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Abstract: For any non negative real values h and k, an L(h, k)-labeling of a graph
G = (V, E) is a function L : V → R such that |L(u) − L(v)| ≥ h if (u, v) ∈ E and
|L(u)−L(v)| ≥ k if there exists w ∈ V such that (u, w) ∈ E and (w, v) ∈ E. The span
of an L(h, k)-labeling is the difference between the largest and the smallest value of L.
We denote by λh,k(G) the smallest real λ such that graph G has an L(h, k)-labeling of
span λ. The aim of the L(h, k)-labeling problem is to satisfy the distance constraints
using the minimum span.
In this paper, we study the L(h, k)-labeling problem on regular grids of degree 3, 4,
and 6 for those values of h and k whose λh,k is either not known or not tight. We
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1 INTRODUCTION

In this paper, we are interested in the frequency assign-
ment problem, that arises in wireless communication sys-
tems. More precisely, we focus here on minimizing the
number of frequencies used in the framework where radio
transmitters that are geographically close may interfere
if they are assigned close frequencies. This problem has
originally been introduced in (17) and was later developed
in (12). It is equivalent to a graph labeling problem, in
which the nodes represent the transmitters, and any edge
joins two transmitters that are sufficiently close to poten-
tially interfere. The aim here is to label the nodes of the
graph in such a way that:

• any two neighbors (transmitters that are very close)
are assigned labels (frequencies) that differ by a pa-
rameter at least h ;

• any two nodes at distance 2 (transmitters that are
close) are assigned labels (frequencies) that differ by
a parameter at least k ;

• the gap between the smallest and the greatest value
for the labels is minimized.

This problem is usually referred to as the L(h, k)-
labeling problem. More formally, for any non negative real
values h and k, an L(h, k)-labeling of a graph G = (V, E)
is a function L : V → R such that |L(u) − L(v)| ≥ h if
(u, v) ∈ E and |L(u) − L(v)| ≥ k if there exists w ∈ V

such that (u, w) ∈ E and (w, v) ∈ E. The span of an
L(h, k)-labeling is the difference between the largest and
the smallest value of L. Hence, it is not restrictive to as-
sume 0 as the smallest value of L, something which will be
assumed throughout this paper. We denote by λh,k(G) the
smallest real λ such that graph G has an L(h, k)-labeling of
span λ ; we call L(h, k) number of G this value. The aim
of the L(h, k)-labeling problem is to satisfy the distance
constraints using the minimum span.

Since its definition (11) as a specialization of the fre-
quency assignment problem in wireless networks (12; 17),
the L(h, k)-labeling problem has been intensively studied.
Note that the L(h, k)-labeling problem is a generalization
of some standard graph colorings, such as the usual (or
proper) coloring when h = 1 and k = 0, or the 2-distance
coloring (equivalent to the proper coloring of the square of
the graph) when h = k = 1. We also note that the case
h = 2 and k = 1 (or, more generally h = 2k), called radio-
coloring or λ-coloring, is the most widely studied (see for
instance (7; 9; 13; 14)).

The decision version of the L(h, k)-labeling problem is
NP-complete even for small values of h and k (2). This
motivates seeking optimal solutions on particular classes
of graphs (see for instance (3; 4; 8; 11; 18; 19; 20; 15) and
(6) for a complete survey). Concerning the more specific
grid topologies, a large number of papers has been pub-
lished on the subject. For instance, Makansi (16) provided

an optimal L(0, 1)-labeling for squared grids, that is reg-
ular grids of degree 4 (see Figure (b)). Battiti, Bertossi
and Bonuccelli (1) found an optimal L(1, 1)-labeling for
hexagonal, squared and triangular grids (that is, respec-
tively, regular grids of degree 3, 4 and 6, see Figures (a),
(b) and (c)). The L(2, 1)-labeling problem of regular grids
of degree ∆, denoted G∆, has been studied independently
by different authors (3; 7) proving that λ2,1(G∆) = ∆ + 2
by means of optimal coloring algorithms. More recently,
Fertin and Raspaud (10) determined several bounds on
λh,k for d-dimensional squared grids.

In (5) some values of λh,k for regular grids of degree
3, 4, and 6 are exactly computed, while in some intervals
different upper and lower bounds are given ; moreover, the
case h < k is not considered at all. Our goal in this paper is
to improve some of those bounds, as well as to consider the
case h < k. Moreover, we extend this study to a new class
of graphs, namely grids of degree 8. Grids of degree 8 can
be defined as the strong product of two infinite paths (15)
(see also Figure for a graphical representation of the four
types of grids we study in this paper). Grids of degree 8
can also be seen as a natural extension of grids of degree 6,
who themselves are an extension of grids of degree 4 (see
Figures (a), (b) and (c)).

Figure 1 Grids studied in this paper: (a) G3, (b) G4, (c) G6

and (d) G8

(a) (b)

(c) (d)

Before going further, we observe that when h < k (a
case that we will consider in this paper), there are actually
two ways to define the L(h, k)-labeling problem:

• The first one is the distance-based model, which asks
that two neighbors in the graph differ by at least h,
while two nodes at distance 2 differ by at least k. This
means that when two nodes are at the same time con-
nected by a 1-path and a 2-path (hence when there
is a cycle of length 3 in the graph), we consider the
distance to be 1, and thus impose only the condition
on h.

• The second one is the max-based model, which asks
that two nodes connected at the same time by a 1-
path and a 2-path differ by at least max{h, k} ; in that
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sense, this model is more restrictive than the distance-
based model. In particular, this model imposes that
any cycle of length 3 to be always labeled with three
labels at least max{h, k} apart from each other.

Note that when h ≥ k, the two definitions coincide, since
max{h, k} = h. The same occurs when the considered
graph has no triangles, which is the case for G3 and G4.
In this paper, in the study of G6 and G8, when h < k, we
chose to consider the max-based problem.
As mentioned above, we study in this paper the L(h, k)-
labeling problem on regular grids of degree 3, 4, and 6 for
those values of h and k whose λh,k is either not known or
not tight, and we also study the L(h, k) labeling problem
in a new class of graphs, namely grids of degree 8. For all
considered grids, in some cases we provide exact results,
or we give close upper and lower bounds (see Figure 6.2 at
the end of the paper for a summary of results).
The paper is organized as follows: in Section , we give a
few technical lemmas that will help to obtain general lower
and upper bounds for the considered types of graphs, while
in Sections , 3.2, 4.2 and 4.2, we improve bounds on the
L(h, k) number of grids for degree 3, 4, 6 and 8, respec-
tively.
Note finally that if no confusion arises, we will speak in-
terchangeably, in the rest of this paper, of a node and its
label.

2 PRELIMINARIES

In this section, we show four different lemmas, which
will prove to be useful in the rest of the paper. Lemmas 1
and 1 are concerned with lower bounds for the L(h, k) num-
ber, while Lemmas 2 and 3 deal with upper bounds.

Theorem 1. λh,k(G∆) ≥ h + (∆ − 1)k when h ≤ k, for
∆ = 3, 4.

Proof. Consider an optimal L(h, k)-labeling of G∆, h ≤ k,
∆ = 3, 4, and let x be a node labeled 0. The smallest label
among those of its neighbors must be at least h. Further-
more, the ∆ neighbors of x are all connected by a 2-length
path and hence their labels must differ by at least k from
each other. It follows that the greatest label must be at
least h + (∆ − 1)k.

Lemma 1. λh,k(G∆) ≥ ∆k when h ≤ k, for ∆ = 6, 8.

Proof. Observe that G6 and G8 are characterized by the
property that each pair of adjacent nodes is also connected
by a 2-length path. This implies that, given an optimal
L(h, k)-labeling of G∆, h ≤ k, ∆ = 6, 8, starting from a
node x labeled 0, the smallest label, among those of their
neighbors must be at least k. With reasonings analogous
to those of the previous proof, the claim follows.

Lemma 2. For any graph G and any h ≤ k, λh,k(G) ≤
k · λ1,1(G).

Proof. Consider an optimal L(1, 1)-labeling, say L, of G.
Consider the labeling L′ obtained from L by substituting
every label i with label ik (i = 0, 1, . . . , λ1,1(G)). We claim
that L′ is an L(h, k)-labeling of G with span k · λ1,1(G),
provided h ≤ k. Indeed, any two neighbors, which differ
by at least 1 in L, differ by at least k ≥ h in L′ ; moreover,
any two nodes connected by a 2-length path, which differ
by at least 1 in L differ by at least k in L′.

Lemma 3. For any graph G and any h ≥ k
2
, λh,k(G) ≤

h · λ1,2(G).

Proof. Analogously to the proof of Lemma 2, consider an
L(1, 2) labeling, say L, of G. Consider the labeling L′

obtained from L by substituting every label i with label
ih (i = 0, 1, . . . , λ1,2(G)). Since h ≥ k

2
, L′ is an L(h, k)-

labeling of G with span h ·λ1,2(G). Indeed, any two neigh-
bors, which differ by at least 1 in L, differ by at least h in
L′ ; moreover, any two nodes connected by a 2-length path,
which differ by at least 2 in L differ by at least 2h ≥ k in
L′.

3 REGULAR GRIDS OF DEGREE 3

3.1 Upper Bounds for G3

Proposition 1. λh,k(G3) ≤ h + 2k when h ≤ k
2
.

Proof. Consider an optimal L(1, 2)-labeling of G3 over the
set of labels {0, 1, . . . , 5}, whose general pattern is depicted
in Figure 3.1(a). The idea is to substitute h to 1, k to 2,
h+k to 3, 2k to 4, and h+2k to 5. In that case, the labeling
that is produced is a feasible L(h, k)-labeling. Indeed, each
pair of consecutive labels differs by either h or k − h, but
since we supposed h ≤ k

2
, we have k − h ≥ h and thus any

two consecutive labels differ by at least h. Similarly, any
other pair of distinct labels differs by at least k. Moreover,
the largest label used is h + 2k, hence the result.

Figure 2 General patterns for L(h, k)-labelings of G3:

(a) L(1, 2)-labeling ; (b) L(1, 1)-labeling
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Proposition 2. λh,k(G3) ≤ min {5h, 3k} when k
2
≤ h ≤

k.
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Proof. By Lemma 3, since k
2
≤ h and since there exists

an L(1, 2)-labeling of G3 that is of span 5 (see for instance
the general pattern shown in Figure 3.1(a)), we know there
exists an L(h, k)-labeling of G3 of span 5h.
Analogously, since h ≤ k, we obtain an L(h, k)-labeling
of span 3k by Lemma 2 ; indeed, there exists an L(1, 1)-
labeling of G3 that is of span 3 (whose general pattern is
shown in Figure 3.1(b), see also (1)).

3.2 Lower Bounds for G3

Proposition 3. λh,k(G3) ≥ h + 2k when h ≤ k.

Proof. This bound directly comes from Lemma 1.

Figure 3 Neighborhood of a node labeled 0 in G3

Proposition 4. λh,k(G3) ≥ 3k when 2k
3

≤ h ≤ k.

Proof. Consider an optimal L(h, k)-labeling of G3. Sup-
pose, by contradiction, that λh,k(G3) < 3k. Let us
consider a node labeled 0, and let x, y, and z be its 3
neighbors. Without loss of generality, suppose x < y < z.
In view of the L(h, k)-constraints, we must have x ≥ h,
y ≥ x + k ≥ h + k, and z ≥ y + k ≥ h + 2k. Furthermore,
from the hypothesis λh,k(G3) < 3k, we have that z < 3k,
hence y ≤ z − k < 2k, and x ≤ y − k < k. Let x1 and x2,
y1 and y2, z1 and z2 be the not 0 neighbors of x, y, and
z, respectively (see Figure 3.2).
Let us first prove that if ym = min{y1, y2} and
yM = max{y1, y2}, then ym < y < yM . Indeed, if
y < ym, then ym ≥ y + h ≥ 2h + k, and consequently
yM ≥ 2h + 2k. However, 2h + 2k ≥ 3k (because we
supposed h ≥ 2k

3
≥ k

2
), a contradiction to the fact that

λ < 3k. On the other hand, if yM < y, then y ≥ yM + h.
And since yM ≥ ym + k ≥ 2k, we end up with y ≥ h + 2k.
However, by hypothesis we know that y < 2k, a contradic-
tion since h ≥ 0. Thus we conclude that in all the cases,
we have ym < y < yM .
Now, in order to prove the statement, we will show that
under the hypothesis λh,k(G3) < 3k, both cases x1 < x2

and x1 > x2 lead to a contradiction.

Case 1: x1 < x2. In this case x1 ≥ k, as x1 is
connected by a 2-length path to node 0 (via x) and
x2 ≥ x1 + k ≥ 2k. If x1 < x, then x ≥ x1 + h ≥ k + h, a
contradiction since x < k. Hence, x < x1 < x2. It follows
that x1 ≥ x + h ≥ 2h and x2 ≥ x1 + k ≥ 2h + k. Let us
now consider y1 and y2.

Case 1.1: y1 < y2. Hence we know that y1 < y < y2.

In such a case y1 ≥ k and y1 ≤ y − h < 2k − h. Note that
y1 < x2 as y1 < 2k − h and x2 ≥ 2k. Let us consider the
common neighbor of x2 and y1, α, and let us study the
relative position of its label with respect to x2 and y1.

• α < y1 < x2. Then α ≤ y − k < k: if x < α we have
α ≥ x+k ≥ h+k, a contradiction ; on the other hand,
if α < x then α ≤ x − k < 0, a contradiction too.

• y1 < x2 < α. Then x2 ≤ α − h < 3k − h ; from
previous hypotheses we also have x2 ≥ 2h + k, and
this leads to a contradiction as 3k − h ≤ 2h + k when
h ≥ 2k

3
.

• y1 < α < x2. We have again two cases. If y1 < α < y

then α ≤ y − k < k and y1 ≤ α − h < k − h that
is a contradiction as y1 ≥ k. If y1 < y < α then
α ≤ x2 − h < 3k − h, y ≤ α − k < 2k − h, and
y1 ≤ y−h < 2k− 2h that is a contradiction as y1 ≥ k

and k ≥ 2k − 2h when 2k
3

≤ h ≤ k.

Case 1.2: y1 > y2. Thus we have y1 > y > y2. This
implies that y1 ≥ y + h ≥ 2h + k. Hence, y1 lies in the
interval [2h + k; 3k[. However, we also know that x2 lies
in the interval [2h + k; 3k[. Since this interval is of width
w < 2k−2h, we conclude that w < k (because we supposed
h ≥ 2k

3
and hence h ≥ k

2
). This leads to a contradiction

because y1 and x2 must be at least k away from each other.

Case 2: x1 > x2. With considerations analogous to
those done for case x1 < x2, we can derive x < x2 < x1

and 2h + k ≤ x1 < 3k and 2h ≤ x2 < 2k. Now, let us look
at y1 and y2.

Case 2.1: y1 < y2. We thus have y1 < y < y2.
However, this leads to a contradiction. Indeed, y1 > k

as it is connected by a 2-length path to node 0, then
x2 ≥ y1 + k > 2k.

Case 2.2: y1 > y2. We then have y2 < y < y1. This
implies that y1 ≥ y + h ≥ 2h + k and hence y1 > x2 as
x2 < 2k. Now consider α, the common neighbor of x2 and
y1.

• x2 < y1 < α. Then α ≥ y1 + h ≥ 3h + k ≥ 3k, a
contradiction since we supposed λ < 3k.

• α < x2 < y1. Then α ≤ x2 − h < 2k − h. If α > y

then α ≥ y + k ≥ h + 2k, a contradiction ; if α < y

then α ≤ y − k ≤ k. However, we know that x < k ;
moreover, because α < k and α must lie at least k

away from x, this leads to a contradiction.

• x2 < α < y1. Then α ≤ y1−h < 3k−h. If α > y then
α ≥ y + k ≥ h + 2k that is greater than 3k − h under
the hypothesis h ≥ 2k

3
, a contradiction ; if α < y then

α ≤ y − k ≤ k that again contradicts the fact that α

must lie at least k away from x.

Altogether, we see that every possible case leads to a
contradiction. This proves that the initial assumption, λ <

3k, is false, and consequently the proposition is proved.
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Proposition 5. λh,k(G3) ≥ 3h when k ≤ h ≤ 3k
2

.

Proof. The proof is analogous to the previous one, i.e.,
by contradiction we assume that there exists a L(h, k)-
labeling with span λ < 3h, we start from node labeled 0,
we look at its neighbors and prove that neither x1 < x2

nor x1 > x2 can occur. Wlog, let us assume x < y < z.
Hence, x ≥ h, y ≥ h + k and z ≥ h + 2k. On the other
hand, z < 3h, y < 3h− k and x < 3h− 2k. Let x1 and x2,
y1 and y2, z1 and z2 be the not 0 neighbors of x, y, and
z, respectively (see Figure 3.2).
We first prove that if ym = min{y1, y2} and
yM = max{y1, y2}, then ym < y < yM . Indeed, if
y < ym, then ym ≥ y + h ≥ 2h + k, and consequently
yM ≥ 2h + 2k. However, 2h + 2k ≥ 3h (because we
supposed h ≤ 3k

2
), a contradiction to the fact that λ < 3h.

On the other hand, if yM < y, then y ≥ yM +h. And since
yM ≥ ym + k ≥ 2k, we end up with y ≥ h + 2k. However,
by hypothesis we know that y < 3h − k, a contradiction
since 3h− k ≤ h + 2k, because we supposed h ≤ 3k

2
. Thus

we conclude that in all the cases, we have ym < y < yM .
Now, as in the previous proof, let us consider x1 and x2

(see Figure 3.2), and show that, under the hypothesis
λ < 3h, none of the cases x1 < x2 and x1 > x2 can occur.

Case 1: x1 < x2. This implies x1 ≥ k, as x1 is
connected by a 2-length path to node 0 (via x). If x1 < x,
then x ≥ x1 + h ≥ h + k, that is a contradiction as
x < 3h− 2k ≤ h + k under the hypothesis h ≤ 3k

2
. Hence,

x < x1 < x2. It follows that x1 ≥ x + h ≥ 2h and
x2 ≥ x1 + k ≥ 2h + k. Let us consider now y1 and y2.

Case 1.1: y1 < y2. Then we know that y1 < y < y2.
Note that y1 < x2 as x2 ≥ 2h+k and y1 ≤ y−h ≤ y2−2h <

3h−2h = h. Now, let us consider α, the common neighbor
of y1 and x2.

• y1 < x2 < α. The contradiction comes from the in-
equality α ≥ x2 + h ≥ 3h + k.

• α < y1 < x2. Then y1 ≥ α + h ≥ h, y ≥ y1 + h ≥ 2h

and y2 ≥ y + h ≥ 3h, a contradiction.

• y1 < α < x2. Since we have y1 ≥ k, this implies
α ≥ y1 + h ≥ h + k and α ≤ x2 − h < 2h. It is easy
to see that the same bounds hold also for y. Hence
y and α both lie in the interval [h + k; 2h[, of width
w < h − k, that is w ≤ k. The contradiction comes
from the fact that α and y being connected by a 2-
length path, they must lie at least k away from each
other.

Case 1.2: y1 > y2. Thus, we know that y1 > y > y2.
We know that x2 and y1 must be at least k away from each
other. Moreover, 2h + k ≤ x2 < 3h and 2h + k ≤ y1 < 3h.
Hence, both x2 and y1 lie in an interval of width w < h−k.
Since we supposed h ≤ 3k

2
, we conclude w < k, a contra-

diction.

Case 2: x1 > x2. We can easily see that in that

case we must have x1 > x2 > x. Indeed, x2 ≥ k, since
it is connected by a 2-length path to node 0. Hence,
if x > x2, then x ≥ h + k. However, we know that
x < 3h − 2k, a contradiction since h ≤ 3k

2
. Hence we

conclude that x1 > x2 > x, which implies x2 ≥ x + h ≥ 2h

and x1 ≥ x2 + k ≥ 2h + k. Now let us consider y1 and y2.
Case 2.1: y1 < y2. Let us then consider α, the

common neighbor of y1 and x2, and let us look at its
relative position compared to x and y. There are three
possible cases.

• α > y > x. We recall that we are in the case x1 >

x2 > x, that is x2 ≥ x + h ≥ 2h. If α > x2 then α ≥
x2 +h ≥ 3h, a contradiction to the hypothesis λ < 3h.
Now, if α < x2, α ≤ x2−h. Since x2 ≤ x1−k < 3h−k,
we conclude α ≤ 2h−k. But y ≥ h+k and α ≥ y+k,
that is α ≥ h + 2k. This is a contradiction since
2h − k ≤ h + 2k, by the hypothesis that h ≤ 3k

2
.

• y > α > x. We then conclude that α ≤ y−k < 3h−2k.
On the other hand, we have α ≥ x + k ≥ h + k. This
is a contradiction since h + k ≥ 3h − 2k due to the
fact that we supposed h ≤ 3k

2
.

• y > x > α. In that case, if α < y1, then y1 ≥ α + h ≥
h, which implies y ≥ 2h and y2 ≥ 3h, a contradiction
to the hypothesis λ < 3h. Now, if α > y1, then α ≥ h,
which in turns means that x ≥ h + k and y ≥ h + 2k.
However, we know that y < 3h − k, a contradiction
since 3h−k ≤ h+2k due to the fact that we supposed
h ≤ 3k

2
.

Case 2.2: y1 > y2. Here, we consider the three nodes
z, z1 and z2. We first show that if zm = min{z1, z2} and
zM = max{z1, z2}, then zm < zM < z. Indeed, if zM > z

then zM ≥ z + h, and since we know z ≥ h + 2k, we
conclude zM ≥ 2h + 2k, a contradiction to the fact that
λ < 3h since 2h + 2k ≥ 3h. Now let us look at the relative
positions of z1 and z2. There are two cases to consider.

• z1 > z2. In that case, we have z > z1 > z2. Now let
us look at β, common neighbor of z1 and y2, and let
us consider the relative positions of β and y.

– β < y. First, we note that β < z1. Indeed,
z2 ≥ k (it is connected by a 2-length path to node
0), thus z1 ≥ 2k. However, β < y by hypothesis,
hence β ≤ y − k, that is β < 2h − k. Moreover,
2h − k ≤ 2k since we are in the case h ≤ 3k

2
,

and thus we conclude that β < z1. This implies
β ≤ z1−h, that is β ≤ z−2h ; and since z ≤ λ <

3h, we get β < h. On the other hand, y2 < y,
thus y2 ≤ y − h. But since y < 2h, we then
have y2 < h. Hence, both β and y2 lie in the
interval [0; h[. However, they are neighbors and
thus should have labels that are at least h away,
a contradiction.

– β > y. Then we have β ≥ y + k, that is β ≥
h + 2k. However, we know that z ≥ h + 2k as
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well. Thus, β and z lie in the interval [h+2k; λ[,
where λ < 3h by hypothesis. Thus the width of
this interval w satisfies w < 2h − 2k, and thus
w < k because we supposed h ≤ 3k

2
. However, β

and z are neighbors, and thus should have labels
at least differing by h, a contradiction with the
fact that w < h.

• z2 > z1. In that case, we know that z > z2 > z1. In
particular, this means that z2 < 2h, and z1 < 2h− k.
However, z1 ≥ k since it is connected by a 2-length
path to node 0. We also have y ≤ z−h < 2h, and thus
y2 ≤ y − h < h ; and since h ≥ k, we conclude that
y2 ≤ 2h−k. Moreover, y2 ≥ k since it is connected by
a 2-length path to node 0. Hence, both z1 and y2 lie
in the interval [0; 2h− k[, of width w < 2h − 2k, that
is w < k since we supposed h ≤ 3k

2
. However, z1 and

y2 are connected by a 2-length path, and thus should
have labels at least differing from k, a contradiction.

Altogether, we see that every possible case leads to a
contradiction. This proves that the initial assumption, λ <

3h, is false, and consequently the proposition is proved.

Proposition 6. λh,k(G3) ≥ h + 3k when 3k
2

≤ h ≤ 2k.

Proof. Consider an optimal L(h, k)-labeling of G3 with
span λ. By contradiction, suppose λ < h + 3k. Let us
consider a node labeled 0, and let x, y, and z be its 3
neighbors. Without loss of generality, suppose x < y < z.
In view of the L(h, k)-constraints, we must have x ≥ h,
y ≥ x + k ≥ h + k, and z ≥ y + k ≥ h + 2k. Furthermore,
for the hypothesis λ < h + 3k, z < h + 3k, hence
y ≤ z− k < h+ 2k, and x ≤ y− k < h + k. Let x1 and x2,
y1 and y2, z1 and z2 be the not 0 neighbors of x, y, and
z, respectively (see Figure 3.2).
Let us first prove the following, which will be useful
in the rest of the proof: if ym = min{y1, y2} and
yM = max{y1, y2}, then ym < y < yM . Indeed, if
y < ym < yM , we have ym ≥ y + h ≥ 2h + k, and
yM ≥ ym + k ≥ 2h + 2k. However, this contradicts the
fact that λ < h + 3k, because 2h + 2k ≥ h + 3k (since we
supposed h ≥ 3k

2
). Now suppose ym < yM < y. Then

ym ≥ k, because it is connected by a 2-length path to node
0. Thus yM ≥ ym + k ≥ 2k, and y ≥ yM + h ≥ h + 2k,
which contradicts the fact that y < h+2k. Altogether, we
conclude that the only possible case is ym < y < yM (1).
In the following we show that, under the hypothesis
λ < h + 3k, both cases x1 < x2 and x1 > x2 lead to a
contradiction, which will prove the statement.

Case 1: x1 < x2. This implies x1 ≥ k, as x1 is
connected by a 2-length path to node 0 (via x) and
x2 ≥ x1 + k ≥ 2k. If x1 < x, then x ≥ x1 + h ≥ k + h,
that is a contradiction as x < h + k. Hence, we have
x < x1 < x2. It follows that x1 ≥ x + h ≥ 2h and
x2 ≥ x1 + k ≥ 2h + k. Moreover, x1 ≤ x2 − k < h + 2k

and x ≤ x1 − h < 2k. Let us now consider y1 and y2.

Case 1.1: y1 < y2. By (1) above, we have y1 < y < y2.
Let us now consider α (common neighbor of y1 and x2),
and let us study its relative position compared to x and y

(we recall that x < y by hypothesis).

• α > y > x. Hence we have α ≥ y + k ≥ h + 2k. But
x2 ≥ 2h + k ≥ h + 2k as well. Hence, both α and x2

lie in the interval [h+2k; h+3k[, of width w < k ≤ h.
However, x2 and α are neighbors, thus they must be
at least h away, a contradiction.

• y > α > x. In that case, α ≤ y − k < 2k. But we also
have α ≥ x + k ≥ h + k, a contradiction.

• y > x > α. Since x < 2k, we conclude that α ≤
x − k < k. However, we know y1 ≥ k (because it is
connected by a 2-length path to node 0). Thus α < y1,
hence y1 ≥ α+h ≥ h. But we know y1 < y < y2, thus
y1 ≤ y − h, and y ≤ y2 − h < 3k, thus y1 < 3k − h.
But we cannot have y1 ≥ h and y1 < 3k − h, since
h ≥ 3k

2
.

Case 1.2: y2 < y1. By (1) above, we have y2 < y < y1.
Hence y1 ≥ y+h ≥ 2h+k. We also know that x2 ≥ 2h+k,
since x < x1 < x2. Thus y1 and x2 share the same interval
[2h + k; h + 3k[, of width w < 2k − h ≤ k. But y1 and
x2 are connected by a 2-length path, and thus must be at
least k away, which is impossible.

Hence, at this point we conclude that necessarily
x1 > x2. Thus let us consider this case.

Case 2: x2 < x1. In that case, it is easily seen
that actually x1 > x2 > x, since x > x2 would imply
x ≥ x2 + h ; and since x2 ≥ k (it is connected by a
2-length path to node 0), we would have x ≥ h + k, a
contradiction to the fact that x < h + k. Now let us look
again at the relative positions of y1 and y2.

Case 2.1: y1 < y2. By (1) above, we have y1 < y < y2.
This implies that y ≤ y2 − h < 3k. And since we know by
hypothesis that x < y, we conclude that x ≤ y − k < 2k.

• α > y > x. Then α ≥ y + k ≥ h + 2k. However, we
know x2 < x1, that is x2 ≤ x1 − k < h + 2k, hence we
conclude α > x2. Thus α ≥ x2 + h, and since x2 > x

we have x2 ≥ x + h ≥ 2h, we conclude α ≥ 3h, a
contradiction to the fact that λ < h + 3k, since we
supposed h ≥ 3k

2
.

• y > α > x. Then α ≥ x + k ≥ h + k, and α ≤
y − k < 2k. This is a contradiction since h + k ≥ 2k

by hypothesis.

• y > x > α. Then α ≤ x − k < k. However, y1 ≥ k

(it is connected by a 2-length path to node 0). Thus
y1 > α, which means y1 ≥ α + h ≥ h. But we know
that y1 < y, that is y1 ≤ y − h < 3k − h. This is a
contradiction since h ≥ 3k − h by hypothesis.

Case 2.2: y1 > y2. By (1) above, we have y2 < y < y1.
Let us now look at the relative positions of z, z1 and z2. We
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first note that if zm = min{z1, z2} and zM = max{z1, z2},
then zm < zM < z. Indeed, if zM > z then zM ≥ z + h,
and since we know z ≥ h + 2k, we conclude zM ≥ h + 3k,
a contradiction.

• z1 > z2. Hence z > z1 > z2, by the argument above.
Let us derive here some inequalities that will be useful
in the following. Since z < h + 3k and z1 ≤ z − h, we
conclude z1 < 3k. Moreover, we know that z2 ≥ k and
z1 > z2, thus we conclude z1 ≥ z2 + k ≥ 2k. Finally,
we recall that h + 2k ≤ z < h + 3k. Now let us look
at the relative positions of β and y.

– β < y. Then β ≤ y − k < 2k. Since z1 ≥ 2k,
we conclude β < z1. Thus β ≤ z1 − h ≤ 3k − h.
We also know that y2 ≤ 3k−h because y2 < y ≤
y−h, and because y < 3k. Hence, both β and y2

are contained in the interval [0; 3k− h[, of width
w < 3k − h. But 3k − h ≤ h by hypothesis, and
since β and y2 must be at least h away, this is
impossible.

– β > y. Then β ≥ y + k ≥ h + 2k. This implies
that both β and z lie in the interval [h + 2k; h +
3k[, of width w < k. However, β and z must be
at least k away from each other, a contradiction.

• z2 > z1. Hence z > z2 > z1. In particular, we have
k ≤ z1 < 2k. But we also know that k ≤ y2 < 3k−h ≤
2k. Thus y2 and z1 both lie in the interval [k; 2k[, of
width w < k. But they must be at least k away, a
contradiction.

Altogether, we have shown that every possible case leads
to a contradiction. This proves that the initial assumption,
λ < h + 3k, is false. This proves the proposition.

4 REGULAR GRIDS OF DEGREE 4

4.1 Upper Bounds for G4

Proposition 7. λh,k(G4) ≤ h + 3k when h ≤ k
2
.

Proof. Consider the L(1, 2)-labeling whose general pattern
is depicted in Figure 4.1(a). This labeling has span 7. If we
now substitute labels 0, h, k, h+ k, 2k, h+ 2k, 3k, h+ 3k to
labels 0, 1, . . . , 7, the new labeling we obtain is an L(h, k)-
labeling of G4. Indeed, it is easy to see that when h ≤
k
2
, each pair of consecutive labels differs by at least h,

while each other pair of distinct labels differs by at least
k. Moreover, the largest label used is h + 3k, hence the
result.

Proposition 8. λh,k(G4) ≤ min {7h, 4k} when k
2
≤ h ≤

k.

Figure 4 General patterns for L(h, k)-labelings of G4:

(a) L(1, 2) ; (b) L(1, 1) ; (c) L(3, 2)
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Proof. By Lemma 3, since k
2
≤ h and since there exists

an L(1, 2)-labeling of G4 that is of span 7 (as shown in
Figure 4.1(a)), we know there exists an L(h, k)-labeling of
G4 of span 7h.
Analogously, since h ≤ k, we obtain an L(h, k)-labeling
of span 4k by Lemma 2 ; indeed, there exists an L(1, 1)-
labeling of G4 that is of span 4 (whose pattern is shown in
Figure 4.1(b), see also (1)).

Proposition 9. λh,k(G4) ≤ 3h + k when 3k
2

≤ h ≤ 5k
3

.

Proof. Consider the L(3, 2)-labeling of G4 whose general
pattern is depicted in Figure 4.1(c). This labeling has span
11. If we now substitute labels 0, h − k, k, h, 2h − k, h +
k, 2h, 3h−k, 2h+k, 3h, 4h−k, 3h+k to labels 0, 1, . . . , 11,
the new labeling we obtain is an L(h, k)-labeling of G4. By
construction, any pair of labels that are at least 3 away in
the list differs by at least h, while any pair of labels that
is at least 2 away in the list differs by at least k, because
we supposed 3k

2
≤ h. Moreover, the largest label used is

3h + k, hence the result.

Proposition 10. λh,k(G4) ≤
11k
2

when 11k
8

≤ h ≤ 3k
2

.

Proof. It is known (see (5)) that λh,k(G4) ≤ 4h when h ≥
k. Since λh,k is a non decreasing function, Proposition 9
implies that λh,k(G4) ≤

11k
2

when 11k
8

≤ h ≤ 3k
2

.

4.2 Lower Bounds for G4

Proposition 11. λh,k(G4) ≥ h + 3k when h ≤ k.

Proof. This bound directly comes from Lemma 1.

5 REGULAR GRIDS OF DEGREE 6

Proposition 12. λh,k(G6) = 6k when h ≤ k.

Proof. The upper bound is proved observing that since h ≤
k, we obtain an L(h, k)-labeling of span 6k by Lemma 2 ;
indeed, there exists an L(1, 1)-labeling of G6 of span 6,
whose general pattern is shown in Figure 4.2 (see also (1)).
The lower bound directly comes from Lemma 1.

6 REGULAR GRIDS OF DEGREE 8
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Figure 5 General pattern of an L(1, 1)-labeling of G6 of span 6
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6.1 Upper Bounds for G8

Proposition 13. λh,k(G8) ≤ 8k when h ≤ k.

Proof. Since h ≤ k, we obtain an L(h, k)-labeling of span
8k by Lemma 2 ; indeed, there exists an L(1, 1)-labeling
of G8 of span 8 (whose general pattern shown in Fig-
ure 6.1(a)).

Figure 6 General patterns for L(h, k)-labelings of G8:

(a) L(1, 1) ; (b) L(2, 1) ; (c) L(3, 1)

(a)

1

4

7

1

4

2 4 5

5 6 7 8

2

5

8

8

2

5

0

3

6

1

4

7

3 10 13 1 4 7

2 5 8 11 14

9 3012 6

1 4 7 10 13

8 11 14 2 9

8 10 1 3 5

2 4 6 8 10

7 9 0 2 4

3 5 7 9

16

1

8 10 3

(b) (c)

Proposition 14. λh,k(G8) ≤ min {8h, 10k} when k ≤
h ≤ 2k.

Proof. Once again we exploit the L(1, 1)-labeling of G8

whose general pattern is depicted in Figure 6.1(a). If we
substitute 0, h, 2h, . . .8h to labels 0, 1, . . . , 8, the new la-
beling we obtain is an L(h, k)-labeling of G8. Indeed, it is
easy to see that each pair of consecutive labels differs by
at least h, and thus by at least k since k ≤ h. Moreover,
the largest label used is 8h, hence the result.

The upper bound of 10k comes from the L(2, 1)-labeling
of G8 whose general pattern is shown in Figure 6.1(b). If
we substitute 0, k, 2k, . . . 10k to labels 0, 1, . . . , 10, the new
labeling we obtain is an L(h, k)-labeling of G8. Indeed,
it is easy to see that when k ≤ h ≤ 2k, each pair of non
consecutive labels differs by at least 2k ≥ h, while any pair
of distinct labels differs by at least k. Moreover, the largest
label used is 10k, hence the result.

Proposition 15. λh,k(G8) ≤ min {5h, 14k} when 2k ≤
h ≤ 3k.

Proof. Consider the L(2, 1)-labeling whose general pat-
tern is described in Figure 6.1(b). This labeling has span
10. If we now substitute 0, k, h, h + k, 2h, 2h + k, 3h, 3h +
k, 4h, 4h + k, 5h to labels 0, 1, . . . , 10, the new labeling we

obtain is an L(h, k)-labeling of G8. Indeed, it is easy to see
that each pair of non consecutive labels differs by at least
h. On the other hand, since 2k ≤ h, any pair of distinct
labels differs by at least k. Moreover, the largest label used
is 5h.

Analogously, the other bound is given using an L(3, 1)-
labeling, such as the one whose general pattern is shown
in Figure 6.1(c). This labeling is of span 14. If we now
substitute 0, k, 2k, . . . , 14k to labels 0, 1, . . . , 14, the new
labeling we obtain is an L(h, k)-labeling of G8. Indeed,
when h ≤ 3k, each pair of labels that are at least 3 away
in the list differs by at least 3k ≥ h, while any pair of
distinct labels differs by at least k. Moreover, the largest
label used is 14k, hence the result.

Proposition 16. λh,k(G8) ≤ 4h + 2k when 3k ≤ h ≤ 6k.

Proof. Starting from the L(3, 1)-labeling used in the pre-
vious proof (cf. also Figure 6.1(c)) of span 14, we substi-
tute labels 0, k, 2k, h, h+ k, h + 2k, 2h, 2h+ k, . . . , 4h, 4h +
k, 4h+2k to labels 0, 1, . . . , 14. This new labeling is also an
L(h, k)-labeling of G8. Indeed, each pair of labels that are
at least 3 away in the list differs by at least h by construc-
tion, while any pair of distinct labels differs by at least k

because h ≥ 3k. Moreover, the largest label used is 4h+2k,
hence the result.

Proposition 17. λh,k(G8) ≤ 3h + 8k when h ≥ 6k.

Proof. Consider the labeling whose general pattern is de-
picted in Figure 6.1(a). This labeling is an L(1, 1)-labeling
of span 11, with the additional property that the only con-
secutive labels that can appear on neighboring nodes are
of the form 3i + 2 and 3(i + 1). We now replace any label
l of this labeling by a new label, thanks to the following
rule (cf. Figure6.1(b)): any label of the form l = 3i + j

(i = 0, 1, 2, 3, j = 0, 1, 2) is replaced by l′ = (h+2k)i+ jk.
In this new labeling, any pair of labels of the form 3i + 2
and 3(i+1) is now separated by h. Moreover, the labeling
we started from is an L(1, 1)-labeling, and any two differing
labels in the new labeling are at least k away. Thus, this
new labeling is an L(h, k)-labeling, of span 3h + 8k.

Figure 7 (a) General pattern of an L(1, 1)-labeling of G8 ;

(b) general pattern of the L(h, k)-labeling we derive
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6.2 Lower Bounds for G8

Proposition 18. λh,k(G8) ≥ 8k when h ≤ k.
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Proof. This bound directly comes from Lemma 1.

Proposition 19. λh,k(G8) ≥ 2h + 6k when k ≤ h ≤ 3k.

Proof. Consider any optimal L(h, k)-labeling of G8. Let
λ be the greatest label. Let us consider a label x which
is neither 0 nor λ (note that there must exist one since
G8 contains K3 as an induced subgraph ; note also that
necessarily, x lies in the interval [h; λ− h]). Now, consider
its 8 neighbors, say v1 . . . v8. Then no other label than x

can be used in the interval ]x−h; x+h[ for the vis. However,
all the vis are pairwise connected by 2-length paths, so they
must be at least k away from each other. If there are α

(resp. β) labels for the vis in the interval [0; x − h] (resp.
[x + h; λ]), then we must have (x − h) − (α − 1)k ≥ 0 and
λ ≥ (x+h)+(β−1)k, with α+β = 8. Since λh,k(G8) = λ,
we conclude that λh,k(G8) ≥ 2h + (α + β − 2)k, hence the
result.

Proposition 20. λh,k(G8) ≥ 3h + 3k when h ≥ 3k.

Proof. First, observe that we have λh,k(G8) ≥ 3h + k. In-
deed, consider an optimal L(h, k)-labeling of G8, a node
labeled 0, and the set of its neighbors (see Figure 6.2).
Wlog, suppose min{a, b, c} ≤ min{e, f, g}. Since a, b and
c are neighbors of 0, then we have min{a, b, c} ≥ h. And
since any node among e, f and g are connected by a 2-
length path to any node among a, b and c, we conclude
that min{e, f, g} ≥ h + k. Finally, since e, f and g induce
a K3, we have max{e, f, g} ≥ 3h + k.

Figure 8 Neighborhood of a node labeled 0 in G8.

0 cg

a bh

e df

However, we can derive a better lower bound of
3h + 3k, taking into account nodes d and h in ad-
dition to the previous study. This bound then de-
rives from a very tedious case by case analysis that
is not developed here. Instead, we have run an ex-
haustive search by computer on the grid restricted to
those nine nodes. The source and binary codes cor-
responding to this search are available at the following
URL: http://www.sciences.univ-nantes.fr/info/perso/perma-

nents/fertin/Lhk/Lhk.c).

7 CONCLUDING REMARKS

In this paper, we have studied the L(h, k)-labeling
problem on regular grids of degree 3, 4, 6 and 8, and we
have improved, in many different cases, the bounds on the
L(h, k) number in each of these classes of graphs. A graph-
ical representation of our results is depicted in Figure 6.2:

bold lines in this figure are results from this paper, grey
lines are previously known results, and grey zones repre-
sent the gaps that still exist between the known lower and
upper bounds.

Though we managed to obtain tight bounds in several
cases, there are still some other cases for which the gap is
not closed, and it actually looks difficult to improve the
bounds without using case by case analysis arguments, as
we have sometimes done in this paper. However, a natural
question consists in closing the gaps that still remain in all
the four classes of graphs considered here.
Moreover, as observed in the introduction, when h < k

we have considered in this paper the max-based model,
that imposes a condition on labels of nodes connected by
a 2-length path instead of using the concept of distance 2
(we recall that when h ≥ k, the two definitions coincide).
Hence, it is also natural to ask for a similar study in the
case h < k, but using this time the distance-based defi-
nition. We note that this makes sense only for G6 and
G8, since there are no triangles in G3 and G4, and thus in
that case the two definitions coincide. Moreover, since the
max-based model is by definition more restrictive than the
distance-based model, the upper bounds we obtain in the
max-based model also apply in the distance-based model,
while this is not a priori the case for lower bounds.
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