I. H. Hutchinson, Principles of plasma diagnostics, 1987.
DOI : 10.1017/CBO9780511613630

C. Barué, M. Lamoureux, P. Briand, A. Girard, and G. Melin, Investigation of hot electrons in electron???cyclotron???resonance ion sources, Journal of Applied Physics, vol.76, issue.5, p.2662, 1994.
DOI : 10.1063/1.357563

R. Friedlein, D. Kühler, C. Zippe, G. Zschornack, and H. Tyrroff, Energy dispersive X-ray spectroscopy for ECR plasma diagnostics, Hyperfine Interactions, vol.3, issue.1, p.225, 1996.
DOI : 10.1007/BF02274925

M. Lamoureux, A. Girard, R. Pras, P. Charles, H. Khodja et al., Evidence of low???frequency oscillations in heavy ion plasmas heated by electron cyclotron resonance, Physics of Plasmas, vol.3, issue.12, p.4307, 1996.
DOI : 10.1063/1.871961

C. Gaudin, L. Hay, J. M. Buzzi, M. Bacal, and M. Lamoureux, Compact electron cyclotron resonance plasma source, Review of Scientific Instruments, vol.69, issue.2, p.890, 1998.
DOI : 10.1063/1.1148584

Y. Kato, Y. Kubo, and S. Ishii, Pulse height analysis using Si-pin diode of x-ray irradiated from a 2.45 GHz electron cyclotron resonance multicharged ion source, Review of Scientific Instruments, vol.69, issue.2, p.1179, 1998.
DOI : 10.1063/1.1148659

D. Leitner, J. Y. Benitez, C. M. Lyneis, D. S. Todd, T. Ropponen et al., Measurement of the high energy component of the x-ray spectra in the VENUS electron cyclotron resonance ion source, Review of Scientific Instruments, vol.79, issue.3, p.33302, 2008.
DOI : 10.1063/1.2821137

U. Lehnert, C. Zippe, and G. Zschornack, High resolution wavelength dispersive X-ray spectroscopy for ECR plasma diagnostics, Hyperfine Interactions, vol.21, issue.1, p.235, 1996.
DOI : 10.1007/BF02274926

P. Grubling, D. Kuchler, U. Lehnert, A. Ullrich, T. Werner et al., Determination of ion charge state distributions in krypton and cobalt electron cyclotron resonance plasmas by wavelength dispersive x-ray spectroscopy, Review of Scientific Instruments, vol.69, issue.2, p.1167, 1998.
DOI : 10.1063/1.1148549

G. Douysset, H. Khodja, A. Girard, and J. P. Briand, Highly charged ion densities and ion confinement properties in an electron-cyclotron-resonance ion source, Physical Review E, vol.61, issue.3, p.3015, 2000.
DOI : 10.1103/PhysRevE.61.3015

M. C. Martins, J. P. Marques, A. M. Costa, J. P. Santos, F. Parente et al., Production and decay of sulfur excited species in an electron-cyclotron-resonance ion-source plasma, Physical Review A, vol.80, issue.3, p.32501, 2009.
DOI : 10.1103/PhysRevA.80.032501

A. M. Costa, M. C. Martins, F. Parente, J. P. Santos, and P. Indelicato, DIRAC???FOCK TRANSITION ENERGIES AND RADIATIVE AND RADIATIONLESS TRANSITION PROBABILITIES FOR Ar9+ TO Ar16+ ION LEVELS WITH K-SHELL HOLES, Atomic Data and Nuclear Data Tables, vol.79, issue.2, p.223, 2001.
DOI : 10.1006/adnd.2001.0869

M. C. Martins, A. M. Costa, J. P. Santos, P. Indelicato, and F. Parente, Interpretation of x-ray spectra emitted by Ar ions in an electron-cyclotron resonance ion source, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.34, issue.4, p.533, 2001.
DOI : 10.1088/0953-4075/34/4/303

D. F. Anagnostopoulos, D. Gotta, P. Indelicato, and L. M. Simons, Low-Energy X-Ray Standards from Hydrogenlike Pionic Atoms, Physical Review Letters, vol.91, issue.24, p.240801, 2003.
DOI : 10.1103/PhysRevLett.91.240801

URL : https://hal.archives-ouvertes.fr/hal-00000948

C. Bieth, J. L. Bouly, J. C. Curdy, S. Kantas, P. Sortais et al., Electron cyclotron resonance ion source for high currents of mono- and multicharged ion and general purpose unlimited lifetime application on implantation devices, Review of Scientific Instruments, vol.71, issue.2, p.899, 2000.
DOI : 10.1063/1.1150326

URL : https://hal.archives-ouvertes.fr/in2p3-00004033

D. Hitz, A. Girard, G. Melin, D. Cormier, J. M. Mathonnet et al., Multiply charged ion production with ECR ion sources: State of the art and prospects, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.205, p.168, 2003.
DOI : 10.1016/S0168-583X(02)02041-4

E. Lamour, C. Prigent, B. Eberhardt, J. P. Rozet, and D. , 2E1 Ar17+ decay and conventional radioactive sources to determine efficiency of semiconductor detectors, Review of Scientific Instruments, vol.80, issue.2, p.23103, 2009.
DOI : 10.1063/1.3077284

URL : https://hal.archives-ouvertes.fr/hal-00362327

J. P. Rozet, P. Chevallier, P. Leganeux-piquemal, A. Chetioui, and C. Stephan, on N, Journal of Physics B: Atomic and Molecular Physics, vol.18, issue.5, p.943, 1985.
DOI : 10.1088/0022-3700/18/5/014

URL : https://hal.archives-ouvertes.fr/in2p3-00017145

M. Seliger, C. O. Reinhold, T. Minami, D. R. Schultz, M. S. Pindzola et al., Electron capture and electron transport by fast ions penetrating solids: An open quantum system approach with sources and sinks, Physical Review A, vol.75, issue.3, p.32714, 2007.
DOI : 10.1103/PhysRevA.75.032714

URL : https://hal.archives-ouvertes.fr/hal-00258633

C. Prigent, C. Deiss, E. Lamour, J. Rozet, D. Vernhet et al., Effect of pulse duration on the x-ray emission from Ar clusters in intense laser fields, Physical Review A, vol.78, issue.5, p.53201, 2008.
DOI : 10.1103/PhysRevA.78.053201

URL : https://hal.archives-ouvertes.fr/hal-00337807

J. L. Synge, The relativistic gas, Series in physics, 1957.

M. Lamoureux and N. Avdonina, Bremsstrahlung in hot plasmas with partially ionized atoms, Physical Review E, vol.55, issue.1, p.912, 1997.
DOI : 10.1103/PhysRevE.55.912

C. Q. Tran, C. T. Chantler, and Z. Barnea, X-Ray Mass Attenuation Coefficient of Silicon: Theory versus Experiment, Physical Review Letters, vol.90, issue.25, p.257401, 2003.
DOI : 10.1103/PhysRevLett.90.257401

C. Q. Tran, C. T. Chantler, Z. Barnea, D. Paterson, and D. J. Cookson, Measurement of the x-ray mass attenuation coefficient and the imaginary part of the form factor of silicon using synchrotron radiation, Physical Review A, vol.67, issue.4, p.42716, 2003.
DOI : 10.1103/PhysRevA.67.042716

D. Hitz, G. Melin, and A. Girard, Fundamental aspects of electron cyclotron resonance ion sources: From classical to large superconducting devices (invited), Review of Scientific Instruments, vol.71, issue.2, p.839, 2000.
DOI : 10.1063/1.1150308

F. Figures, Principle of the mosaic graphite flat crystal spectrometer. ? represents the width (FWHM) of the angular distribution of the reflecting planes in the crystal, the present work, L = 975 mm for Ar X rays