Nonlocal Hamilton-Jacobi equations related to dislocation dynamics and a FitzHugh-Nagumo system

Abstract : We describe recent existence and uniqueness results obtained for nonlocal nonmonotone Eikonal equations modelling the evolution of interfaces. We focus on two model cases. The first one arises in dislocation dynamics and the second one comes from a FitzHugh-Nagumo system. The equation is nonlocal since, in both case, the velocity at a point of the boundary of the interface depends on the whole enclosed set via a convolution. In these models, the evolution is nonmonotone since we do not expect to have an inclusion principle.
Type de document :
Communication dans un congrès
Hitoshi Ishii, Shigeaki Koike. Viscosity solutions of differential equations and related topics, Jun 2008, Kyoto, Japan. Research Institute for Mathematical Science, Kyoto University, Japan, 1651, pp.161-178, 2009, RIMS Kôkyûroku
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00458216
Contributeur : Olivier Ley <>
Soumis le : vendredi 19 février 2010 - 16:35:45
Dernière modification le : mercredi 12 juillet 2017 - 01:15:30
Document(s) archivé(s) le : vendredi 18 juin 2010 - 18:36:04

Fichiers

proc-ley-kyoto08.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00458216, version 1

Citation

Olivier Ley. Nonlocal Hamilton-Jacobi equations related to dislocation dynamics and a FitzHugh-Nagumo system. Hitoshi Ishii, Shigeaki Koike. Viscosity solutions of differential equations and related topics, Jun 2008, Kyoto, Japan. Research Institute for Mathematical Science, Kyoto University, Japan, 1651, pp.161-178, 2009, RIMS Kôkyûroku. <hal-00458216>

Partager

Métriques

Consultations de
la notice

269

Téléchargements du document

103