Asymptotic analysis of a thin interface: the case involving similar rigidity

Abstract : This study deals with a linear elastic body consisting of two solids connected by a thin adhesive interphase with a small thickness e. The three parts have similar elastic moduli. It is proposed to model the limit behavior of the interphase when e -> 0. It has been established [1], using matched asymptotic expansions, that at order zero, the interphase reduces to a perfect interface, while at order one, the interphase behaves like an imperfect interface, with a transmission condition involving the displacement and the traction vectors at order zero. The perfect interface model is exactly recovered using a C-convergence argument. At a higher order, a new model of imperfect interface is obtained by studying the properties of a suitable (weakly converging) sequence of equilibrium solutions. Some analytical examples are given to illustrate the results obtained.
Type de document :
Article dans une revue
International Journal of Engineering Science, Elsevier, 2010, 48 (5), pp.473-486. 〈10.1016/j.ijengsci.2009.12.001〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00459507
Contributeur : Frédéric Lebon <>
Soumis le : mercredi 24 février 2010 - 11:07:59
Dernière modification le : mercredi 4 mai 2016 - 11:40:14

Identifiants

Citation

Frédéric Lebon, Raffaella Rizzoni. Asymptotic analysis of a thin interface: the case involving similar rigidity. International Journal of Engineering Science, Elsevier, 2010, 48 (5), pp.473-486. 〈10.1016/j.ijengsci.2009.12.001〉. 〈hal-00459507〉

Partager

Métriques

Consultations de la notice

59