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Résumé

In this paper, a study of a stochastic volatility model for asset pricing is des-
cribed. Originally presented in [7, 9], the Wishart volatility model identifies the
volatility of the asset as the trace of a Wishart process. Contrary to a classic mul-
tifactor Heston model, this model allows to add degrees of freedom with regard to
the stochastic correlation. Thanks to its flexibility, this model enables a better fit
of market data than the Heston model. Besides, the Wishart volatility model keeps
a clear interpretation of its parameters and conserves an efficient tractability.
Firstly, we recall the Wishart volatility model and we present a Monte Carlo simu-
lation method in sight of the evaluation of complex options. Regarding stochastic
volatility models, implied volatility surfaces of vanilla options have to be obtained
for a short time. The aim of this article is to provide an accurate approximation
method to deal with asymptotic smiles and to apply this procedure *to the Wishart
volatility model in order to well understand it and to make its calibration easier.
Inspired by the singular perturbations method introduced by J.P Fouque, G. Pa-
panicolaou, R. Sircar and K. Solna [14, 15], we suggest an efficient procedure of
perturbation for affine models that provides an approximation of the asymptotic
smile (for short maturities and for a two-scale volatility). Thanks to the affine pro-
perties of the Wishart volatility model, the perturbation of the Riccati equations
furnishes the expected approximations. The convergence and the robustness of the
procedure are analyzed in practice but not in theory. The resulting approximations
allow a study of the parameters influence and can also be used as a calibration tool
for a range of parameters.

Key-words : Wishart processes, stochastic volatility models, stochastic

correlation, singular perturbation, asymptotic smile, Monte Carlo simulation
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The Black-Scholes model (1973) does not incorporate the observable phenomenon that

implied volatility of derivative products is strike- and maturity- dependent. To reproduce

some market conditions like the smile effect, various models have been introduced such

as local volatility and stochastic volatility models. The first step was the introduction by

Dupire (1994) of local volatility models where the underlying volatility σ(t, S) depended

on the level of the underlying S itself. The most famous one is the Constant Elasticity of

Variance model (CEV) in which the volatility is proportional to Sα, where α is a positive

constant. Then, stochastic volatility models appeared where volatility is assumed to be a

stochastic process. Thus, models became more complex because of the market incomple-

teness which implies that traders can not hedge their products by dealing only with the

asset. The Heston model (1992) presents a volatility with an effect of mean reversion, and

is commonly used in financial markets because of its flexibility. However, these models

cannot fit accurately market data for short or long maturities, and recent researchs have

been carried out to improve this point.

A way to solve this problem is the introduction of a multifactor stochastic volatility mo-

del. C. Gourieroux and R. Sufana [19, 20] (2006) developed a multifactor version of the

Heston model. Indeed, they assumed that volatility follows a Wishart process introduced

by M.F. Bru [3] (1991) so that the model preserves its linear properties and consequently

its tractability. J. Da Fonseca, M. Grasselli and C. Tebaldi [7](2005) have improved the

initial modeling considering that the volatility of the asset is the trace of a Wishart pro-

cess. That allows to take into account stochastic correlation between the underlying asset

and the volatility process and provides a wealthy but complex model. The simplistic case

where the matrix of mean reversion, the volatility of volatility matrix and the correlation

matrix are diagonal matrices gives a small intuition of the model performance given that

the diagonal components of the Wishart process are in fact Cox-Ingersoll-Ross processes :

by considering the volatility as the trace of the Wishart process, the model is equivalent

to a simple multifactor Heston model. However, one can see that a multifactor Heston

model (like in [5]) is not flexible enough in regard to the stochastic correlation. Indeed, in

a classic extension of a multifactor Heston model, the factors appearing in the stochastic

correlation formulae are exactly the same as the volatility expression’s ones. In order to

extend this model, we will focus on a specification of the Wishart volatility model allowing

to add freedom degrees concerning the stochastic correlation. Besides, we will consider

the case where the correlation matrix is not diagonal and we will highlight the fact that

this model differs from a standard multifactor Heston model given that the stochastic
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correlation depends on a new factor.

This model belongs to the class of affine models and is tractable in the way that it exists

an explicit expression of the conditional charateristic function which allows the use of the

FFT method introduced by P. Carr and D. Madan [4] (1999). Being factorial models,

affine models have consequently intrinsic capabilities to integrate source of risk and are

powerful tools of projection. Besides, with its mean-reversion effect, this Wishart volati-

lity model is compatible with classic macroscopic phenomena.

Nevertheless, generating the smile of implied volatility is not fast enough, therefore the

calibration remains a problem. Accurate approximations are needed in order to calibrate

directly or to furnish a relevant initial set of parameters for initiating the calibration

procedure. Moreover, for the users of this model such as traders, having instantly an

approximation with a closed formulae for the smile could be very useful. Indeed, these

explicit expressions give an intuition of the influence of the parameters like correlation,

volatility of volatility and mean-reversion parameters. Many academicians and practi-

tioners have tackled this challenge and have introduced specific methods. To cite some

of them, there are the singular perturbation method based on the perturbation of the

evaluation PDE [14, 15, 16], a procedure considering the link between the spot and the

implied volatility in short maturities [13], a method based on geometric using the heat

kernel expansion on a Riemann manifold [27], a method based on Mallivin calculus [26]

and so on. These methods have not been studied and done for the Wishart volatility

model but the standard singular perturbation method, allowing an approximation for a

two-scale volatility, becomes quickly hard to apply (the second order is really difficult to

obtain) [2].

This paper is organized as follows : we first present the definition and the framework of the

Wishart volatility model where the volatility of the asset is given by the trace of a Wishart

process. Then, we will also see some numerical ideas to simulate the Wishart volatility

model by Monte Carlo methods. Indeed, there are many options that need a Monte Carlo

evaluation but it is not easy to conserve the symmetry and the positiveness of the Wishart

process. In Section 3, we will study the asymptotic behaviour of the smile for very short

maturities and for two scales of maturities : those maturities represent ”characteristic life

times” for the volatility as detailed in the article. Inspired by the singular perturbations

methods developed by Fouque and al. described in [14, 15, 16] to the Wishart volatility

model, we have found a useful asymptotic approximation. This method uses the affine

properties of the model through a perturbation of the Riccati equations and is easy to
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carry on. Those simple expressions allow to obtain instantly the skew and the smile for

some reasonable range of parameters. Moreover, the convergence and the robustness in

relation to parameters of this approximation is analyzed in practice but not in theory. Fi-

nally, this approximation provides an adequate calibration tool for admissible parameters

as well as an outline of the parameters’ influence in the Wishart volatility model.

Notations

To begin with, let us introduce some notations on sets of matrices :

– Mn,m(R) : set of real matrices n×m.

– GLn(R) : set of real invertible matrices n× n.

– σ(M) : set of the eigenvalues of the matrix M , called spectrum of the matrix M .

– Sn(R) : set of real symmetric matrices.

– S−n (R) : set of nonpositive symmetric matrices i.e for M ∈ S−n (R), ∀λ ∈ σ(M),

λ ≤ 0 .

– S+
n (R) : set of nonnegative symmetric matrices i.e for M ∈ S+

n (R), ∀λ ∈ σ(M),

λ ≥ 0.

– S̃+
n (R) : set of strictly nonnegative symmetric matrices i.e for M ∈ S̃+

n (R), ∀λ ∈
σ(M), λ > 0.

– A> is the transposed matrix of A.

– For A a nonnegative symmetric matrix,
√
A is the unique nonnegative symmetric

matrix such as
√
A
√
A = A.

– For A ∈Mn,n(R), Tr(A) is the trace of the matrix A.

Let us consider a probability space (Ω,F ,Q) equipped with a filtration {Ft} satisfying

usual conditions. The probability measure Q corresponds to a ”risk-neutral” measure

under which the price of any asset is the conditional expectation of its discounted future

cash flows

1 The Wishart Process

The Wishart process which was originally studied by Bru [3] in 1991 was introduced

in finance by Gourieroux and al. in [19]. Then, many authors have developed stochastic

volatility models using the Wishart processes and this paper is focused on the ”Wishart

volatility model” presented by Da Fonseca and al. [7, 9]. Some specifications and properties
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of the Wishart process are recalled for a better understanding.

1.1 Definition of the Wishart processes

1.1.1 Definition

The Wishart standard distribution is a multidimensional generalization of the χ2 distri-

bution and is very useful for the estimation of the covariance matrices in multivariate

statistics [28]. Indeed, the Wishart distribution corresponds to the law of the covariance

matrix estimator of a Gaussian vector sample : Let X1, ..., Xn be n independent Gaussian

vectors in Rp such as Xi ∼ N (0,Σ), i = 1, ..., n.

The law of the p× p random matrix S =
∑n

i=1 XiX
>
i is called Wishart distribution noted

S ∼ W (Σ, p, n). When Xi ∼ N (µ,Σ), i = 1, ..., n, the law of S =
∑n

i=1XiX
>
i is called

non central Wishart distribution noted S ∼ W (Σ, p, n, µ).

In order to model covariance matrices dynamics, we need to focus on process valued on

nonnegative matrices. Then, the trace of such matrices may be considered for modelling

positive stochastic volatility process. Consider now the classic definition of the Wishart

process through its diffusion equation.

Definition 1 (Bru [3]). Let {Wt, t ≥ 0} denote a n×n matrix-valued Brownian motion

under the probability measure Q. The matrix-valued process V is said to be a Wishart

process if it satisfies the following diffusion equation

dVt = (βQ>Q+MVt + VtM
>)dt+

√
VtdWtQ+Q>dW>

t

√
Vt, V0 = v0.

where Q ∈ GLn(R) is a n×n invertible matrix, M is a n×n nonpositive matrix, v0 ∈ S̃+
n

is a strictly nonnegative symmetric matrix and β a real such as β > (n− 1) .

The condition β > n − 1 is introduced to ensure existence and unicity of the solution

Vt ∈ S+
n of Equation 1.1. Moreover, as shown in [3, 7], for β ≥ n + 1, eigenvalues of the

solution are strictly nonnegative ∀t ≥ 0 a.s Vt ∈ S̃+
n

1.1.2 The Laplace transform

The diffusion satisfied by the Wishart process belongs to the class of affine diffusions

[11]. Consequently, an explicit expression for the Laplace transform is available via the

resolution of a Riccati system and this notion will be a key tool for future developments.

This Laplace transform belongs to the family of Wishart distribution Laplace transforms

as described for example in [28] what explains the designation ”Wishart process”.
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Proposition 1 (Gourieroux & Sufana [19]). For Θ ∈ S+
n and t, h ≥ 0, let Ψt(h,Θ) =

E[exp(−Tr(ΘVt+h))|Vt] the Laplace transform of Vt+h given Vt. Then,

Ψt(h,Θ) =
exp−Tr[∆(h)>Θ(In + 2Σ(h)Θ)−1∆(h)Vt]

(det[In + 2Σ(h)Θ])
β
2

, (1.1)

with

∆(h) = exp(hM), Σ(h) =

∫ h

0

∆(s)Q>Q∆(s)>ds.

1.2 Examples

Let us present some useful and simple examples.

1.2.1 Multidimensional Cox-Ingersoll-Ross processes

Let us consider a Wishart process with diagonal matrices M , Q and R. It can be seen as

a multidimensional CIR process. Indeed, the dynamics of the diagonal components are :

dV ii
t = (β(Qii)2 + 2M iiV ii

t )dt+ 2Qii

n∑
k=1

√
Vt
ki
dW ki

t .

Although their dynamics seem to depend on other components of the Wishart process,

that is just an illusion. The Brownian motions can be concatenated through the following

expression

d < V ii, V ii >t = 4

(
(Qii)2(

n∑
k=1

√
Vt
ki√

Vt
ki

)

)
dt = 4(Qii)2(

√
Vt
√
Vt)

ii = 4(Qii)2V ii
t .

So, B = (B1, ..., Bn) defined by dBi
t =

√
V ii
t

−1∑n
k=1(

√
Vt
ki)dW ki

t is a vector of n inde-

pendent Brownian motions. Then,

dV ii
t =

(
β(Qii)2 + 2M iiV ii

t

)
dt+ 2Qii

√
V ii
t dB

i
t.

Then, in this simple case where parameters are diagonal matrices, the diagonal compo-

nents of the Wishart process are independent Cox-Ingersoll-Ross processes.

1.2.2 Link between Wishart processes and Ornstein Uhlembeck processes

A natural way to generate a ”Wishart process” is to replace the Gaussian vectors Xi in

the definition of a Wishart distribution (Section 1.1.1) with Ornstein-Uhlenbeck processes

Xi,t. With this representation which implies that β is an integer, the Wishart volatility
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model described in Section 2 appears as an example of Quadratic Gaussian models.

Considering β independent n-dimensional Ornstein-Uhlenbeck processes :

dXk,t = MXk,tdt+Q>dWk,t, and Vt :=

β∑
k=1

Xk,tX
>
k,t

Then, the process (Vt) is a Wishart process with the following dynamics.

dVt = (βQ>Q+MVt + VtM
>)dt+

√
VtdWtQ+Q>dW>

t

√
Vt,

with W a matrix-valued Brownian motion, determined by√
VtdWt =

β∑
k=1

Xk,tdW
>
k,t.

In this framework, the matrix M can be seen as the mean-reversion parameter of the

Wishart process and Q as the volatility parameter.

Consequently, the simulation Ornstein-Uhlenbeck processes allows the simulation of a

Wishart process in the case where β is an integer. Therefore, concerning the simulation of

Wishart processes, the first step is to consider the simple case where β ≥ n+1 is an integer.

For the initialization of the Ornstein-Uhlenbeck processes, on can notice that the initial

matrix V0 is real and symmetric and can be then diagonalized. Using the eigenvectors Φk

and the eigenvalues λk, one can write :

V0 =
n∑
k=1

λkΦkΦ
>
k .

Then, the initialization of the Ornstein-Uhlenbeck processes can be done{
X̄k,0 =

√
λkΦk if 1 ≤ k ≤ n,

X̄k,0 = 0 if n+ 1 ≤ k ≤ β

Finally, for 1 ≤ i ≤ N , simulating {X̄k,ti , 1 ≤ k ≤ β} by one of the methods described in

the next paragraph furnishes the discretization of this Wishart process

V̄ti =

β∑
k=1

X̄k,tiX̄
>
k,ti
.

This simulation procedure for a Wishart process requires the simulation of Ornstein-

Uhlenbeck processes which is classic and can be done by an Euler scheme or an exact

simulation using the knowledge of the conditional distribution (See Appendice B).

However, this way does not provide the most general class of the Wishart process and

there is a very useful extension in practice by considering the same dynamics with a real

β. As developed in Section 1.3.2, Girsanov theorem gives a change of probability measure

allowing to move from β integer to β real. The simulation in the general case will be

detailed after.
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1.3 Determinant dynamics and change of probability measure

In this part, the stochastic differential equation describing the determinant dynamics of

Wishart process is presented and analyzed. At the end of this section, a change of probabi-

lity measure is highlighted allowing a change of drift in the dynamics of Wishart process.

Using determinant dynamics, the likelihood ratio martingale has an explicit functional

form 1.3 and allows an efficient simulation procedure.

1.3.1 Determinant dynamics

The dynamics of determinant will be essential to handle this change of probability measure

that will be very important for the simulation of the Wishart process in the general case,

where β is not an integer. A useful theorem given in [3] has to be recalled (without proof)

for the future understanding.

Theorem 1 (Bru [3]). Let {ζt = (ζ ijt )1≤i,j≤n} be a continuous semimartingale process

valued in the matrix set Sn(R). Let Ut ∈ On(R) such as U>t ζtUt = diag(λ1
t , ..., λ

n
t ) where

{λit, 1 ≤ i ≤ n} are the eigenvalues of ζt.

Let {At = (Aijt )1≤i,j≤n, t ≥ 0} be the process defined as

At =

∫ t

0

U>s dζsUs,∀t ≥ 0 such as d < Aij, Aji >= Γijt dt.

Then, the dynamics of eigenvalues can be written as

dλit = dM i
t + dJ it , dJ it =

∑
j 6=i

1

λit − λ
j
t

Γijt dt+ dΘi
t.

where dM i and dΘi are respectively the martingale part and the finite variation part of

dAii.

Let us denote Q̃t = U>t QUt and M̃t = U>t MUt and Zt =
∫ t

0
U>s dWsUs.

By applying the previous theorem, the dynamics of eigenvalues are characterized by the

following stochastic differential equation.

dλit = [β(Q̃>t Q̃t)
ii + 2λitM̃

ii
t +

∑
j 6=i

(λitQ̃
>
t Q̃t)

jj + (λjtQ̃
>
t Q̃t)

ii

λit − λ
j
t

]dt+ 2
√
λit

n∑
k=1

Q̃ki
t dZ

ik
t .

It is important to notice that all eigenvalues are independent and are non-colliding

[3, 12]. Since d < λi, λj >t= 0, the differentiation of the determinant yields d(det(Vt)) =

det(Vt)
∑n

i=1
dλit
λit

. Moreover, by using the trace invariance by a change of basis, the dyna-

mics of determinant are obtained by

d(det(Vt))

det(Vt)
= [(β − n+ 1)Tr(V −1

t Q>Q) + 2Tr(M)]dt+ 2Tr(

√
V −1
t dWtQ).
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which implies that the

d log(det(Vt)) = [(β − n− 1)Tr(V −1
t Q>Q) + 2Tr(M)]dt+ 2Tr(

√
V −1
t dWtQ).(1.2)

1.3.2 Change of the probability measure

From a mathematical point of view, it is really important to analyze the change of the

probability measure allowing a change of the drift in the process dynamics. In practice,

for a financial use like calibration of parameters on historic data, a Wishart process has to

be simulated in its general form with β ≥ n+ 1 and β ∈ R. Considering the floor function

allows to write β = K + 2ν with K = [β] ≥ n+ 1 and ν a real number such as 0 ≤ ν ≤ 1
2
.

The aim of this development is to find a change of probability measure in order to change

the generalized Wishart diffusion into the simple one where K is an integer. This new

probability measure is noted Q∗|FT and can be expressed as follows

Theorem 2. Let q = K + ν − n − 1. If fT (Q,Q∗) =
dQ|FT
dQ∗|FT

defines the Radon-Nikodym

derivative of Q|FT with respect to Q∗|FT , then

fT (Q,Q∗) =
det(VT )

det(V0)

ν
2

exp[−νT Tr(M)] exp

[
−ν

2
q

∫ T

0

Tr(V −1
s Q>Q)ds

]
. (1.3)

Proof: Like in [12], a probability measure Q∗ can be specified through an exponential

martingale

dQ
dQ∗ |FT

= exp

[
ν

∫ T

0

Tr(
√
V −1
s dWsQ)− ν2

2

∫ T

0

Tr(V −1
s Q>Q)ds

]
.

Therefore, this expression suggests to define a new process W ∗ by

W ∗
t = Wt + ν

∫ t

0

√
V −1
s Q>ds.

By Girsanov theorem, it is easy to check that W ∗ is a matrix-valued Brownian motion

under the probability measure Q∗. Consequently, the dynamics of Wishart process under

this probability measure Q∗ can be rewritten as follows

dVt = (KQ>Q+MVt + VtM
>)dt+

√
VtdW

∗
t Q+Q>(dW ∗

t )>
√
Vt.

The Radon-Nikodym derivative can be simplified using the determinant dynamics. Indeed,

as noted in the first section, we have

log[
det(Vt)

det(V0)
] = 2T Tr(M) + (K − n− 1)

∫ T

0

Tr(V −1
s Q>Q)ds+ 2

∫ T

0

Tr(
√
V −1
s dW ∗

sQ).

Finally, the change of the probability measure can be obtained by

dQ|FT =
det(VT )

det(V0)

ν
2

exp[−νT Tr(M)] exp

[
−ν

2
(K + ν − n− 1)

∫ T

0

Tr(V −1
s Q>Q)ds

]
.dQ∗|FT .

which completes the proof.
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This change of probability measure allows to bring back the problem to the simple case

considered before. It will be very useful for many applications and more particularly for

evaluation by Monte Carlo method.

2 Wishart stochastic volatility model in the stock de-

rivatives market

2.1 Presentation of the Wishart volatility model

In this part, the Wishart volatility model is presented as well as its essential characteristics.

The properties inherent in this model will allow an accurate and an efficient consistency

with the market. The underlying volatility is defined as the trace of a Wishart process.

Therefore, the diagonal components of the Wishart matrix will be the factors guiding the

dynamics of volatility. Under the risk neutral probability measure, the asset dynamics are

given by the following expression

dSt
St

= rdt+ Tr[
√
Vt(dWtR + dZt

√
In −RR>)] S0 = x.

dVt = (βQ>Q+MVt + VtM
>)dt+

√
VtdWtQ+Q>dW>

t

√
Vt V0 = v0. (2.1)

where {Vt, t ≥ 0} is a Wishart matrix-valued process as introduced in the previous section,

r is the interest rate considered constant, St the price of the asset at date t, R a matrix

such as ρ(R) = max{λ, λ ∈ σ(R)} ≤ 1, W , Z are independent matrix-valued Brownian

motions.

The matrix R describes to the correlation between the Brownian matrices of the asset

and those of the Wishart process. The matrix M represents the matrix of mean reversion

and the matrix Q is the volatility of the volatility.

The dynamics of log-price Yt = log(St) are deduced easily

dYt = (r − Tr(Vt)

2
)dt+ Tr[

√
Vt(dWtR + dZt

√
In −RR>)] Y0 = y.

dVt = (βQ>Q+MVt + VtM
>)dt+

√
VtdWtQ+Q>dW>

t

√
Vt V0 = v0.(2.2)

It is conventional to write the log-price and its volatility dynamics as driven by two corre-

lated Brownian motions BY
s and BV

s . In fact, as it is done in [9] by using a concatenation

of the Brownian motions like in Section 1.2, the asset dynamics can be rewritten as follows

dYt = (r − Tr(Vt)

2
)dt+

√
Tr(Vt)dB

Y
t . (2.3)
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dTr(Vt) = (βTr(Q>Q) + 2Tr(MVt))dt+ 2
√
Tr(Q>QVt)(ρtdB

Y
t +

√
1− ρ2

tdB
V
t )

where d < BY , BV >t= ρt = Tr(R>QVt)√
Tr(Vt)

√
Tr(Q>QVt)

.

2.1.1 Fourier transform

In order to calculate price of options by FFT method, define the instantaneous realized

mean variance Ut =
∫ t

0
Tr(Vs)ds, and consider the Laplace Transform Ψt(T, θ, γ, δ) =

E[eTr(θVt)+γYT+δUT |Ft] of (V, Y, U).

This function has to be explicitly calculated in order to price many derivative products

such as vanilla options or Variance Swap. Since the system (V, Y, U) defines an affine

model, the Laplace Transform Ψ can be easily expressed with functions that are solutions

of a Riccati system [11]. The resolution is possible for example by using the linearization

method introduced by J. Da Fonseca and al.[7].

Theorem 3.

Ψt(T, θ, γ, δ) = exp[Tr[A(T − t)Vt] +B(T − t)Yt + C(T − t)Ut +D(T − t)],

where A, B, C and D are solutions of the following Riccati equations

A
′
(τ) =

(
γ(γ − 1)

2
− δ
)
In + A(τ)M + (M> + 2γR>Q)A(τ) + 2A(τ)Q>QA(τ).

B(τ) = γ, C(τ) = δ.

D
′
(τ) = rγ + βTr[Q>QA(τ)]. (2.4)

with the terminal conditions A(0) = θ and D(0) = 0.

By using the linearization method, the solutions for A and D are given by

A(τ) = F (τ)−1G(τ).

D(τ) = γτ [r − βTr(R>Q)]− β

2
[Tr(M)τ + log(detF (τ))]. (2.5)

with

[G(τ) F (τ)] = [0 In] exp(τZ(γ, δ))

Z(γ, δ) =

(
M −2Q>Q

(γ(γ−1)
2
− δ)In −(M> + 2γR>Q)

)
.

Proof:

The function ft(T, V, Y, U) = exp[Tr[A(T − t)Vt] +B(T − t)Yt + C(T − t)Ut +D(T − t)]
has to be a martingale. Thus, Girsanov theorem suggests to find a martingale Mt such as

log[ft(T, V, Y, U)] = Mt −
1

2
< Mt,Mt > . (2.6)

11



Applying Ito formula to the affine function ft(T, V, Y, U) yields

d log[ft(T, V, Y, U)] = −
(
Tr[A

′
(T − t)Vt]dt+B

′
(T − t)Yt + C

′
(T − t)Ut +D(T − t)

)
dt

+
(
Tr[βQ>QA(T − t)] + Tr[A(T − t)MVt] + Tr[M>A(T − t)Vt]

)
dt

+Tr[A(T − t)
√
VtdWtQ] + Tr[A(T − t)Q>dW>

t

√
Vt]

+

(
B(T − t)− 1

2
Tr[B(T − t)Vt]

)
dt

+Tr[B(T − t)
√
VtdWtR] + Tr[B(T − t)dZt

√
In −RR>]

+C(T − t)Tr(Vt)dt. (2.7)

This expression allows us to find the martingale Mt

dMt = Tr[A(T − t)
√
VtdWtQ] + Tr[A(T − t)Q>dW>

t

√
Vt]

+Tr[B(T − t)
√
VtdWtR] + Tr[B(T − t)dZt

√
In −RR>].

For the calculation of the quadratic variation of Mt, noted < Mt,Mt >, let us recall some

useful expressions

d < Tr(AdWtB) >= Tr(BAA>B>)dt

d < Tr(AdWtB), T r(CdWtD) >= Tr(DCA>B>)dt

Then, the quadratic variation < Mt,Mt > of the martingale is expressed as follows

d < Mt,Mt > =
(
4Tr[A(T − t)Q>QA(T − t)Vt] +B2(T − t)Tr[Vt]

)
dt

+
(
Tr[B(T − t)R>QA(T − t)Vt]

)
dt.

then, replacing this expression in 2.6 and identifying with 2.7 gives

0 =

(
−2Tr[A(T − t)Q>QA(T − t)Vt]−

1

2
B2(T − t)Tr[Vt]−

1

2
Tr[B(T − t)R>QA(T − t)Vt]

)
−
(
Tr[A

′
(T − t)Vt]dt+B

′
(T − t)Yt + C

′
(T − t)Ut +D(T − t)

)
+
(
Tr[βQ>QA(T − t)] + Tr[A(T − t)MVt] + Tr[M>A(T − t)Vt]

)
+

(
B(T − t)− 1

2
Tr[B(T − t)Vt]

)
+ C(T − t)Tr(Vt)

Finally, identifying the terms with Vt, Yt and Ut gives

A
′
(τ) =

(
γ(γ − 1)

2
− δ
)
In + A(τ)M + (M> + 2γR>Q)A(τ) + 2A(τ)Q>QA(τ)

B(τ) = γ, C(τ) = δ

D
′
(τ) = rγ + βTr[Q>QA(τ)]

12



Riccati equation linearization

Let us search A such as

A(τ) = (F (τ))−1G(τ), F (0) = In, G(0) = 0.

By replacing this expression in the first Riccati equation of 2.8

−(F (τ))−1F
′
(τ)A(τ) + (F (τ))−1G

′
(τ) =

(
γ(γ − 1)

2
− δ
)
In + (F (τ))−1G(τ)M,

+ (M> + 2γR>Q)A(τ)

+ 2(F (τ))−1G
′
(τ)Q>QA(τ).

Therefore, by multiplying on the left by F (τ) and identifying terms with A and without

A, we obtain

G
′
(τ) = G(τ)M +

(
γ(γ − 1)

2
− δ
)
F (τ),

F
′
(τ) = −G(τ)Q>Q− F (τ)(M> + 2γR>Q). (2.8)

This system of equations can be written as follows

[G
′
(τ) F

′
(τ)] = [G(τ) F (τ)]Z(γ, δ),

with Z(γ, δ) ∈M2n(R) defined by

Z(γ, δ) =

(
M −2Q>Q

(γ(γ−1)
2
− δ)In −(M> + 2γR>Q)

)
.

Thus, the solution is given by

[G(τ) F (τ)] = [0 In]exp(τZ(γ, δ)).

Resolution of the equation that D follows

By integrating the fourth equation of 2.8, we have

D(τ) = γrτ + βTr[

∫ τ

0

Q>QA(s)ds].

On the other hand, by multiplying on the left left by F (τ)−1 the second equation of 2.8,

integrating it between 0 and τ , and taking the trace, we find

βTr[

∫ τ

0

Q>QA(s)ds] = −β
2

(Tr[

∫ τ

0

F (s)−1F
′
(s)ds] + Tr(M> + 2γR>Q)τ).

Finally the solution is given by

D(τ) = γτ [r − βTr(R>Q)]− β

2
[Tr(M)τ + log(detF (τ))].

13



In order to calculate the price of Call options with a resolution by FFT method, a

closed formulae for the Fourier transform of log-price is needed. The expression of this

Fourier transform is defined by Φt(T, γ) = E[exp(iγYT )|Ft] = Ψt(T, 0, iγ, 0) and an ex-

plicit formulae can be deduced easily. Another proof of this corrolary can be found in

[7]

Corrolary 1.

Φt(T, γ) = exp[Tr[A(T − t)Vt] +B(T − t)Yt + C(T − t)],

where A and C are solutions of the following Riccati equations

B(τ) = iγ.

A
′
(τ) =

iγ(iγ − 1)

2
In + A(τ)M + (M> + 2iγR>Q)A(τ) + 2A(τ)Q>QA(τ).

C
′
(τ) = irγ + βTr[Q>QA(τ)].

The linearization method can be used and gives

A(τ) = F (τ)−1G(τ).

C(τ) = iγτ [r − βTr(R>Q)]− β

2
[Tr(M)τ + log(detF (τ))]. (2.9)

with

[G(τ) F (τ)] = [0 In] exp(τZ(γ))

Z(γ) =

(
M −2Q>Q

iγ(iγ−1)
2

In −(M> + 2iγR>Q)

)
.

2.1.2 Flexibility of the Wishart volatility model

As seen in Section 1.2.1, the Wishart process is an extension of a multidimensional Cox-

Ingersoll-Ross process. Thus, the Wishart volatility model will be also an extension of

a multidimensional Heston model by considerind diagonal matrices. Indeed, there is a

bijection concerning the volatility parameters between the Heston model and the Wishart

volatility model with this restricted specification. Moreover, there is the same correlation

structure for those models and the stochastic correlation is given by

ρt =

∑n
i=1R

iiQiiV ii
t√∑n

i=1 V
ii
t

√∑n
i=1(Qii)2V ii

t

.

This particular case underlines the fact that the Wishart volatility model extends the

multifactor Heston model in terms of volatility and correlation. In practice, the model

14



used will be a simple extension of the multifactor Heston model. Moreover, the Wishart

volatility model in the general case has additional properties. Indeed, in a multidimensio-

nal Heston model, the correlation is stochastic but depends on factors that generates the

volatility dynamics. In the case of the Wishart volatility model, the correlation depends

on the volatility factors but depends also of other factors in formulae 2.4 (the non diagonal

components of the Wishart process Vt). It is an important property allowing degrees of

freedom for the correlation and consequently for the skew and the smile. For example,

in the Heston model, the change of sign of the skew is constrained by the correlation

coefficients and the volatility factors whereas in the Wishart volatility model, the change

of sign does not have this constraint thanks to the additional independent factor [8].

To develop the intuition on the importance of the stochastic correlation, we refer to

asymptotic results in short maturities from V. Durrleman [13] where the link between

correlation and implied volatility skew at the money are explicit.

2.1.3 Asymptotic skew in the Wishart volatility model

The Wishart volatility model gives a stochastic correlation (for n ≥ 2) which is an impor-

tant property. The correlation ρt being stochastic allows the model to generate a smile

with a wealthy structure. Indeed, the market is more and more complex and now the skew

is considered by practitioners as stochastic. Following standard notations with Σt(T,K)

denotes the implied volatility of a Call with a maturity T and a strike K, the skew at the

money can be calculated for short maturities by using asymptotic methods developed by

Durrleman.

Theorem 4. (V. Durrleman [13])

Let us suppose that we are given adapted processes a, ã, b, c such that there exists a strictly

positive solution to the following stochastic differential equation :

dσ2
t = (bt + a2

t + σ2
t (at + ct))dt− 2σt(atdWt + ãtdW̃t).

where a given initial condition σ0 and such that

d < a,W >t= −σt
(

3ct
2

+
3a2

t

4σ2
t

− a2
t

σ2
t

)
dt

Further let

St = S0 exp

(∫ t

0

σsdWs −
1

2

∫ t

0

σ2
sds

)
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be the stock process and Σt(T,K) be the corresponding implied volatility, then

Σt(t, St) = σt
∂Σt

∂K
(t, St) = − at

2StΣt(t, St)

∂Σt

∂T
(t, St) =

bt
4Σt(t, St)

∂2Σt

∂K2
(t, St) =

1

2S2
t Σt(t, St)

(
at + ct −

a2
t

2Σt(t, St)2

)
(2.10)

Therefore, the skew being strongly linked with the correlation represented by at
σ(t)

, this

correlation has to be stochastic. Then, the need of a model that can explain this phe-

nomena becomes essential. The stochastic correlation appears to be one of the crucial

notions describing the capacity of a model to generate smiles. As explained in the next

section, in terms of correlation, the Wishart volatility model appears more flexible than

a multidimensional Heston model. For the expression of the skew at the money (K = St)

in the Wishart volatility model, the application of this theorem with at = −Tr(RTQVt)
Tr(Vt)

provides the following expression

∂Σt

∂K
(t, St) =

Tr(R>QVt)

2St(Tr(Vt))
3
2

.

Comment 1. It is important to notice that Theorem 3 also provides an expression of

∂2Σt
∂K2 (t, St) and ∂Σt

∂T
(t, St) allowing to analyze the convexity and the slope at the money of

the asymptotic smile, but it is not brought up in this development. We focus here on the

skew at the money to bring to the light the stochastic correlation propertie and to give a

benchmark for the approximation in the next section but we could have also described the

convexity and the slope at the money of the implied volatility.

2.2 Evaluation of options by Monte Carlo methods

There are many products for which the evaluation does not have any closed-form ex-

pression. Therefore, a Monte Carlo method has to be considered in order to price those

contracts and the problem to simulate a Wishart process becomes essential.

The use of a standard Euler scheme is prohibited since it does not guarantee the posi-

tiveness of the simulated matrices. The other method consisting in taking the positive

part of the eigenvalues would introduce a bias and is rejected. Then, an efficient method,

based on a fundamental link between Wishart and Ornstein-Uhlenbeck processes, was

highlighted in the previous section for the simulation of the Wishart processes in the case

of β real. This method will naturally keep the positiveness of the matrix-valued Wishart

process [17] 1. Now, the question is to see how the complete Wishart volatility model can

1. During the revision August 2009 - January 2010, a working paper has been posted on September
2009 by Pierre Gauthier and Dylan Possamai about the simulation of the Wishart model
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be simulated and how the european options can be evaluated by Monte Carlo. Considering

a general Wishart process, the underlying dynamics are expressed under the probability

measure Q∗ in order to use the simulation method developed in Section 1.2.2

dSt
St

= [r − νTr(Q>R)]dt+ Tr[
√
Vt(dW

∗
t R + dZt

√
In −RR>)].

dVt = (KQ>Q+MVt + VtM
>)dt+

√
VtdW

∗
t Q+Q>(dW ∗

t )>
√
Vt.

Integrating this stochastic differential equation furnishes a useful form of the log-price

discretization

log(Sti) = log(Sti−1
) +

(
(r − νTr(Q>R))∆t− 1

2

∫ ti

ti−1

Tr(Vs)ds

)
+ Tr

[∫ ti

ti−1

√
VsdWsR +

∫ ti

ti−1

√
VsdZs

√
In −RR>

]
.

The increments {εk,i}1≤k≤β, already used to simulate the Ornstein Uhlenbeck processes

(Formulae 3.1), allows to simulate Tr[
∫ ti
ti−1

√
VsdWsR]. For the other terms, a standard

Euler scheme is selected giving the following expressions∫ ti

ti−1

√
VsdWs =

β∑
k=1

∫ ti

ti−1

Xk,sdW
>
k,s =

√
∆t

β∑
k=1

Xk,tiε
>
k,i,

∫ ti

ti−1

Vsds = V̄ti−1
∆t.

T r

[∫ ti

ti−1

√
VsdZs

√
In −RR>

]
=
√

∆t
√
Tr(Vti−1

(In −RR>))Zi.

where Zi ∼ N (0, 1) are the components of an independent Gaussian vector and being

independent with the increments εk,i

Finally, the Euler scheme for the asset is characterized by

log(S̄ti) = log(S̄ti−1
) +

[
r − νTr(Q>R)− 1

2
Tr(V̄ti−1

)

]
∆t+

√
∆tT r

[
β∑
k=1

X̄k,ti−1
ε>k,iR

]
+
√

∆t
√
Tr(Vti−1

)− Tr(Vti−1
RR>)Zi.

Therefore, the price of an european option at the maturity T with a payoff f is evaluated
by

π0 = EQ[exp(−rT )f(ST )]

= exp[−(r + ν Tr(M))T ]EQ∗

{(
det(VT )

det(V0)

) ν
2

exp[−ν
2

(K + ν + n− 1)

∫ T

0
Tr(V −1

s Q>Q)ds]f(ST )

}
.

The simulation of the integrale appearing in the Radon-Nikodym function can be discre-

tized and approximated as follows∫ t+∆t

t

Tr(V −1
s Q>Q)ds ∼ 1

2
∆tT r[(V −1

t + V −1
t+∆t)Q

>Q].
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Finally, it is possible to make a Monte Carlo evaluation for an option given that the

asset and the Radon-Nikodym derivative of Q with respect to Q∗ can be simulated using

an Euler scheme. One can see that the expectation under the new probability measure

depends on the path of (Vt)t≤T what makes the evaluation costly.

2.3 Evaluation of options by FFT

The Wishart volatility model belongs to the class of affine models for which there exists a

closed formulae for the Fourier transform [11]. This transform, noted Φt(T, γ) = E[exp(iγYT )|Ft]
, γ ∈ C, is widely used to find options prices by calculating the inverse Fourier transform

by FFT.

2.3.1 Expression of the Call price

The premium at date t of a Call option with strike K = log(k) and maturity T is given

by

ct(T,K) = exp[−r(T − t)]E[(exp(YT )− exp(k))+|Ft].

As it has been done in [4], the calculation of the premium is deduced by the expression of

the Fourier transform. Let α define a constant such as x→ exp(αx)(ζ−exp(x))+ ∈ L1(R)

and in practice, Carr & Madan consider that α = 1.1 is an empirical good value for the

Heston model. It appears really important to have a function in L1(R) in order to use the

inverse Fourier transform as explained by S. Levendorskii in [24]. Therefore, a modified

price is defined as follows

cαt (T, k) = exp(αk)ct(T, k).

By applying a Fubini integration theorem, the Fourier transform of the modified price is

given by

Ψα
t (T, ν) =

∫ ∞
−∞

exp(iνk)cαt (T, k)dk

= exp[−r(T − t)]E[

∫ YT

−∞
exp[(iν + α)k](exp(YT )− exp(k))dk|Ft]

= exp[−r(T − t)] Φt(T, ν − (1 + α)i)

(1 + α + iν)(α + iν)
. (2.11)

At last, the premium can be obtained by inversion of the Fourier transform using the fact

that the function Ψα
t (T, ν) has an odd imaginary part and an even real part

ct(T, k) =
exp(−αk)

2π

∫ ∞
−∞

exp(−iνk)Ψα
t (T, ν)dν
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= exp[−r(T − t)]exp(−αk)

π
Re
∫ ∞

0

exp(−iνk)
Φt(T, ν − (1 + α)i)

(1 + α + iν)(α + iν)
dν.(2.12)

2.3.2 Numerical upgrade

In this paragraph, we consider a practical point of view and we present a variant of For-

mulae 2.12 in order to improve numerical results. The idea is to use this formulae for a

simple model (like the Black-Scholes model with a constant volatility σ̄) and to apply this

expression for numerical applications. This improves the effectiveness of numerical inte-

gration. It is done by analogy with the variance reduction method for Monte Carlo options

pricing through a control variate method using the Black and Scholes price cBSt (T,K) and

its Fourier transform ΦBS
t (T, γ) calculated by :

ΦBS
t (T, γ) = exp[iγYt + iγr(T − t) +

iγ(iγ − 1)

2
σ̄2(T − t)]. (2.13)

The Call price can be calculated as a perturbation of the Call price in the Black-Scholes

model with a volatility σ̄

ct(T, k) = cBSt (T, k) + It(r, σ̄, α, T )

where It(r, σ̄, α, T ) is given by

It(r, σ̄, α, T ) = exp[−r(T−t)]exp(−αk)

π
Re[

∫ ∞
0

exp(−iνk)
(Φt(T, ν − (1 + α)i)− ΦBS

t (T, ν − (1 + α)i))

(1 + α+ iν)(α+ iν)
dν]

We consider that a good choice for the volatility σ̄ is the realized mean volatility in the

Wishart volatility model

σ̄ =

√
1

T

∫ T

0

E[Tr(Vt)]dt.

This volatility can be calculated as follows. Let f(t) = E(Vt), f is the solution of the

following differential equation

f
′
(t) = βQ>Q+Mf(t) + f(t)M>, f(0) = V0.

Then, the solution can be found explicitly

f(t) = exp(tM)V0 exp(tM>) + β

∫ t

0

exp(sM)Q>Q exp(sM>)ds.

Assume now that M is a symmetric matrix and take the trace

Tr[f(t)] = Tr[V0 exp(2tM)] + βTr[Q>Q(2M)−1(exp(2tM)− In)].

Finally, by integrating between 0 and T , the realized mean variance is given by

σ̄2 =
1

T
Tr[(V0 + βQ>Q(2M)−1)(2M)−1(exp(2TM)− In)]− βTr[Q>Q(2M)−1].
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Comment 2. For a general invertible matrix M , we take the same formulae with M =

M+M>

2
which gives better results in practice.

3 Smile dynamics in the Wishart volatility model

The hedge of exotic options not only need the trade of the asset but require also the

trade of options such as Call and Put options. Therefore, these vanilla options are hedging

instruments and the calibration procedure has to take into account of their price dyna-

mics. Then, models considered and used by traders have to be flexible enough to explain

market prices. In other words, the model must be able to generate the observable smile

effect (strike dependency of the Black-Scholes implied volatility).

Heston model is a single-factor stochastic volatility model that can be calibrated accura-

tely on a market smile surface. However, when the calibration is done on both short and

long maturities smile curves, a single-factor model does not provide a flexible modelling

of the volatility term structure. Indeed, a single factor model cannot take into account the

variability of the skew, also known as correlation risk, and cannot explain independent

fluctuations of the smirk in the level and the slope over time. A classic solution is to

increase the number of factors in order to achieve this goal like in [5]. For instance, P.

Christoffersen and al. [5] introduce a bidimensional extension to solve this problem. The

Wishart volatility model is an other multidimensional extension of the Heston model allo-

wing an adequate correlation structure in order to reproduce the skew effect. An analysis

of these features is proposed in this section.

The covariance dynamics is represented by a matrix-valued process of size n. The case

n = 2 is enough for this study allowing to deal with the case of a two-scale volatility

(medium maturities). It is also a framework where the computation is not so laborious

and explicit formulae are available. In this section, the study of the Wishart volatility

model and the effect of some parameters on the smile are considered. Inspired by the

singular perturbation method introduced by J.P. Fouque and al. [14, 15, 16] and by stan-

dard approximation procedure [21], we present a perturbation algorithm, based on the

perturbation of Riccati equations. This method will allow to generate instantly asymp-

totic smiles with a good level of accuracy. The case of short maturities is a relevant case

and is important for a calibration prospect. Moreover, in the two-scale volatility case,

the introduction of a slow varying factor gives a much better fit for options with longer

maturities [15]
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3.1 Specification of the Wishart volatility model

It is important to describe the admissibility of the parametrization for this model. It is

important to highlight a canonical model from which all the equivalent models can be

obtained by invariant transformation [10]. Considering the case where M ∈ Sn(R) and

Q ∈ GLn(R), it is possible to define an equivalent model with M diagonal because the

matrix-valued Brownian motion is invariant by any rotation. Indeed, there exists a matrix

D diagonal and an orthognal matrix P such as D = P>MP . Denoting Ṽt = P>VtP ,

W̃t = P>WtP and Q̃ = P>QP , an equivalent Wishart process can be deduced by this

rotation

dṼt = (βQ̃>Q̃+DṼt + ṼtD)dt+

√
ṼtdW̃tQ̃+ Q̃>dW̃>

t

√
Ṽt.

Therefore, only eigenvalues of the mean-reversion matrix M matters in the specification

of volatility dynamics .

Although, M and Q can not be generally considered both diagonals, this particular case

is first analyzed to set up the approximations method and to compare this model to a

classic multifactor Heston model as seen later.

In the original article of Bru [3], there is the additional condition that M and Q>Q

commute, what allows to find a rotation which simultaneously make M and Q diagonal.

This condition on the Wishart volatility model is not taken into account in finance but

could justify this first choice for a restricted case. The general case of a full matrix Q will

be brought up in future researches. In the case of the dimension 2, the parameters of the

model can be written as follows

M =

(
−m1 0

0 −m2

)
, Q =

(
q1 0
0 q2

)
, R =

(
ρ11 ρ12

ρ21 ρ22

)
.

Let νi = qi√
mi

for i ∈ {1, 2}, σ(u,w) =
√
u+ w. The quantities νi correspond to a ra-

tio between volatility of volatility and the square root of the mean-reversion parameters.

Like for the standard method of singular perturbations introduced by J.P Fouque and al.

[14, 15, 16], we keep those quantities as constant values. Indeed, the method of singular

perturbation consists in perturbating a process such as its stationary distribution is non-

degenerated and particularly has a non-degenerated covariance matrix. This choice allows

to preserve the homogeneity between the drift and volatility parameters what allows to

have a non degenerated invariant measure.

The covariance matrix of the Wishart process will depend only on Σ(h) =
∫ h

0
ehMQ>QehM

>
ds

which is the covariance matrix of the underlying Ornstein Uhlenbeck processes (Section
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1.2.2). Therefore, in this restricted case, the covariance matrix of the Wishart process

depends only on the values νi.

Comment 3. By taking expectation, it is easy to calculate the following expressions

E(V 11
T |Ft) =

βν2
1

2
+ (V 11

t −
βν2

1

2
) exp[−2m1(T − t)].

E(V 22
T |Ft) =

βν2
2

2
+ (V 22

t −
βν2

2

2
) exp[−2m2(T − t)].

E(V 12
T |Ft) = V 12

t exp[−(m1 +m2)(T − t)].

Consequently, τi = 1
2mi

for i ∈ {1, 2} are mean-reverting times of VT and
βν2i

2
for i ∈ {1, 2}

correspond to the asymptotic mean of the diagonal components of VT when T goes to

infinity.

3.2 Perturbation Method of the Riccati equations

In this part, a method of perturbations based on the affine properties of the model is

presented. Indeed, the perturbation of the Riccati equations provides an asymptotic de-

velopment of the Call price.

This method consists in the pertubation of the parameters of the volatility process like

in [14, 15, 16] taking into account the affine properties of the model. In a short maturity

case, this method is really similar from an asymptotic approximation in short time like

in [13] but is a little different. Indeed, as noted in Section 3.1, during the perturbation

process, there is a constraint between the drift and the volatility of the process (in the

Wishart case, the coefficients νi remain constant). Besides, this method can be used for a

multiscale volatility framework as described in the next section.

Finally, this procedure is efficient and allows us to reach higher orders than standard per-

turbation methods like the singular perturbation method on partial differential equations

that appears really complicated after the first order [2]. The affine properties allow an effi-

cient, easy, and general procedure. Remember the homogeneous Riccati system associated

to the Wishart volatility model where for simplicity, we use the notation θ = iγ

A
′
(τ) =

θ(θ − 1)

2
In + A(τ)M + (M> + 2θR>Q)A(τ) + 2A(τ)Q>QA(τ).

C
′
(τ) = rθ + βTr[Q>QA(τ)].

Then, a development of the function A furnishes instantly a development for C.

Consider the case where of the dimension n = 2. Thus, there will be two characteristics

orders in the perturbation ε and δ that will be defined precisely for the short maturities
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case and the two-scale volatility case. Let us focus on a development of the solution A(τ)

of the form

A(τ) =
∑
i,j

ε
i
2 δ

j
2Ai,j(τ).

Injecting this development in the perturbed Riccati equation and identifying terms in ε

and δ provides the expected approximation. In the following, this method will be applied

for two important cases : the short maturity case and the multiscale volatility case.

3.3 Smile dynamics for short maturities

Observe the case of short maturities (T − t) � τ1, τ2 meaning that the option maturity

is much less than the mean-reverting times of the volatility components. In other words,

the volatility Vt does not fluctuate a lot around its starting value. It is a short maturity

smile because the maturity of the option is small in relation to the characteristic times

of the volatility process. Consequently ε = m1 and δ = m2 are small in relation to 1
(T−t) .

Keep in mind that the quantities νi remain constant.

The method is detailed for the short maturities case and the procedure is presented for

an approximation at order 1 i.e in (
√
ε,
√
δ) and at order 2 i.e in (ε, δ). First, rewrite the

Riccati equations

A
′
(τ) =

θ(θ − 1)

2
In + ε(A(τ)M1 +M1A(τ) + 2A(τ)Q2

1A(τ))

+ 2θ
√
εR>Q1A(τ) + 2θ

√
δR>Q2A(τ)

+ δ(A(τ)M2 +M2A(τ) + 2A(τ)Q2
2A(τ)),

with the following notations

M1 =

(
1 0
0 0

)
, M2 =

(
0 0
0 1

)
, M = −εM1 − δM2.

Q =
√
εν1M1 +

√
δν2M2, Q2 = εν2

1M1 + δν2
2M2.

V0 =

(
u v
v w

)
, θ = iγ.

3.3.1 Development of the Riccati function A and C

By perturbating the Riccati equation, at order 2, a solution is looked for under the follo-

wing development

A(τ) = A0,0(τ)+
√
εA1,0(τ)+

√
δA0,1(τ)+εA2,0(τ)+δA0,2(τ)+

√
ε
√
δA1,1(τ)+o (max (ε, δ)) .
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Consequently, injecting this formulation into the Riccati equations and doing calculations

step by step, gives the expected functions

A0,0(τ) =
θ (θ − 1)

2
τI2.

A1,0(τ) =
θ2 (θ − 1)

2
ν1τ

2
(
RTM1

)
.

A0,1(τ) =
θ2 (θ − 1)

2
ν2τ

2
(
RTM2

)
.

A2,0(τ) = θ3 (θ − 1)
τ 3

3
ν2

1

(
R>M1

)2 − θ (θ − 1)

2
τ 2M1 + ν2

1θ
2 (θ − 1)2 τ

3

6
M1.

A0,2(τ) = θ3 (θ − 1)
τ 3

3
ν2

2

(
R>M2

)2 − θ (θ − 1)

2
τ 2M2 + ν2

2θ
2 (θ − 1)2 τ

3

6
M2.

A1,1(τ) = θ3 (θ − 1)
τ 3

3
ν1ν2

[
R>M1R

>M2 +R>M2R
>M1

]
.

By using the link between functions C and A, the development for C is deduced

C(τ) = rτθ + εC2,0(τ) + δC0,2(τ) + o (max (ε, δ)) .

where

C2,0(τ) = βν2
1

θ (θ − 1)

4
τ 2, C0,2(τ) = βν2

2

θ (θ − 1)

4
τ 2.

3.3.2 Approximation of the Call price

By considering the previous expressions, it is possible to find a Taylor expansion of the

Fourier transform of Yt = log(St)

Φt (T, θ) = exp
[
θ(θ−1)

2
(T − t) (u+ w) + θy + r(T − t)θ

]
∗

1 +
√
εTr (A1,0V0) +

√
δTr (A0,1V0)

+ε
[
Tr (A2,0V0) + C2,0 + 1

2
(Tr (A1,0V0))

2
]

+δ
[
Tr (A0,2V0) + C0,2 + 1

2
(Tr (A0,1V0))

2
]

+
√
ε
√
δ [Tr (A1,1V0) + Tr (A0,1V0)Tr (A1,0V0)]

+o (max (ε, δ))


with the following formulae

Tr
(
A1,0V0

)
=

θ2 (θ − 1)

2
ν1(T − t)2 (ρ11u+ ρ12v) .

T r
(
A0,1V0

)
=

θ2 (θ − 1)

2
ν2(T − t)2 (ρ22w + ρ21v) .

T r
(
A2,0V0

)
= θ3 (θ − 1)

(T − t)3

3
ν2

1

(
ρ2

11u+ ρ11ρ12v
)

− θ (θ − 1)

2
(T − t)2u+ ν2

1θ
2 (θ − 1)2 (T − t)3

6
u.
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Tr
(
A0,2V0

)
= θ3 (θ − 1)

(T − t)3

3
ν2

2

(
ρ2

22w + ρ22ρ21v
)

− θ (θ − 1)

2
(T − t)2w + ν2

2θ
2 (θ − 1)2 (T − t)3

6
w.

Tr
(
A1,1V0

)
= θ3 (θ − 1)

(T − t)3

3
ν1ν2 [ρ12ρ21 (u+ w) + (ρ22ρ12 + ρ11ρ21) v] .

We recognize the Fourier transform in the Black-Scholes model (Formulae 2.13) with a

volatilty σ̄ =
√
u+ w.

This expansion at order o (max (ε, δ)) must be analyzed checking that the neglected terms

have to be small in comparison to the first terms of the development. The main question of

this procedure is how the price approximation can be infered from the Fourier transform

development.

In a general way, assume that there is a development for the Fourier transform under the

form

Φt(T, γ) = ΦBS
t (σ̄)(T, γ)

∑
i,j

ε
i
2 δ

j
2Pi,j(iγ).

where Pi,j are polynomials in Rp[X]. Noticing that P [ ∂
∂y

]Φ
BS(σ̄)
t (T, γ) = P (iγ)Φ

BS(σ̄)
t (T, γ)

with Formulae 2.13, the price of a european option is given by

Ct(T, k) =
∑
i,j

ε
i
2 δ

j
2Pi,j

(
∂

∂y

)
C
BS(σ̄)
t (T, k).

Moreover, the expressions of the successive derivatives of the price with respect to the log

spot y = log(S0) are needed and can be easily calculated.

Consider non standard notations for a = log(Ke−r(T−t)) + 1
2
σ2(T − t) and n ≥ 2, ΛBS,n

y =
∂nCBS(σ)

∂yn
− ∂n−1CBS(σ)

∂yn−1 . One can notice that a−y
σ
√
T−t = −d0.

A useful recursive relation was found allowing the calculation in the Black-Scholes model

of Call price succesive derivatives with respect to the log spot y (see Appendice C for

explicit calculation of successive derivatives)

∀n ≥ 4,
∂nCBS
∂yn

=
∂n−1CBS
∂yn−1

+
(a− y)

σ2(T − t)
(
∂n−1CBS
∂yn−1

− ∂n−2CBS
∂yn−2

)

− (n− 3)

σ2(T − t)
(
∂n−2CBS
∂yn−2

− ∂n−3CBS
∂yn−3

). (3.1)

Using classic formulae in the Black-Scholes model, the development for the Call price can

be determined

P = P 0,0 +
√
εP 1,0 +

√
δP 0,1 + εP 2,0 + δP 0,2 +

√
ε
√
δP 1,1 + o (max (ε, δ)) .
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with

P 0,0 = CBS(σ), σ =
√
u+ w.

P 1,0 =
ν1(T − t)2

2
(ρ11u+ ρ12v) ΛBS,3

y , P 0,1 =
ν2(T − t)2

2
(ρ22w + ρ21v) ΛBS,3

y .

P 2,0 =
(T − t)2

2

(
βν2

1

2
− u
)

ΛBS,2
y +

ν2
1(T − t)3

3

(
ρ2

11u+ ρ11ρ12v +
1

2
u

)
ΛBS,4
y

−ν
2
1(T − t)3

6
uΛBS,3

y +
ν2

1(T − t)4

8
(ρ11u+ ρ12v)2 (ΛBS,6

y − ΛBS,5
y

)
.

P 0,2 =
(T − t)2

2

(
βν2

2

2
− w

)
ΛBS,2
y +

ν2
2(T − t)3

3

(
ρ2

22w + ρ22ρ21v +
1

2
w

)
ΛBS,4
y

−ν
2
2(T − t)3

6
wΛBS,3

y +
ν2

2(T − t)4

8
(ρ22w + ρ21v)2 (ΛBS,6

y − ΛBS,5
y

)
.

P 1,1 =
ν1ν2(T − t)3

3
(ρ12ρ21 (u+ w) + (ρ11ρ21 + ρ22ρ12) v) ΛBS,4

y

+
ν1ν2(T − t)4

4
(ρ11u+ ρ12v) (ρ22w + ρ21v)

(
ΛBS,6
y − ΛBS,5

y

)
.

Finally, an approximation of the price at order o(
√
ε,
√
δ) is highlighted

Ct(T, k) = CBSt (T, k) + [
√
ε

1

4
βν3

1ρ11 +
√
δ

1

2
ρ22ν2w(T − t)]

(
∂3C

BS(σ̄)
t

∂y3
(T, k)− ∂2C

BS(σ̄)
t

∂y2
(T, k)

)
+ o(max[

√
ε,
√
δ]).

3.3.3 Approximation of the lognormal implied volatility

From a price development, a development of the lognormal implied volatility can be

infered. The same kind of development is considered

Σ = Σ0,0 +
√
εΣ1,0 +

√
δΣ0,1 + εΣ2,0 + δΣ0,2 +

√
ε
√
δΣ1,1 + o (max (ε, δ)) . (3.2)

By injecting this development in the Black-Scholes price, a Taylor expansion around Σ0,0

furnishes another expression for the Call price

P = CBS(Σ0,0) +
√
εΣ1,0

(
∂CBS(σ)

∂σ
|σ=Σ0,0

)
+
√
δΣ0,1

(
∂CBS(σ)

∂σ
|σ=Σ0,0

)
+ε
(

Σ2,0
(
∂CBS(σ)

∂σ
|σ=Σ0,0

)
+ 1

2
(Σ1,0)

2
(
∂2CBS(σ)

∂σ2 |σ=Σ0,0

))
+δ
(

Σ0,2
(
∂CBS(σ)

∂σ
|σ=Σ0,0

)
+ 1

2
(Σ0,1)

2
(
∂2CBS(σ)

∂σ2 |σ=Σ0,0

))
+
√
ε
√
δ
(

Σ1,1
(
∂CBS(σ)

∂σ
|σ=Σ0,0

)
+ Σ1,0Σ0,1

(
∂2CBS(σ)

∂σ2 |σ=Σ0,0

))
+o (max (ε, δ))

In the following, we denote V egaBS =
∂CBS(σ)

∂σ
|σ=Σ0,0 and V ommaBS =

∂2CBS(σ)
∂σ2 |σ=Σ0,0 .

Finally, by comparing this expression with the development 3.2 obtained previously and
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by using classic expression in the Black-Scholes model (see Appendice B), the development

of the implied volatility is specified

Σ0,0 =
√
u+ w.

Σ1,0 =
P 1,0

V egaBS
= −ν1

√
T − t

2 (u+ w)
(ρ11u+ ρ12v) (d0) .

Σ0,1 =
P 0,1

V egaBS
= −ν2

√
T − t

2 (u+ w)
(ρ22w + ρ21v) d0.

Σ2,0 =
P 2,0 − 1

2
(Σ1,0)

2
V ommaBS

V egaBS
.

Σ0,2 =
P 0,2 − 1

2
(Σ0,1)

2
V ommaBS

V egaBS
.

Σ1,1 =
P 1,1 − Σ1,0Σ0,1V ommaBS

V egaBS
.

Therefore, we can obtain an explicit expression of asymptotic smile at order (ε, δ) but the

formulae is too long. For instance, at order (
√
ε,
√
δ), an explicit and concise formulae for

the smile can be deduced

Σ̂t(T,K) =
√
Tr(Vt) +

√
εP 1,0(t, Yt, V

11
t , V 21

t , V 22
t ) +

√
δP 0,1(t, Yt, V

11
t , V 12

t , V 22
t )

∂CBSt
∂σ (T,K,

√
Tr(Vt))

(3.3)

=
√
Tr(Vt)

+
q1(ρ11V

11
t + ρ12V

12
t ) + q2(ρ22V

22
t + ρ21V

12
t )

2(Tr(Vt))
3
2

[log(Ke−r(T−t))− Yt +
Tr(Vt)(T − t)

2
].(3.4)

Notice that
√
Tr(Vt) is the stochastic volatility and is also the implied volatility at the

forward money (K = Ft = eYt+r(T−t)) and for very short maturities (T = t). Furthermore,

an expression at order (
√
ε,
√
δ) of the skew at the forward money is obtained and one

can check that this formulae corresponds to the one obtained by Durrleman (Theorem 3)

∂Σt

∂K
(T, Ft) ∼

q1(ρ11V
11
t + ρ12V

12
t ) + q2(ρ22V

22
t + ρ21V

12
t )

2(Tr(Vt))
3
2Ft

.

This expression shows that the sign of the skew can be driven by the parameters of

the Wishart model and particularly with the correlation parameters. Finally, we have

obtained a development of the smile for all strikes (not just at the forward money) and

in maturities. This approximation is constrained by the fact that the maturity option T

has to be much less than the characteristics times of the volatility process τi and it is also

clear that this approximation will be more accurate in the neighborhood of the forward

money (Section 3.5). In the next section, we will deal with the case of options with a

medium maturity.
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3.4 Smile dynamics for two-scale volatility

In this section, the case of a two-scale of volatility is brought up what means τ1 �
(T − t) � τ2 or in other words 1

2m1
� (T − t) � 1

2m2
. Consequently, there is a first

component of the volatility with a fast mean reversion and a second with a slow evolution.

The introduction of a multiscale volatility allows to obtain a persistent skew for a medium

maturity. The perturbation method, already presented before, is applied to prove this

observation and to analyze the smile. The method is the same than for the case for

short maturities but the calculations are more complicated. The most important steps

of the procedure as well as the important results are described but some intermediate

calculations are left to the reader. The first Riccati equation can be studied under the

form

A
′
(τ) =

θ(θ − 1)

2
In +

1

ε
(−A(τ)M1 −M1A(τ) + 2A(τ)Q2

1A(τ))

+ 2θ
1√
ε
R>Q1A(τ) + 2θ

√
δR>Q2A(τ)

+ δ(−A(τ)M2 −M2A(τ) + 2A(τ)Q2
2A(τ)).

with the following notations

M1 =

(
1 0
0 0

)
, M2 =

(
0 0
0 1

)
, M = −1

ε
M1 − δM2,

Q =
1√
ε
ν1M1 +

√
δν2M2, Q2 =

1

ε
ν2

1M1 + δν2
2M2,

V0 =

(
u v
v w

)
, θ = iγ.

The development of the function A at order (ε, δ) is given by

A(τ) = A0,0(τ)+
√
εA1,0(τ)+

√
δA0,1(τ)+εA2,0(τ)+δA0,2(τ)+

√
ε
√
δA1,1(τ)+o (max (ε, δ)) .

The first steps of the procedure are detailled but the reader has to carry on some calcu-

lations. Indeed, contrary to the case of a short maturity, the absence of a closed formulae

for the functions Ai,j(τ) requires an ardous identification step by step

Order 1
ε

:

0 = −A0,0(τ)M1 −M1A
0,0(τ) + 2A0,0(τ)Q2

1A
0,0(τ).

Hence, A0,0(τ) the form is deduced

A0,0(τ) =

(
0 0

0 a0,0
2,2(τ)

)
.
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Order 1√
ε

:

0 = −A1,0(τ)M1 −M1A
1,0(τ) + 2A1,0(τ)Q2

1A
0,0(τ) + 2A0,0(τ)Q2

1A
1,0(τ)

+ 2θRTQ1A
0,0(τ).

Since A0,0(τ)Q1 = Q1A
0,0(τ) = 0, the equation becomes 0 = A1,0(τ)M1 + M1A

1,0(τ).

Therefore, A1,0(τ) is given by

A1,0(τ) =

(
0 0

0 a1,0
2,2(τ)

)
.

Order 1 :

(A0,0)
′
(τ) = −A2,0(τ)M1 −M1A

2,0(τ) + 2A2,0(τ)Q2
1A

0,0(τ) + 2A0,0(τ)Q2
1A

2,0(τ)

+ 2A1,0(τ)Q2
1A

1,0(τ) + 2θRTQ1A
1,0(τ)

+
θ(θ − 1)

2
I2.

By noticing that A0,0(τ)Q1 = Q1A
0,0(τ) = A1,0(τ)Q1 = Q1A

1,0(τ) = 0, one can deduce

A0,0(τ) =

(
0 0

0 θ(θ−1)
2

τ

)
, A2,0(τ) =

(
θ(θ−1)

4
0

0 a2,0
2,2(τ)

)
.

Step by step, all the coefficients Ai,j(τ) can be calculated. The constants obtained by

integration are considered equal to 0 given that the global function A satisfies A(0) = 0.

For information, the results of the procedure at order 2 are given so as to carry on the

approximation procedure and to give a benchmark to the reader.

A0,0(τ) =

(
0 0

0 θ(θ−1)
2

τ

)
, A1,0(τ) =

(
0 0
0 0

)
, A0,1(τ) =

(
0 0

0 θ2(θ−1)
2

ρ22ν2τ
2

)
,

A2,0(τ) =

(
θ(θ−1)

4
0

0 0

)
, A0,2(τ) =

(
0 0

0 θ3(θ−1)
3

ρ2
22ν

2
2τ

3 − θ(θ−1)
2

τ 2 + θ2(θ−1)2

6
ν2

2τ
3

)
,

A1,1(τ) =

(
0 0
0 θ3(θ − 1)ρ12ρ21ν1ν2τ

2

)
, A2,1(τ) =

(
0 θ2(θ − 1)ρ21ν2τ
0 ∗

)
,

A3,0(τ) =

(
θ2(θ−1)

4
ρ11ν1 0

θ2(θ−1)
2

ρ12ν1 ∗

)
, A3,1(τ) =

(
0 2θ3ρ11ν1ν2ρ21(θ − 1)τ
0 ∗

)
,

A4,0(τ) =

(
θ2(θ−1)2

16
ν2

1 + θ3(θ−1)
4

ρ2
11ν

2
1 0

θ3(θ−1)
2

ρ11ν
2
1ρ12 ∗

)
.

Concerning the function C, the third Riccati equation allows to obtain the following

development

C(τ) = C0,0(τ)+
√
εC1,0(τ)+

√
δC0,1(τ)+εC2,0(τ)+δC0,2(τ)+

√
ε
√
δC1,1(τ)+o (max (ε, δ)) .
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where

C0,0(τ) = rτθ + β

∫ τ

0

Tr(Q2
1A

20(s))ds = rτθ +
θ(θ − 1)

4
βν2

1τ.

C1,0(τ) = β

∫ τ

0

Tr(Q2
1A

30(s))ds =
θ2(θ − 1)

4
βν3

1ρ11τ.

C0,1(τ) = β

∫ τ

0

Tr(Q2
1A

21(s))ds = 0.

C2,0(τ) = β

∫ τ

0

Tr(Q2
1A

40(s))ds =
θ2(θ − 1)2

16
βν4

1τ +
θ3(θ − 1)

4
βν4

1ρ
2
11τ.

C0,2(τ) = β

∫ τ

0

Tr(Q2
2A

00(s))ds =
θ(θ − 1)

4
βν2

2τ
2.

C1,1(τ) = β

∫ τ

0

Tr(Q2
1A

31(s))ds = 0.

3.4.1 Call price and smile approximation

As before, the Fourier tranform expression can be calculated

Φt (T, θ) = exp
[
θ(θ−1)

2
(T − t)

(
βν21

2
+ w

)
+ θy + r(T − t)θ

]
∗

1 +
√
ε [Tr (A1,0V0) + C1,0] +

√
δTr (A0,1V0)

+ε
[
Tr (A2,0V0) + C2,0 + 1

2
((Tr (A1,0V0) + C1,0)2)

]
+δ
[
Tr (A0,2V0) + C0,2 + 1

2

(
Tr (A0,1V0)

2
)]

+
√
ε
√
δ [Tr (A1,1V0) + (Tr (A1,0V0) + C1,0)Tr (A0,1V0)]

+o (max (ε, δ))


with

Tr
(
A1,0V0

)
= 0.

T r
(
A01V0

)
=

θ2(θ − 1)

2
ρ22ν2w(T − t)2.

T r
(
A11V0

)
= θ3(θ − 1)ρ21ρ12ν2ν1w(T − t)2.

T r
(
A2,0V0

)
=

θ(θ − 1)

4
u.

Tr
(
A0,2V0

)
=

θ3(θ − 1)

3
ρ2

22ν
2
2w(T − t)3 − θ(θ − 1)

2
w(T − t)2 +

θ2(θ − 1)2

6
ν2

2w(T − t)3.

In regard to the smile for short maturities, the same procedure allows to find the expected

approximation. Moreover, this method is easier to implement than the singular method

[2] and an expansion at order 2 is given. The premium can be developed as follows

P = P 0,0 +
√
εP 1,0 +

√
δP 0,1 + εP 2,0 + δP 0,2 +

√
ε
√
δP 1,1 + o (max (ε, δ)) .

with

P 0,0 = CBS(σ), σ =

√
βν2

1

2
+ w.
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P 1,0 =
βρ11ν

3
1(T − t)
4

ΛBS,3
y , P 0,1 =

ρ22ν2(T − t)2w

2
ΛBS,3
y .

P 2,0 =
1

4
uΛBS,2

y + βν4
1(T − t) 1

16

(
ΛBS,4
y − ΛBS,3

y

)
+

1

4
βν4

1ρ
2
11(T − t)ΛBS,4

y

+
1

2

β2ρ2
11ν

6
1(T − t)2

16

(
ΛBS,6
y − ΛBS,5

y

)
.

P 0,2 =
1

4
βν2

2(T − t)2ΛBS,2
y − 1

2
w(T − t)2ΛBS,2

y +
1

3
ρ2

22ν
2
2w(T − t)3ΛBS,4

y

+
1

6
ν2

2w(T − t)3
(
ΛBS,4
y − ΛBS,3

y

)
+

1

2

ρ2
22ν

2
2(T − t)4w2

4

(
ΛBS,6
y − ΛBS,5

y

)
.

P 1,1 = ρ21ρ12ν2ν1w(T − t)2ΛBS,4
y +

βρ11ν
3
1(T − t)3

4

ρ22ν2w

2

(
ΛBS,6
y − ΛBS,5

y

)
.

As it was done before for the short maturities case, by injecting the Taylor expansion of

the implied volatility for Call options in the Black-Scholes model, and by comparing both

approximations of the price, an approximation for the implied volatility at order (ε, δ) is

deduced

Σ0,0 =

√
w +

βν2
1

2
.

Σ1,0 =
P 1,0

V egaBS
= − 1
√
T − t(βν

2
1

2
+ w)

ν3
1

4
βρ11d0.

Σ0,1 =
P 0,1

V egaBS
= − 1
√
T − t(βν

2
1

2
+ w)

ν2

2
ρ22wd0

Σ2,0 =
P 2,0 − 1

2
(Σ1,0)

2
V ommaBS

V egaBS
.

Σ0,2 =
P 0,2 − 1

2
(Σ0,1)

2
V ommaBS

V egaBS
.

Σ1,1 =
P 1,1 − Σ1,0Σ0,1V ommaBS

V egaBS
.

The approximation is available at order (ε, δ) but for a better readibility, we will present

only the expression of the smile at (
√
ε,
√
δ)

Σ̂t(T,K) =

√
βν2

1

2
+ V 22

t +

√
εP 1,0(t, Yt, V

22
t ) +

√
δP 0,1(t, Yt, V

22
t )

∂CBSt
∂σ (T,K,

√
βν21

2 + V 22
t )

=

√
βν2

1

2
+ V 22

t

+
1

(
βν21

2 + V 22
t )

3
2

[
q3

1

4m2
1

βρ11 +
q2

2
ρ22(T − t)V 22

t ][
log(Ke−r(T−t))− Yt

(T − t)
+

βν21
2 + V 22

t

2
].

For a two-scale volatility, the implied volatility Σ0,0 =

√
βν21

2
+ V 22

t at order 0 is a combi-

nation of the long term and the short term through the stationary value of V 11
s and the
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initial value of V 22
s . Moreover, the skew around the forward money (K = Ft = eYt+r(T−t))

can also be infered at order (
√
ε,
√
δ). The analysis is focused on the skew in order to give

characteristics of the model related to the stochastic correlation. But it is obvious that

the same reasoning can be done for convexity and slope.

∂Σt

∂K
∼ 1

Ft

1

(
βν21

2
+ V 22

t )
3
2

[
q3

1

4m2
1(T − t)

βρ11 +
q2

2
ρ22V

22
t ]

∼ 1

Ft

1

(
βν21

2
+ V 22

t )
3
2

[ν3
1

√
ε

T − t
βρ11 +

ν2

2

√
δρ22V

22
t ]. (3.5)

This formulae underlines that the skew splits up into two components : the first one,

proportional to ρ11, coming from the fast mean-reversion volatility component, and the

second one, proportional to ρ22, is persistent and proceeds from the slow variation com-

ponent of the volatility. Besides, this expression is also obtained as a combination of

Heston formulaes for short and long maturities [1].

3.5 Numerical Applications

This part is devoted to numerical applications. Indeed, this section lays the emphasis on

the error of the approximation as well as the influence of some parameters like the matrix

R and the matrix Q on the smile. It is noticeable that for a range of parameters (a set of

parameters in a classic market), this approximation can be used for calibration. But when

the parameters overstep some bounds, the approximation does not furnish a calibration

tool but carries on providing an idea of the level and the shape of the smile as well as the

influence of parameters.

3.5.1 Short maturity smile

Let us handle now the case of a short maturity smile with (T − t)� τ1, τ2

Consider the followings values for the parameters of the model allowing standard dynamics

for the volatility in short maturities

β = 4, r = 0, V0 =

(
0.02 0.01
0.01 0.02

)
, M =

(
−0.05 0

0 −0.05

)
, Q =

(
0.02 0

0 0.02

)
.

The matrix of mean-reversion M gives the speed at which the volatility process returns to

its mean. The matrix Q corresponds to the volatility of volatility which is the most signifi-

cant parameter of the stochastic volatility model concerning the evolution of the volatility

and the dispersion of the volatility around its expected value. First, the matrix Q was

chosen so that the volatility does not reach quickly the asymptotic volatility when this one
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is far from the initial one (Σ0 =
√
V 11

0 + V 22
0 = 20% and Σ∞ =

√
β
2
(ν2

1 + ν2
2) ∼ 17, 8%).

This case is common in a classic market.

Numerical applications underline the effect of the correlation matrix R on a smile for a

maturity T = 6 months. Indeed, when R is diagonal, parameters can be found so that the

Wishart volatility model corresponds to a multifactor Heston model described for example

in [5]. Then, adding non-diagonal components for R allows more flexibility concerning the

stochastic correlation and the skew because they will also depend on the new factor V 12
t .

The study is restricted to the case when M and Q are diagonals because it is the frame-

work of this approximation, nevertheless a general matrix R can be considered in order

to glimpse the flexibility of the Wishart volatility model. The impact of the non-diagonal

components for M and Q will be studied in future researches.

Characteritic times of the process V are denoted τ1 = 1
2m1

= 10y and τ2 = 1
2m2

= 10y.

Then, this framework deals with a ”short maturity” case. At t = 0, we have calculated the

smile by FFT (Fig. 1) and the approached smiles at order 1 and order 2 (Fig. 2 and Fig. 3).

Figure 1 – Short term smile by FFT (T = 6m� τ1 = τ2 = 10y)

As expected, all components of the correlation matrix R contribute for the generation of

the skew. Indeed, the more the components ρ11 and ρ22 are negative, the more the skew is

negative. That is not true for ρ12 and ρ21 since they are multiplied by V12 and V21 whose

are not necessarly positive.
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Figure 2 – Short term smile at order (
√
ε,
√
δ) (T = 6m� τ1 = τ2 = 10y)

Figure 3 – Short term smile at order (ε, δ) (T = 6m� τ1 = τ2 = 10y)

In order to quantify the accuracy of this approximation, figures are presented (Fig. 4 and

Fig. 5) describing the difference between the approached smiles and the smile obtained

by FFT.

Figure 4 – Error for short term smile at order (
√
ε,
√
δ) (T = 6m� τ1 = τ2 = 10y)
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Figure 5 – Error for short term smile at order (ε, δ) (T = 6m� τ1 = τ2 = 10y)

The approximation gives very good results and the approximation at order 2 is accurate

enough to be used as a calibration tool : one can see that between the strike 80 and 120,

the error is below 5×10−5. This error is totally acceptable by practitioners in a calibration

prospect.

An unrealistic case is presented where the volatility of volatility matrix Q is outstanding

so that the volatility explodes when maturity tends to infinity. Only the matrix Q is

changed to see its influence on the smile and the behaviour of the approximation in a

”tense” framework. With these market conditions, the approximation is not good enough

in a calibration prospect, but keeps on giving a good shape and level of the smile and

consequently a good idea of the impact of the parameters.

β = 4, r = 0, V0 =

(
0.02 0.01
0.01 0.02

)
, M =

(
−0.05 0

0 −0.05

)
, Q =

(
0.1 0
0 0.1

)
.

In this case, a great asymptotic volatility (Σ∞ =
√

β
2
(ν2

1 + ν2
2) ∼ 89%) is considered and

the smile is wealthier as it can be seen in Fig. 6. First, the level at the money (ATM)

of the implied volatility at T = 6 months is about 24% and is then very different from

the initial volatility which is Σ0 =
√
V 11

0 + V 22
0 = 20%. Moreover, on can obtain a real

”smirk” with these parameters, in the fourth case for instance (Fig. 6).

The Black-Scholes volatility used in the FFT pricing with Formulae 2.14 is σ̄ = 24, 22%

which is the realized mean volatility giing an account of the real level of the volatility

ATM.

Although the calibration with this approximation is impossible for those parameters,

the approximation appears to be stable enough in relation to shock on paremeters and
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reproduces a good shape for the smile like the level ATM, the skew and a good behaviour

of the convexity.

Figure 6 – Short term smile by FFT (T = 6m� τ1 = τ2 = 10y)

The approximation allows to have an idea of the smile and the influence of some

parameters (very useful for a trader) but cannot furnishes a calibration tool. For the 4

sets of correlation coefficients considered, comparing the smile by FFT and the smiles

approached by the method at order 1 and 2 allows to estimate the convergence of this

method.

Figure 7 – Convergence in the case : ρ11 = ρ22 = −0, 6 ρ12 = ρ21 = 0
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Figure 8 – Convergence in the case : ρ11 = ρ22 = −0, 1 ρ12 = ρ21 = 0

Figure 9 – Convergence in the case : ρ11 = ρ22 = −0.6 ρ12 = ρ21 = −0, 3

Figure 10 – Convergence in the case : ρ11 = −0.1 ρ22 = −0.6 ρ12 = ρ21 = 0

The perturbation method becomes more accurate at order 2 : the approximation reaches

the good level ATM and the shape of the curves is reproduced more precisely. Indeed, the

smirk in the fourth case is faithfully reproduced and the smile level ATM is not far from
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the one obtained by FFT (24% Fig. 6).

For information, a complete surface of a short term smile is presented functions of maturity

and strike (Fig. 11). The slope appears very high and the smile does not flatten itself when

the maturity increases in opposition to the case of a local volatility model.

Figure 11 – Smile surface for short maturities

3.5.2 Smile with multiscale volatility

At present, those new values for the model parameters are taken as input

β = 4, r = 0, V0 =

(
0.02 0

0 0.02

)
, M =

(
−2 0
0 −0.02

)
, Q =

(
0.05 0

0 0.02

)
.

Consider a maturity T = 3y what allows the case of a medium maturity with τ1 = 3m�
T = 3y � τ2 = 25y. The matrix Q is chosen so that the volatility has gone from 20% until√
β
ν21
2

+ V 22
0 ∼ 15, 8% in 3 years (Fig. 12) : it is an outstanding change of volatility and the

quality of the method has to be tested seeing how the approximation converges toward the

real smile with these exceptional market conditions. At order 1, the perturbation method

furnishes a good shape for the skew but the level of the smile at the money is far from

the good one (15% Fig. 13). However, at order 2, the approximated smile is accurate and

the level is really close from the good one (15, 7% Fig. 14).
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Figure 12 – Multiscale volatility smiles by FFT (τ1 = 3m� T = 3y � τ2 = 25y)

Figure 13 – Multiscale volatility smiles at order (
√
ε,
√
δ) (τ1 = 3m � T = 3y � τ2 =

25y)

Figure 14 – Multiscale volatility smiles at order (ε, δ) (τ1 = 3m� T = 3y � τ2 = 25y)

It is important to point out that the approximation is maybe not accurate enough for

calibration because the set of parameters was taken such as the volatility significantly
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changes. Moreover, as in the short maturity case, the procedure gives a good idea of the

smile as well as the influence of some parameters (very useful for traders). The smile by

FFT is approached by the method at order 1 and at order 2 for the same sets of correlation

coefficients (Fig. 15 and Fig. 16).

Figure 15 – Error for multiscale volatility smile at order (
√
ε,
√
δ) (τ1 = 3m � T =

3y � τ2 = 25y)

Figure 16 – Error for multiscale volatility smile at order (ε, δ) (τ1 = 3m � T = 3y �
τ2 = 25y)

As expected, the skew comes from the component ρ22 and the slope of the smile curve is

almost insensible to a change of ρ11 given that τ1 � T . This is what it was expected after

an analysis of the smile through the approximation formulae 3.5. We can also describe

the implied volatility surface in the case of a medium maturity option 17.
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Figure 17 – Smile Surface for medium maturities

Conclusion

Having observed the problem of the data fitting for short or long maturities, the Wi-

shart volatility model, which is a multifactor extension of the Heston model, seems to be

adapted to solve efficiently this problem. Indeed, preserving advantages of affine models

provides semi-closed formulae for the price of some options like Call options and put op-

tions, as well as a good understanding of the volatility behaviour through the parameters

of the model.

It was natural to find a procedure, based on affine properties, that allows an accurate

estimation of the smile. This paper suggests mainly some developments for smile dyna-

mics in the Wishart volatility model. Using an adaptation of the singular perturbations

method, closed-form expressions were found concerning asymptotic smiles in the cases of

short and medium maturities. Those accurate approximation can be used as a calibration

tool in practice with classic conditions and gives also a good idea of the parameters’ effect

on the smile that could be very useful for traders.

Moreover, for an evaluation by Monte Carlo methods, a procedure of simulation was

studied for the Wishart volatility model knowing that a standard Euler scheme is prohi-

bited. Indeed, using a relationship between a Wishart process (with a degree integer) and

Ornstein-Uhlenbeck processes, an extension was suggested for a general Wishart process

(with a degree real) : in order to handle the simulation in the general case, a helpful

change of probability measure was employed using the dynamics of determinant.

Many points are reserved for future works : comprehension of the influence of the non-

diagonal components for the matrices M , Q and V0 that provides the main interest of this

model, investigations about the forward smile in order to deal more complex options in the
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Wishart volatility model, and the generalization of this model in the interest rate world

where a large number of factors is needed. One expects that this kind of model, where

the volatility is a function of a Wishart process, exhibits precisely different source of risk

existing in the market and provides enough flexibility for the generation of whealty smiles.
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Appendice

Appendice A : About exponentials of matrices

3.5.3 Définitions and properties

1. Let A be a complex matrix. The exponential of A, denoted exp(A), is the n × n

matrix given by the power series

exp(A) =
+∞∑
i=0

An

n!
.

2. Let A,B be two complex matrices. If AB = BA, then

exp(A+B) = exp(A) exp(B) = exp(B) exp(A).

3. LetA be a complex matrix and {λ1, ..., λn} its eigenvalues, then {exp(λ1), ..., exp(λn)}
are the exp(A) eigenvalues.

4. Let A be a complex matrix, then exp(A) is invertible and its inverse is given by

(exp(A))−1 = exp(−A).

5. Let A be a complex matrix, then

det(exp(A)) = exp(Tr(A)).

6. Let F : R→ GLn(C), then

Tr

[∫ b

a

(F (s))−1F (s)ds

]
= log

[
det(F (b))

det(F (a))

]
.

3.5.4 Exponential of matrices approximation

Many numerical methods are available to approach an exponential of matrix [25]. The

Padé approximation method was the one chosen associated with the Scaling ans Squaring

method. Consider A ∈ Mn(C) and (p, q) ∈ N∗ × N∗. Then, an approximation of the

exponential of matrix

exp(A) ∼ Rpq(A).

where

Rpq(A) = [Dpq(A)]−1Npq(A).

Npq(A) =

p∑
j=0

(p+ q − j)!p!
(p+ q)!j!(p− j)!

Aj.
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Dpq(A) =

q∑
j=0

(p+ q − j)!q!
(p+ q)!j!(q − j)!

Aj.

Moreover, the article [25] underlines that if j ∈ N such as ‖A‖ ≤ 2j−1, then

[Rpq(2
−jA)]2

j

= exp(A+ E),

where

‖E‖ ≤ 23−p−q p!q!

(p+ q)!(p+ q + 1)!
.

This approximation of exp(A) by [Rpq(2
−jA)]2

j
instead of Rpq(A) is the scaling and squa-

ring method.

Appendice B : Simulation of Ornstein Uhlembeck processes

Exact simulation of Ornstein-Uhlenbeck processes LetX be an Ornstein-Uhlenbeck

process which follows the dynamics

dXt = MXtdt+Q>dBt.

Then, it is easily shown that

E(Xt+h|Xt) = exp(hM)Xt.

Var(Xt+h|Xt) =

∫ h

0

exp(sM)Q>Q exp(sM>)ds.

The function, defined by f(t) =
∫ t

0
exp(sM)Q>Q exp(sM>)ds, is solution of the differen-

tial equation

f
′
(t) = Q>Q+Mf(t) + f(t)M>.

Using the linearization method ([7]), the solution of this equation can be written by

f(t) = g−1(t)h(t).

(g(t) h(t)) = (0 In) exp

[
t

(
M> 0
Q>Q −M

)]
.

Al last, X̄ti can be deduced by N (exp(∆tM)X̄ti−1
, f(∆t)).

Euler scheme of Ornstein-Uhlenbeck processes Although there exists an explicit

expression of X̄ti with its transition law, using this method to simulate an Ornstein-

Uhlenbeck process appears less effective than an Euler scheme. Indeed, as explained in

the next section, the Brownian increments of the Euler ccheme of the Wishart process
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can also be used to simulate the asset itself. Therefore, the simultaneaous simulation

by an Euler scheme of both the processesappears to be the most efficient method. The

discretization of an Ornstein-Uhlenbeck process is given by

X̄k,ti = (In + ∆tM)X̄k,ti−1
+
√

∆tQ>εk,i, 1 ≤ k ≤ β. (3.1)

Consequently, the simulation of a Wishart process by an Euler scheme is obtained as

X̄k,ti = (In + ∆tM)X̄k,ti−1
+
√

∆tQ>εk,i, 1 ≤ k ≤ β.

V̄ti =

β∑
k=1

X̄k,tiX̄
>
k,ti

Finally, the simulation of a Wishart process in the case β ∈ N is easy. The case β ∈ R
is deduced by the change of the probability measure detailed in the previous section. For

financial applications, the Wishart volatility model is a stochastic volatility model where

the volatility is driven by the trace of a Wishart process. The parameters of the volatility

process will be calibrated on market prices. Hence, the simulation of a Wishart process in

its general form (β real deduced from calibration) is essential for an evaluation by Monte

Carlo methods in the Wishart volatility model and will be developed in the next section.

Appendice C : Standard calculations in the Black-Scholes model

Recall the pricing notations in the Black-Scholes model with the log spot denoted y =

log(x)

d1 =
1

σ
√
T − t

(y + log(
e+r(T−t)

K
)) +

1

2
σ
√
T − t.

d0 =
1

σ
√
T − t

(y + log(
e+r(T−t)

K
))− 1

2
σ
√
T − t.

The following derivatives can be deduced easily

∂d1

∂x
=
∂d0

∂x
=

1

σx
√
T − t

.

∂d1

∂y
=
∂d0

∂y
=

1

σ
√
T − t

.

∂d1

∂σ
= − 1

σ2
√
T − t

log(
xer(T−t)

K
) +

1

2

√
T − t.

∂d0

∂σ
= − 1

σ2
√
T − t

log(
xer(T−t)

K
)− 1

2

√
T − t.
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Using the previous expression, the Greeks of a Call option can be calculated

∆x =
∂CBS
∂x

= N(d1), ∆y =
∂CBS
∂y

= xN(d1).

Γx =
∂2CBS
∂x2

=
1

σx
√
T − t

N
′
(d1), Γy =

∂2CBS
∂y2

= x2Γx + ∆y.

Hence, recursive calcultation by considering Formulae 3.1 and the delta and gamma greeks

yields

∂3CBS
∂y3

= Γy + (Γy −∆y)
(a− y)

σ2(T − t)
.

∂4CBS
∂y4

=
∂3CBS
∂y3

+ (
∂3CBS
∂y3

− ∂2CBS
∂y2

)
(a− y)

σ2(T − t)
− 1

σ2(T − t)
(Γy −∆y).

∂5CBS
∂y5

=
∂4CBS
∂y4

+ (
∂4CBS
∂y4

− ∂3CBS
∂y3

)
(a− y)

σ2(T − t)
− 2

σ2(T − t)
(
∂3CBS
∂y3

− ∂2CBS
∂y2

).

∂6CBS
∂y6

=
∂5CBS
∂y5

+
(a− y)

σ2(T − t)
(
∂5CBS
∂y5

− ∂4CBS
∂y4

)− 3

σ2(T − t)
(
∂4CBS
∂y4

− ∂3CBS
∂y3

).

The expression of the price successive derivatives with respect to σ is given by

V egaBS =
∂CBS
∂σ

= σ(T − t)(Γy −∆y).

V ommaBS =
∂2CBS
∂σ2

= (T − t)d0d1(Γy −∆y).
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