Frictional contact problems for thin elastic structures and weak solutions of sweeping process

Abstract : The linearized equilibrium equations for straight elastic strings, beams, membranes or plates do not couple tangential and normal components. In the quasi-static evolution occurring above a fixed rigid obstacle with Coulomb dry friction, the normal displacement is governed by a variational inequality, whereas the tangential displacement is seen to obey a sweeping process, the theory of which was extensively developed by Moreau in the 1970s. In some cases, the underlying moving convex set has bounded retraction and, in these cases, the sweeping process can be solved by directly applying Moreau's results. However, in many other cases, the bounded retraction condition is not fulfilled and this is seen to be connected to the possible event of moving velocity discontinuities. In such a case, there are no strong solutions and we have to cope with weak solutions of the underlying sweeping process.
Type de document :
Article dans une revue
Archive for Rational Mechanics and Analysis, Springer Verlag, 2010, 198 (3), pp.789-833. 〈10.1007/s00205-010-0373-z〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00461538
Contributeur : Patrick Ballard <>
Soumis le : lundi 16 avril 2018 - 17:00:00
Dernière modification le : mercredi 18 avril 2018 - 10:55:06

Fichier

ballard2010.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Patrick Ballard. Frictional contact problems for thin elastic structures and weak solutions of sweeping process. Archive for Rational Mechanics and Analysis, Springer Verlag, 2010, 198 (3), pp.789-833. 〈10.1007/s00205-010-0373-z〉. 〈hal-00461538〉

Partager

Métriques

Consultations de la notice

124

Téléchargements de fichiers

7