, since it has been shown that
the directed Moore bound cannot be achieved if q > 1 and D > 1 de Bruijn and Kautz networks
are neither vertex symmetric, nor edge symmetric; in this sense, Cayley networks, and the n-
hypercube for example, are better. However, de Bruijn and Kautz networks enjoy interesting
algebraic properties.

B(q, D) gives asymptotically optimal protocols for computing simple functions that do not
require metric regularity (MAX, MIN, AND, OR, etc.). (See [14, 15].) For the communication
complexity of certain classes of consensus protocols such as the leader election, optimality is
achieved in B(2, D) or K(2, D) (∆ = 4 and D = lg N).

4 The Impact of Sense of Direction
Among the distributed problems considered, the leader election problem is certainly the most
signi�cant, and it has developed to a "bench-mark" to study the impact of structural information
on the communication complexity for several network topologies.

In this section, we focus on the leader election problem in named and anonymous distributed
networks. For most distributed network topologies, the availability of sense of direction has
been shown to have positive impact on the communication complexity of the election problem
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N Order Degree Diam.
Ori. Ring n 2 n− 1
Unor. Ring 2n 3 n

d-Torus nd 2d d(n− 1)
BF (n) n2n 4 b3n/2c

Chord. Ring n 4 Θ(log n) (a.e.)
Hypercube 2n n n
n-Bubble n! n− 1 n(n− 1)/2

n-star n! n− 1 b3(n− 1)/2c
n-Pancake n! n− 1 O(n)

KN N N − 1 1
B(q, D) qD [2q − 2, 2q] D

δ-Regular N δ Ω(log N) (a.e.)
Arbitr. N ∆ ≤ N − 1 D ≥ 1

Table 3: Characteristics of some signi�cant networks.

(Complete network, Circulant Graphs, Chordal Ring , etc.). As opposed to almost all networks,
the existence of an orientation does not help in two important classes of networks, namely rings
and d-tori.

The question whether sense of direction has positive impact on the message complexity of
the election on a n-Hypercube remains open. Election can be performed in 2N log N messages
in the oriented hypercube, but, disappointingly, since the hypercube has only O(N log N) edges,
an O(N log N) complexity is also achieved with the standard algorithm of Gallager et al. Recent
results [10, 23] achieve an O(N) message complexity for the election on the oriented hypercube.
It is commonly believed that, for the unoriented case, the O(N log N) message complexity is
optimal.

In the following Tables 3 and 4, n is de�ned as in Section 2, N denotes the order of the
network N , d is the dimension of the Torus, and δ and D the degree and the diameter of N ,
respectively. In addition, general δ-regular and arbitrary networks are also quoted in Table 3
and 4. Table 3 exhibits some characteristics of relevant networks we are especially concerned
with from the communication complexity point of view. Table 4 provides the communication
complexity of the Leader Election in the signi�cant named networks of Table 3, in the unoriented
and the oriented case.

Remarks.
• The case of chordal rings and δ-regular networks is speci�c, since randomized bounds are

given for the diameter in Tables 3 and 4. Indeed, we know from [8] that the diameter of
almost every (a.e.) δ-regular graph of order N is at least

blogδ−1 Nc+
[
logδ−1 ln N − logδ−1(

6δ

δ − 2
)
]

+ 1.

• The particular network B(2, D) (or K(2, D)), for example, achieves a Θ(N log N) message
complexity in the unoriented case, and a Θ(N) message complexity in the oriented one.
Note that B(2, D) or K(2, D) is only de�ned for D > 1.

• As mentioned above, a lower bound (or an upper bound) on the complexity of the election
in a n-Hypercube is not yet known (see (∗) for the unoriented n-hypercube). Hence, it is not
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N Unoriented Oriented
Ori. Ring Θ(N log N) Θ(N log N)
Unor. Ring Θ(N log N) Θ(N log N)

d-Torus Θ(N) Θ(N)
Chord. Ring Θ(N log N) Θ(N)
Hypercube O(N log N)(∗) Θ(N)
n-Bubble O(nN + N log N) O(N log N)
n-Star O(nN + N log N) O(N log N)

n-Pancake O(nN + N log N) O(N log N)
KN Θ(N log N) Θ(N)

B(2, D) Θ(N log N) Θ(N)
δ-Regular Θ(δ ·N + N log N) Θ(N log N)
Arbitrary Θ(δ ·N + N log N) Θ(N log N)

Table 4: Message Complexity of Leader Election.

clear whether the orientation helps or not in this case. Along the same lines, notice that,
up to our knowledge, the message complexity of leader election on the Butter�y network
BF (n) is not yet known. Consequently, deciding whether orientation helps or not in this
case remains an interesting open problem.

Nevertheless, Table 4 shows that the behaviour of rings, d-tori and double rings regarding the
message complexity of leader election is not at all a coincidence. Also notice that the behaviour
of de Bruijn networks B(2, D) (or Kautz networks K(2, D)) is very similar to the one of Chordal
Rings (at least to the behaviour of almost every Chordal Ring), since orientation does help from
Θ(N log N) to Θ(N) (for a.e. Chordal Ring).

It is important to emphasize that similar results do hold, comparatively, in the anonymous
case.

5 Conclusions and Open Problems
In summary, the present paper o�ers a medley of ideas arising from the notion of sense of
direction. It seems obvious that algebraic group-theoretic and graph-theoretic models are a
fertile �eld on which structural information problems can be solved. We are thus provided with
theoretical tools which allow us to take full advantage of the rich algebraic structures of large
classes of networks.

Despite the very promising results of Kranakis and Krizanc (e.g. in [12, 13, 14]), we still
know little about the possibilities and potentialities of Cayley networks. Borel Cayley networks,
the study of dense networks as well as of the diameter of �nite groups [2] and of distance-regular
graphs [7, 14], etc. also open wide and fruitful directions of research. On the other hand, the
class of de Bruijn and Kautz networks and their generalizations provides a rich alternative among
the networks enjoying many properties and e�ciency requirements of massively distributed com-
puting. Yet, very little is also known about these networks, and especially about the generalized
de Bruijn and Kautz networks [6, 15].

The notions of symmetry and density of networks are fundamental for the solution of the
above questions and should be investigated in detail from a static and dynamic point of view.
Along the same lines, the behaviour of networks should be considered as a whole, and not only
from such or such isolated point of view. We need to take into account objective parameters

9



such as symmetry and algebraic structure of networks, ease of routing, broadcasting, fault-
tolerance (which does not only mean the connectivity of the underlying graphs), extendability
and generalization of networks, and the structure of the graphs.
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